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Abstract: This paper reports on a novel solution for a transimpedance amplifier (TIA) specifically
designed as an analog conditioning circuit for low-voltage, low-power, wearable, portable and im-
plantable optoelectronic integrated sensor systems in biomedical applications. The growing use of
sensors in all fields of industry, biomedicine, agriculture, environment analysis, workplace security
and safety, needs the development of small sensors with a reduced number of electronic components
to be easily integrated in the standard CMOS technology. Especially in biomedicine applications, re-
duced size sensor systems with small power consumption are of paramount importance to make them
non-invasive, comfortable tools for patients to be continuously monitored even with personalized
therapeutics and/or that can find autonomous level of life using prosthetics. The proposed new TIA
architecture has been designed at transistor level in TSMC 0.18 µm standard CMOS technology with
the aim to operate with nanoampere input pulsed currents that can be generated, for example, by Si
photodiodes in optical sensor systems. The designed solution operates at 1.8 V single supply voltage
with a maximum power consumption of about 36.1 µW and provides a high variable gain up to about
124 dBΩ (with fine- and coarse-tuning capabilities) showing wide bandwidth up to about 1.15 MHz
and low-noise characteristics with a minimum noise floor level down to about 0.39 pA/

√
Hz. The

overall circuit is described in detail, and its main characteristics and performances have been analyzed
by performing accurate post-layout simulations.

Keywords: low-voltage; low-power; low-noise; tunable gain; CMOS Integrated Technology;
optoelectronics; transimpedance amplifier (TIA); biomedical applications

1. Introduction

The development of specific wearable, portable, and implantable sensor devices are
the key elements for the most demanding applications in biomedicine that aim to imple-
ment novel reliable means for personalized telemedical diagnostic and therapeutic [1–4].
Even if today sensors find large applications in many other industrial areas (i.e., from
automotive and robotics to environment analysis and agriculture) for their capability to
probe many physical and chemical properties (like temperature, humidity, chemical reac-
tions, distances, surface rugosity, etc.), those ones related to biomedicine involve the special
requirements to acquire, elaborate, transmit and receive data by using very low electrical
power. Biomedical sensors, in fact, must be dressed from or implanted in persons (many
times elderly patients) who are often suffering important diseases. For this, the sensor on
board front-end electronic architectures must be designed to operate under low-voltage,
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low-power conditions with a reduced number of active and passive components and with
the possibility to be implemented at transistor level in the standard CMOS technology.

In general, medical sensors for clinical recordings make use of conductive gel wet
electrodes or dry electrodes to be worn continuously, even for long-term periods [5]. In
particular, dry electrodes have the advantages to permit longer measurements and shorter
preparation times, resulting as more comfortable for the patient. Among the dry elec-
trodes, otprodes [6] are finding applications as optical sensors in photoplethysmography
(PPG) [7,8], transcutaneous blood gas monitoring [9,10], and neural interfaces [6,11]. Addi-
tionally, in other fields strictly connected to medical applications, single sensors or array
of sensors play a crucial role. This is the case of wearable robot and exoskeletons for
prosthetics [12,13] where different kinds of sensors allow the patient to find a comfortable
and autonomous level of life. Another important application of wearable gas and particle
sensors is the monitoring of environment to guarantee health and safety of persons in
workplaces where hazardous gases or nano–micro-sized pollutants are employed [14–16].

From the above-mentioned applications, it is evident that the electronic front-end of
the sensors must be designed to comply with demanding characteristics for what concerns
the minimum detectable current/voltage signal that is directly related, for example, to
the determination of the lowest concentration of chemical/biochemical substances to
be detected and/or to the smallest displacement to be actuated in wearable prosthetics.
Independently from the specific application, the front-end of sensor devices is generally
based on specific transimpedance amplifiers (TIA) as the first conditioning circuits that,
for all the applications outlined before, need to operate under low-voltage and low-power
conditions [17–30].

With this aim, this paper presents a novel TIA architecture that has been specifically
designed at transistor level in TSMC 0.18 µm standard CMOS technology to manage
nanoampere input pulsed currents generated by Si photodiodes (PDs) that, together with
semiconductor lasers or LEDs, are the key elements of optical sensors. The proposed
solution is capable to operate at 1.8 V single supply voltage with a maximum power
consumption of about 36.1 µW and allows to achieve variable gains up to about 124 dBΩ
(with fine- and coarse-tuning capabilities) with a wide bandwidth up to about 1.15 MHz and
low-noise characteristics, thus resulting as particularly suitable for integrated optoelectronic
sensing systems in biomedical applications. Moreover, the complete theoretical analysis of
the proposed circuit discussed in the paper opens the possibility to employ the same circuit
architecture by a suitable sizing of the passive and active components, also for other kinds
of input signals coming from wireless sources, such as RF antennas operating at wider
bandwidths [31–34].

2. Circuit Design and Theory

The overall block scheme illustrating the main stages of the proposed electronic circuit
is shown in Figure 1. The photocurrent IPD generated by a PD is the input signal of the
TUNABLE CURRENT PRE-AMPLIFIER stage, based on a current mirror architecture,
capable to amplify the incoming current signal with a specific gain settable through the
external voltages V1, V2 and V3 that are the digital control signals for the electronic circuit
coarse gain tuning. An additional external analog control voltage signal VAN is also
included to perform fine-tuning of the current gain so providing the amplified output
current IOUT. This is the input signal of the subsequent TIA stage and the generated output
voltage signal VOUT is obtained by a current-to-voltage amplifier based on a modified
Regulated Cascode TIA (RGC-TIA) circuit topology [17–21].

The complete schematic circuit designed at transistor level in TSMC 0.18 µm standard
CMOS technology is reported in Figure 2. The circuit has been implemented, simulated,
and analyzed in CADENCE Design System environment considering a 1.8 V single supply
voltage. More in detail, referring to Figure 2, the first stage of the architecture is the
standard electrical model emulating a Si PD that operates in photoconductive regime
that is composed by the following elements: an ideal current generator providing the
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photocurrent IIN proportional to the light power impinging on the PD sensitive area, a
junction capacitance CJ, a shunt resistance RSH, and an in-series resistance RS. In addition,
the PD cathode terminal represented by the voltage node VBIAS is connected directly to the
overall supply voltage VDD = 1.8 V. The PD Anode provides the photocurrent IPD that is
the input signal for the subsequent TUNABLE CURRENT PRE-AMPLIFIER block based
on a current mirror architecture composed by the transistors M1-M2-M4 and M5 (or M7, or
M9) selected by the digital control signal V1 (or V2, or V3, individually activated). These
digital control voltages operate on transistors M6, M8, and M10, so allowing to set three
different current gains to be selected as a function of the light power illuminating the PD
sensitive area. Moreover, the diode-connected transistors M11 and M12 implement the
active load of the current mirror architecture. In addition, the analog control signal VAN
acts on transistor M3 providing a more accurate and fine-tuning of the overall current
gain achieved by this block. The presence of this analog control permits to continuously
adjust the effective current gain needed to compensate current offsets and other circuit
non-idealities (e.g., current mirror mismatches). Then, the amplified current IOUT flows
through the diode-connected transistor M0T of the last stage of the TIA where M2T, having
M3T as active load and the source connected to the same TIA input, is properly regulated
by a common source voltage amplifier implemented by the M1T and M4T transistors.
Finally, the stability of the system is guaranteed by the two capacitances C1 and C2 in
feedback connections.
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From the complete theoretical analysis, the transimpedance gain of the electronic
circuit as function of the frequency is given by the following equation:

ZTOT( f ) =
N

gm(M3T)

1[
1 + j2π f CIN gm(M4T)

gm(M2T)[gm(M4T)+gm(M1T)]

][
1 + j2π f COUT

gm(M3T)

] (1)

where N is the current gain of the TUNABLE CURRENT PRE-AMPLIFIER block and gm’s
are the transconductances of each specified transistor. Moreover, CIN and COUT are the total
capacitances at the circuit input and output nodes, respectively. Referring to Figure 2, they
are equal to: {

CIN = C1 + C2
[
1 + gm(M1T)

gm(M4T)

]
+ CPAR_IN

COUT = CL + CPAR_OUT
(2)
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where CPAR_IN is the parasitic capacitance at the input of the TIA block and CPAR_OUT
the parasitic capacitance at the final output node of the system combined with the load
capacitance CL.

The complete layout of the described optoelectronic circuit has been designed in
standard TSMC 0.18 µm CMOS technology and is shown in Figure 3a,b, requiring a Si area
of 2070 µm2. The overall layout also includes in panel (c) an integrated PD based on a PNP
junction with a Si area of 10,000 µm2. The size of the PD sensitive area has been chosen
to guarantee a small junction capacitance CJ (8 pF) and standard values of RSH (100 MΩ)
and RS (50 Ω) so making this device suitable to detect light pulses in optical biosensing
applications. Table 1 reports the sizes of all the employed transistor and the values of the
main parameters of the CMOS designed electronic circuit.
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block; (b) the TIA block; and (c) the integrated PD based on a PNP junction.

Table 1. Transistor sizes and values of the passive components of the electronic circuit.

Transistor Size W/L (µm/µm)

M1, M2, M4 0.22/0.18
M5 0.28/0.36

M3, M6, M8, M10 2.2/0.18
M7 1.4/0.36
M9 5.4/0.36

M11, M12 0.22/14
M0T 2/1.6
M1T 3.6/0.36

M4T, M2T 2.65/0.18
M3T 1/4
CL 0.7 pF

Component Value

C1 0.3 pF
C2 1.8 pF
CJ 8 pF

RSH 100 MΩ
RS 50 Ω
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3. Circuit Simulation Results and Discussion

The characteristics and performances of the designed circuit have been evaluated in
CADENCE Design Systems environment by performing complete post-layout simulations.
More in detail, the transistor sizes and the values of the passive components of the complete
circuit reported in Table 1, have been properly chosen and optimized consequentially to the
complete theoretical analysis of the circuit and by fully applying standard microelectronic
design techniques. In this way, it has been possible to obtain the finest trade-off among
all the parameters of the designed circuit with the aim to achieve its best characteristics,
especially in terms of: (i) low power consumption; (ii) low noise; (iii) small silicon area;
(iv) suitable bandwidth; (v) very high and tunable gain of the circuit powered at 1.8 V
single supply voltage; and (vi) capability to operate with nanoampere input current pulses.
In addition, the validity and correctness of Equation (1) has been also proven and confirmed
through the results achieved by the performed post-layout simulations.

In particular, the small signal frequency analysis of the electronic circuit has been
studied and analyzed in the range from 100 Hz to 1011 Hz under three different current
gain conditions achieved by varying the external control voltages V1, V2, V3 and VAN of the
TUNABLE CURRENT PRE-AMPLIFIER block (see the circuit block scheme of Figure 1 and
the schematic of Figure 2). The resulting magnitude and phase values of the transimpedance
gain, as a function of the frequency of the input signal, are reported in Figure 4. More in
detail, as shown in the upper panel of Figure 4, fixing the value of the analog control voltage
VAN = 1.8 V, the resulting circuit bandwidth is about: (i) 555 kHz, corresponding to the
maximum transimpedance gain of about 124 dBΩ obtained by setting the control voltages
V3 = 1.8 V, V2 = V1 = GND (the purple line); (ii) 650 kHz related to the transimpedance
gain of about 113 dBΩ obtained by setting the control voltages V2 = 1.8 V, V3 = V1 = GND
(the red line); and (iii) 1.15 MHz associated to the minimum transimpedance gain of about
102 dBΩ obtained by setting the control voltages V1 = 1.8 V, V2 = V3 = GND (the green line).
Moreover, for these three values of the transimpedance gain, the inset of the upper panel of
Figure 4 also shows the effects of the gain fine-tuning provided by varying the VAN external
control voltage. In particular, the continuous lines are the maximum transimpedance gains
obtained as previously described, while the dashed and the dotted lines have been obtained
by setting VAN = 1.5 V and VAN = 1.2 V, respectively. This fine-tuning capability allows
us to control the circuit gain up to about ±2 dBΩ with respect to the maximum/nominal
values reported above. Finally, referring to these simulations, the resulting circuit GBW is
about 30 GHz with a corresponding phase margin for each gain value of about −78◦, as
indicated in the low right corner of the lower panel of Figure 4. This result demonstrates
that the circuit stability is guaranteed by the presence of the feedback capacitors C1 and C2
that provide a phase response always lower than −130◦.

The influence of each circuit parameter on the transimpedance gain has been also
investigated and evaluated. Referring to Equation (1), the transimpedance gain mainly
depends on the transconductances gm of the transistors composing the circuit and, among
them, the most significant one is the transconductance of the transistor M3T (i.e., gm(M3T)).
In this regard, specific parametric post-layout simulations have been performed to demon-
strate the influence of the variation of the gm(M3T) on the resulting transimpedance gain of
the circuit. Therefore, changes of gm(M3T) have been considered by varying of ±50% the
transistor width W (i.e., WM3T, from which the gm(M3T) depends on), with respect to its
nominal value reported in Table 1. As shown in Figure 5, any variation (positive or negative)
of WM3T (and so, of the corresponding gm(M3T)) always provides a significant reduction
of the overall transimpedance gain (121.7 dBΩ and 122 dBΩ, for positive and negative
variations of WM3T, respectively), with respect to its best value of 124 dBΩ achieved under
the chosen operating conditions and circuit device sizes reported in Table 1. In the inset of
Figure 5, a magnification of the transimpedance gain, in the reduced range of frequencies
from 1 Hz to 1 MHz, has been also reported. Similar analyses have been also performed by
changing the transconductance values of the other circuit transistors (i.e., gm(M1T), gm(M2T)
and gm(M4T)), always considering variations of ±50% of the transistor widths W, with
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respect to their nominal values reported in Table 1. In all these last cases, any positive or
negative variation of the gm values provides a maximum change of the transimpedance
gain lower than ±0.5 dBΩ, with respect to its best value of 124 dBΩ achieved under the
chosen operating conditions and device sizes reported in Table 1. Consequently, the depen-
dence of the resulting transimpedance gain from these circuit transistors parameters can be
considered negligible. Additionally, these results confirm the best/optimum choice of the
complete circuit components and parameters as well as demonstrate the robustness, the
stability, and the strong independence of the designed circuit from the technological spread
and the process variations [35,36].
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for different gain settings by acting on the external control voltages V1, V2, and V3. In the inset,
the corresponding fine tuning achieved by varying the control voltage VAN. Lower panel: the
corresponding values of the phase of the circuit transimpedance gain.
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Figure 5. Magnitude of the circuit transimpedance gain as function of the frequency and by varying
of ±50% the M3T transistor width WM3T (from which the gm(M3T) depends on), with respect to its
nominal value reported in Table 1. In the inset, the magnification in the reduced range of frequencies
from 1 Hz to 1 MHz.

In Figure 6, the achieved equivalent input-referred current noise of the circuit is
reported. It has been evaluated considering the same frequency range used for the sim-
ulations of Figures 4 and 5 and for the three circuit gains controlled by the voltages V1,
V2, V3 and fixing VAN = 1.8 V. In the inset of Figure 6 is reported a magnification of the
data in a reduced frequency range (i.e., from 100 kHz to 1 MHz) so demonstrating that its
minimum value (i.e., the noise floor level), mainly related to the thermal noise contribution,
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is about: (i) 0.39 pA/
√

Hz activating the control voltage V3; (ii) 0.53 pA/
√

Hz activating
the control voltage V2; and (iii) 1.2 pA/

√
Hz activating the control voltage V1. Furthermore,

the robustness of the circuit response has been studied by performing Corner Analysis sim-
ulations, also including process variations. In this sense, the analysis has been performed
by considering temperature variations ranging between −25◦ to +75 ◦C and changes of the
supply voltage of ±5% with respect to its nominal value (i.e., VDD = 1.8 V). The results
of the simulations demonstrate that magnitude and phase of the transimpedance gain, as
well as the equivalent input-referred current noise, have a maximum statistical uncertainty
of about ±2%.
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to 1 MHz.

Additionally, as a case example of the analysis of the electronic circuit response in the
time domain, a further series of simulations has also been performed. In particular, a pulsed
photocurrent IIN at a repetition rate of 50 Hz has been generated as the ideal current source
of the Si PD electrical model shown in Figure 2 [10,37–41]. According to the upper panel of
Figure 7, the considered IIN as a function of time has the following main characteristics: rise-
and fall-times equal to of 1 µs and 100 µs, respectively; 10 µs pulse-width; 400 nA current
peak amplitude; 1 nA minimum current amplitude corresponding to the typical Si PD dark
current. These parameters of the photocurrent IIN have been chosen to emulate the behavior
of fluorescence or phosphorescence emissions from biomarkers excited by laser pulses used
as label-free aptasensors in many applications in biology and medicine for diagnosis and
therapeutic control [10,37–41]. Recalling the considered standard values of the PD shunt
and series resistances RSH = 100 MΩ and RS = 50 Ω, as well as of the junction capacitance
CJ = 8 pF, and taking into account their filtering effect on the pulsed photocurrent IIN, the
corresponding effective input current signal IPD of the electronic circuit (see Figure 2) is
reported in the middle panel of Figure 7. Moreover, the lower plot of Figure 7 shows the TIA
output voltages VOUT as a function of time and for the three different circuit transimpedance
gains (as described above), considering the fine-tuning control voltage VAN fixed to 1.8 V. As
shown in Figure 7, the circuit output voltage offset is about 810 mV, corresponding to the PD
dark photocurrent IIN = 1 nA, while the peak values of the output voltage signals VOUT are
about: (i) 860 mV (i.e., 810 mV + 50 mV) by activating the control voltage V1 corresponding
to the transimpedance gain of about 126 kΩ (i.e., 102 dB); (ii) 980 mV (i.e., 810 mV + 170 mV)
by activating the control voltage V2 corresponding to the transimpedance gain of about
447 kΩ (i.e., 113 dB); and (iii) 1390 mV (i.e., 810 mV + 580 mV) by activating the control
voltage V3 corresponding to the transimpedance gain of about 1585 kΩ (i.e., 124 dB). These
results are in very good agreement with the transimpedance gain values achieved by
performing the frequency domain simulations previously reported in Figure 4. Moreover,
referring to the circuit setting with its maximum transimpedance gain of about 124 dB, the
achieved equivalent input-referred current noise is about 16.4 pA/

√
Hz evaluated at the

repetition rate equal to 50 Hz of the input pulsed photocurrent IIN.
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Besides, from the bias point analysis, the resulting stand-by power consumption of the
circuit is about 33 µW with a DC input current IIN = 1 nA (i.e., the PD dark photocurrent).
In order to evaluate the circuit power consumption under the AC pulsed regime, the PD
pulsed photocurrent IIN previously described has been also considered and under these
operating conditions the circuit power consumption varies from 33.1 up to 36.1 µW for the
transimpedance gain equal to 102 dB and 124 dBΩ, respectively.

Finally, Table 2 summarize the main characteristics, performances and parameters of
the proposed circuit together with those ones of similar solutions reported in the literature.
In particular, by comparing the present results with those ones from comparable solutions
specifically designed for biomedical applications [24,26], the proposed TIA demonstrates
significant improvements especially in terms of the resulting low-power consumption, low
input noise, high and tunable transimpedance gain, wide bandwidth, small Si area and
Figure of Merit (FOM, as defined in Table 2).
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Table 2. Main circuit characteristics and its comparison with the state-of-the-art.

[Ref]
Year

[22]
2019

[23]
2018

[24]
2016

[25]
2020

[26]
2019

[This Work]
2021

CMOS Technology (µm) 0.35 0.35 0.18 0.18 0.35 0.18
Supply Voltage (V) 2.0–3.7 2.7–4 1.2–1.8 ±0.9/1.8 3.3 1.8

Si Area (mm2) 0.64 1.68 + 0.74 (PD) 37.7 0.12 N.A. 0.002 + 0.01 (PD)
Achieved Results Measured Measured Measured Measured Simulated Simulated

Circuit Operating Mode Continuous Pulsed Pulsed N.A. Sinusoidal Pulsed
Transimpedance Gain (dBΩ) 135–142 144 84–127 107 120 102–124

Bandwidth (Hz) 10 50 64 7 M 8.2 M 1.15 M (@ 102 dBΩ)
555 k (@ 124 dBΩ)

Power Consumption (µW) 15 3360 135 5200 330 33.1 (@ 102 dBΩ)
36.1 (@ 124 dBΩ)

Input Noise
(

pA/
√

Hz ) 42 79 27 1.7 3.5 0.39 (@ 124 dBΩ)
1.2 (@ 102 dBΩ)

FOM (Ω × GHz/mW) 8.4 0.24 1.06 301 24.8k 24.4k (@ 124 dBΩ)
4.4k (@ 102 dBΩ)

4. Conclusions

The paper reports on the detailed description of a novel architecture of a transimpedance
amplifier as an analog front-end circuit operating in low-voltage, low-power regime for
wearable, portable and implantable sensor systems capable to operate with nanoampere
input current pulses. The circuit has been designed at transistor level in TSMC 0.18 µm
standard CMOS technology with a reduced number of components and with an integrated
photodiode needed for optoelectronics sensor applications in biomedicine. The complete
implemented circuit layout, with a Si area equal to 2070 µm2, is powered at 1.8 V with
a maximum power consumption of about 36.1 µW. Moreover, the circuit is capable of
providing variable transimpedance gains ranging from 102 to 124 dBΩ, achieved by both
coarse- and fine-tuning operations, showing a wide bandwidth up to 1.15 MHz. The main
performances of the circuit have been evaluated by performing post-layout simulations in
CADENCE Design System employing as input pulsed currents the typical ones generated
by a photodiode in optical biosensors optoelectronic sensing systems. Moreover, a complete
Corner Analysis including process variations has been performed to validate the robustness
of the response of the proposed circuit to variations of the operating temperature from−25◦

to +75 ◦C as well as of the power supply voltage of 5% respect to its nominal value. Finally,
a summary table is also provided to compare the performances and the characteristics
of the proposed circuit with respect to those ones of other similar systems and solutions
reported in the literature designed for biomedical applications.
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