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Abstract: In this paper, we propose a novel multi-task learning (MTL) strategy from the gradient
optimization view which enables automatically learning the optimal gradient from different tasks.
In contrast with current multi-task learning methods which rely on careful network architecture
adjustment or elaborate loss functions optimization, the proposed gradient-based MTL is simple and
flexible. Specifically, we introduce a multi-task stochastic gradient descent optimization (MTSGD) to
learn task-specific and shared representation in the deep neural network. In MTSGD, we decompose
the total gradient into multiple task-specific sub-gradients and find the optimal sub-gradient via
gradient balance and clipping operations. In this way, the learned network can satisfy the performance
of specific task optimization while maintaining the shared representation. We take the joint learning
of semantic segmentation and disparity estimation tasks as the exemplar to verify the effectiveness of
the proposed method. Extensive experimental results on a large-scale dataset show that our proposed
algorithm is superior to the baseline methods by a large margin. Meanwhile, we perform a series of
ablation studies to have a deep analysis of gradient descent for MTL.

Keywords: multi-task learning; gradient balance; clipping

1. Introduction

In recent years, due to the powerful representation of deep learning, a deep con-
volutional neural network (DCNN) basically dominates every task of computer vision,
including image classification [1–3], object detection [4–6], semantic segmentation [7–9],
etc. In each task, methods based on DCNN incessantly set new records on each bench-
mark and achieve the state-of-the-art. However, due to the computation limitation or
real-world application demand, it is desirable to construct a single network that can handle
multiple tasks simultaneously. To this end, many researchers sort to multi-task learning
(MTL) [10–13]. Compared to the standard single task learning, current MTL models contain
two parts: a shared backbone network for shared feature extraction and a multiple head
network in which each head corresponds to one task prediction. To obtain desirable results
for each task with one single network, most researchers focus on two principles to boost
the performance: firstly, how to design a strong backbone network that can learn both
task-specific features and shared features [5,13,14]. The motivation is that the generalizable
representation helps to avoid overfitting while task-specific features help the prediction of
each head. However, it is difficult to directly learn the generalizable representation and
task-specific features explicitly. Secondly, due to the loss functions being used for guiding
the backbone network to learn to handle different tasks, how to balance the weights of
each loss is vital for MTL. Current MTL methods [15,16] usually need large manual trials
or empirical parameter tuning to obtain satisfying results. This procedure relies on the
observation of the final performance, which is tedious and time-consuming.
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In addition, the tasks handled in MTL are various, especially the domain gap of differ-
ent tasks may be very large. For instance, the joint learning of disparity estimation [17–19]
and semantic segmentation [7–9], which belong to regression and classification, respec-
tively, can be very difficult due to their innate differences. Therefore, how to balance the
proportion of loss function of different tasks is a non-trivial problem.

Based on the above observations, we consider if the shared backbone can learn enough
mutual features in the shallow part of the network, and the subsequent branches will
become less important, which will greatly reduce the parameters and reasoning time.
Moreover, the well-learned backbone can provide a great starting point for the subsequent
branches to further boost the performance of the network. Additionally, this also brings
another advantage: the loss weight is not sensitive to the final performance.

With these aims in mind, this paper focuses on how to sufficiently leverage the
mutual feature learning encoder of different tasks. We propose the multi-task stochastic
gradient descent optimization (MTSGD). MTSGD can adaptively balance the sub-gradients
of different tasks and discard the gradients with opposite sub-gradients. Hence, the
backbone network will no longer be biased towards the task with a great value of gradient.
Overall, we summarize the contributions of this paper as follows:

• We have a deep analysis of the feature learning in MTL and find that mutual feature
learning among the backbone network is important for the final performance. Fur-
thermore, we introduce a novel learning method from the angle of gradient descent to
avoid complex network design and elaborate loss weights adjustment.

• We propose an MTSGD method to optimize multi-task learning from the perspective
of considering multi-task learning as an optimization problem. We decompose the
multiple task gradient into task-specific sub-gradient and leverage the proposed
gradient clipping operation to balance the contribution of each sub-gradient.

• We evaluate the proposed method on the challenging MTL case: joint learning of
disparity estimation and semantic segmentation. Experiment results on the benchmark
dataset validate the effectiveness of the proposed MTSGD.

2. Related Work

Our work is based on some previous work, including semantic segmentation, depth
estimation, and multi-task learning. In this part, we will review some representative work.

Semantic Segmentation has been greatly developed in the era of deep learning. FCN [7]
is the first to use the fully convolutional neural network for semantic segmentation, and
achieve end-to-end semantic segmentation prediction. Unet [20] introduces high and
low-level features and uses deconvolution for up-sample operation instead of bilinear
interpolation. GCN [21] proposes a Global Convolutional Network to improve the accuracy
of classification and location in semantic segmentation. PSPNet [8] uses the pyramid
pooling module to aggregate context information from different regions, thereby improving
the ability to obtain global context information. The Deeplab [9,22–24] family uses dilated
convolution and ASPP to obtain large receptive fields. They greatly improve the quality
of semantic segmentation. Recently, there has been work [25] using upsampling methods
based on dependency data to obtain multi-scale information and context information,
further achieving the state-of-the-art.

Depth Estimation is generally divided into two categories, monocular and binocular.
In terms of binocular depth prediction, DispNet [26] constructs a synthetic data set and then
utilizes a Unet-structured network for disparity estimation. The CRL [17] further utilizes a
cascaded network to predict disparity, and GC-Net [27] uses both 3D convolution and 3D
deconvolution to simultaneously convolve disparity and spatial dimensions. PSMNet [18]
takes advantage of SPP and multiple hourglass structures for better regressing depth. In
monocular prediction, Eigen et al. [28] is the first to use neural networks to perform depth
estimation based on a single picture. Liu et al. [29] believe that depth values are contin-
uous, so monocular deep learning is considered as a continuous CRF learning problem.
GeoNet [12] uses an additional pose network to provide camera position information and
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uses video to train the network to predict monocular depth. CSPN [19] uses the affinity
matrix to learn the relationships of the fields around the pixels to better predict the depth.

Multi-task Learning. In general, a network with multiple outputs can be called
a multi-tasks model. Mask-rcnn [5] adds an additional instance branch to the object
detection. PAD-Net [11] uses multi-model distillation to fuse features between different
tasks. PAP [10] introduces the Affinity Learning Layer on each task’s branch to learn the
cross-task affinity matrix. MultiPoseNet [30] can jointly handle human detection, critical
point detection, body segmentation, and pose estimation. The novel allocation algorithm is
implemented by the Pose Residual Network (PRN), which receives the results of key points
and human detection, and generates accurate poses by assigning key points to human
instances. Strezoski et al. [31] propose the task routing, which enables the network to
perform a large number of tasks by adopting the conditional feature-wise transformation
over the convolutional activations. MT-SFG [14] proposes the stochastic filter groups
module to divide the convolution kernels into task-specific feature learning and shared
feature learning. UM-Adapt [32] proposes a multi-task framework to perform unsupervised
domain adaptation by using cross-task distillation. Multi-task Learning network can
perform segmentation and depth prediction simultaneously, which is an important point
for many tasks, such as automatic drive, such as MTAN [13] and AdaMT [33]. MTAN [13]
uses the attention module to learn the task-specific features from the global features

3. Optimizer for Multi-Task Learning
3.1. Important Observation

As mentioned above, multi-task learning can be deemed as an optimization problem.
Let us be given a network F = (θ; x), where θ denotes the parameters of the network and the
x is the input of the network. Network F has multiple outputs ŷi ∈ {ŷ1, ŷ2, . . . ŷn} correspond-
ing to different task ti ∈ {t1, t2, . . . , tn}. Each task has its own loss Li ∈ {L1, L2, . . . , Ln}. The
total loss can be calculated as Ltotal = wi · Li + l2, where wi denotes the weight of the loss of
each task and l2 denotes the L2 regularization term. The proportion of each w determines
the performance of each task. It is very difficult to search the optimal combination of each
w. Hence, we try to solve this dilemma from a different perspective. Generally speaking,
during the backpropagation of the training scheme, at the level of the parameter, each
sub-loss will contribute its gradient to the total gradient, which is ∆ = ∆1 + ∆2 + . . . + ∆n,
a summation of different gradients of different tasks. There are two problems here if one
of the tasks has a large scale gradient, even many times larger than others, this simple
summation operation will result in the total gradient ∆ favoring the gradient of one task,
making ∆ ≈ max(∆1, ∆2, . . . , ∆n). This will lead to poor performance of other tasks.

In Figure 1, the more intensive contour lines mean a large value of gradients. Therefore,
the subgradient of task A is much larger than the other; then, the direction of parameters
update based on the total gradient will be biased towards task A.

As the failure examples are shown in Figure 2, the performance of disparity is much
better than the semantics due to the sub-task of disparity having a much larger gradient.
Another problem is that the direction of gradients from different tasks can be quite varied,
which will result in the total gradient not being approached in any of the tasks. The
closer the gradient direction from different tasks is, the more likely the network is to learn
the mutual feature of multiple tasks. On the contrary, in extreme cases, if the gradient
direction is opposite, the direction of the total gradient will be biased toward the one that
has the largest gradient value. The proposed gradient-based MTL introduces a multi-
tasks stochastic gradient descent optimization (MTSGD) to learn task-specific and shared
representation using gradient balance and clipping operations. In joint learning, disparity
estimation and semantic segmentation can preserve structural information and suppress
the noisy of other objects well. In this way, our MTL model can reduce confusion and
increase discriminability, obtaining competitive performance.
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Figure 1. Illustration of the difficulty of multi-task learning. The axis of x and y denotes the different
parameters. The red lines and blue lines denote the contour line of the loss of task B and A, respectively.
The sparsity of the contour lines indicates the value of the gradient of tasks A and B, respectively.

O
ve
rla
pp
ed
 

St
er
eo
 Im
ag
es

G
ro
un
d 
T
ru
th
 

(S
em
an
tic
 S
eg
m
en
ta
tio
n)

G
ro
un
d 
T
ru
th

(D
isp
ar
ity
)

Pr
ed
ic
tio
n 
of
 S
em
an
tic
 S
eg
m
en
ta
tio
n

M
ul
ti-
ta
sk
s t
ra
in
ed
 w
ith
 S
G
D

Pr
ed
ic
tio
n 
of
 D
isp
ar
ity

M
ul
ti-
ta
sk
s t
ra
in
ed
 w
ith
 S
G
D

Figure 2. Failure cases of joint learning of semantic segmentation and disparity using the original
SGD optimization algorithm. Because the sub-task of disparity has a much larger gradient during
training, the network tends to perform a better disparity but with a very poor semantic segmentation.
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As shown in Figure 3, when the weight of the loss function of semantic segmentation
and disparity estimation to the total loss function is set to 1:1, we visualized their respective
gradient distribution in 500 backpropagations during one epoch. We can find that the
gradient value of one task is much larger than another task, which will make the network
parameters update bias towards the task with the larger gradient. Faced with the problem of
the unbalanced gradient distribution, we can try to adjust the combination of the weights of
the loss function between different tasks. However, the process of finding such an optimal
combination will consume a lot of time and resources, which is often unrealistic. On the
contrary, in this work, we attempt to solve this problem directly from the perspective of
optimization rather than adjusting the proportion of the weight of different losses between
different tasks. We call our method as multi-task stochastic gradient descent (MTSGD).
We only make some simple modifications to the original stochastic gradient descent with
momentum algorithm (for simplicity, we call it SGD in the rest of the paper) but to obtain a
high-performance improvement.
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Figure 3. Sub-gradient distribution of semantic segmentation and disparity estimation. The data
are gathered from 500 backpropagations of different layers in ResNet50 [2] of different epochs. The
x-axis denotes the sub-gradient ratio which is the gradient of disparity: gradient of segmentation. In
addition, the y-axis denotes the numbers of the ratio. ’Positive’ and ’Negative’ denote the sign of
the value of ratio equation, and positive indicates the two sub-gradient in the same direction and
negative indicates the opposite direction. The value of the x-axis indicates the scale of the difference
of the two sub-gradients, 100 denotes that the gradient of disparity is 100 times of segmentation’s
and 0.01 denotes 0.01 times. Hence, to some extent, the values of 100 and 0.01 are equivalent.

3.2. Multi-Task Stochastic Gradient Descent

The proposed method is based on the SGD, which can be described as follows:
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v = ρ · v + (1− ρ) · ∆
w = w− lr · v− decay · w

(1)

where ρ is the momentum term, lr denotes the learning rate, decay denotes the learning
rate, and decay denotes the L2 regularization term. In multi-task learning, total gradient ∆
can be represented by the summation of multiple sub-gradients:

∆ = ∆1 + ∆2 + . . . + ∆n (2)

where ∆i denotes the sub-gradient of task i. Given a four-dimensional convolutional kernel
w with the dimension of (N · C · H ·W), instead of directly using the original gradient
value of each task to update the parameters, we use the scaled gradient value. First, we
calculate the direction vector of each sub-gradient:

ei =
∆i
‖∆i‖ 2

, ‖∆i‖2 ∈ RN·C (3)

where ‖∆i‖2 denotes the 2-norm of the calculated sub-gradient. Then, we measure the
similarity of the directions of each of the direction vectors using element-wise multiplication:

c = e1 · e2 · . . . · en, −1 6 c 6 1 c ∈ RN·C (4)

where c denotes the similarity of the directions of each sub-gradient, –1 is the exact opposite
direction, and 1 is the same direction. Meanwhile, we discard the gradient of the similarity
of direction under a certain threshold:

m = max(threshold, c) (5)

where m is a boolean mask with the value of 0 or 1 that masks out the gradient which does
not satisfy the above condition. Thus, the total gradient will only contain the most similar
sub-gradients. We hope that the network updates the parameters only under the circumstance
in which the sub-gradient from different tasks share the same direction in each iteration.
Because the gradient of these directions is very different, the updating direction of the network
parameter may not move in the optimal direction or the direction of only a certain task.
However, it is not enough to keep the total gradient in the most similar direction because tasks
with a large scale gradient will drown out other tasks with small scale gradients. Thus, the
network needs to balance the scale of the sub-gradients to the same order of magnitude:

s = min(‖∆1‖2, ‖∆2‖2, . . . , ‖∆n‖2), s ∈ RN·C (6)

where ∆i denotes the sub-gradient of task i. We obtain the scaling factor w based on the
value of the 2-norm of each sub-gradient, and we choose the smallest one as the scale factor.
Then, we perform element-wise multiplication between the scale factor and the direction
vectors. Hence, the sub-gradient should be in the same order magnitude:

gi = s · ei (7)

where s is the scale factor, and ei denotes the direction vector of the sub-gradient of task i.
The scaled sub-gradients will be summed up together to obtain the total gradient. Then, we
conduct the element-wise multiplication between the total gradient and the similarity mask:

v = ρ · v + s · (s1 + s2 + . . . + sn)

w = w− lr · v
(8)

where ρ is the momentum term and lr is the learning rate. In short, we choose Equation (8)
for the proposed gradient update instead of Equation (1) used in the traditional SGD.
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4. Experiment

In this section, we will conduct a large number of experiments to study the ef-
fectiveness of our method, and we will verify the effectiveness of our method on the
Cityscapes [34] dataset.

4.1. Overall Network Architecture

In this work, we adopt a classic encoder–decoder network as our multi-task network,
and we choose ResNet50 [2] and SPP [35] with a dilated network [22,36] as our encoder. As
shown in Figure 4, we aim to make the encoder network learn the mutual feature of multi-
ple tasks as much as possible. In addition, to further reduce the performance improvement
due to the task-specific well-designed decoder and demonstrate the effectiveness of our
approach, we do not use a decoder with a very deep branch. A very deep task-specific
decoder branch introduces redundant parameters. In our case, we use the simplest pos-
sible decoder, and each task-specific decoder contains only one convolutional layer for
channel reduction and a bilinear interpolation for the up-sample operation to obtain the
final prediction. Specifically, for the 19 class classification semantic segmentation task of
Cityscapes [34], we directly perform a 1 × 1 convolutional layer to map the feature map
from the encoder to a 19-channel feature map corresponding to 19 categories, and then
directly up-sample the feature map to the original resolution for final prediction. For the
disparity estimation, the same procedure is followed to map a one channel feature for final
prediction. In this case, all tasks will share most of the parameters of the network, and each
task will have only negligible task-specific parameters for channel reduction. Therefore,
we can assume that the performance of each task will heavily rely on the mutual feature
learned from the encoder, rather than on the task-specific branch.

left+right Encoder Network

Spatial Pyramid Pooing Module

Semantic Segmentation

Disparity Estimation

C
oncat

Figure 4. Overall network architecture. The network follows the classic encoder–decoder architecture.
ResNet [2] with dilated convolution and the SPP module together serve as the encoder. The encoder
directly concatenates the stereo images along the channel dimension and takes them as input. Beyond
the encoder, each decoder only consists of a 1 × 1 convolution layer and a bilinear interpolation
up-sampling layer for final prediction.

4.2. Experimental Settings

Dataset and Data Augmentation.We use Cityscapes [34] dataset to verify the effective-
ness of our method. Cityscapes [34] is a dataset oriented to traffic scenes, which contains
5000 sets of finely annotated ground truth data and about 20,000 sets of coarsely annotated
ground truth data. The data were derived from the road scenes in 50 different cities in Eu-
rope. The Cityscapes dataset provides the ground truth of semantic segmentation, instance
segmentation, and disparity. Regarding semantic segmentation, it provides a 19 category
semantic segmentation mask. Among the 5000 sets of the finely annotated data, there are
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2975 training sets, 1525 validation sets, and 500 test sets, respectively. In this work, we
mainly use the fine set of semantic segmentation and disparity ground truth for training.

Evaluation Metrics. To evaluate the performance of the semantic segmentation and
disparity estimation, we use the standard Jaccard Index also called intersection-over-union
(mIoU) as the metric index of semantic segmentation, which can be denoted as:

mIoU =
1

k + 1

k

∑
i=0

pij

∑k
j=0 pij + ∑k

j=0 pij − pii
(9)

where i denotes the groundtruth category, j denotes the predicted category, and k denotes
the number of the categories. In addition, we use average endpoint error (AEPE) as the
metric index of the disparity estimation, which can be denoted as:

AEPE =
1
N
·∑|y− ŷ| (10)

where y is the groundtruth value and ŷ is the predicted value.

4.3. Experimental Results

Our network architecture is based on ResNet50 [2] with ImageNet [1] pre-trained
weights and SPP with dilated networks. The baseline networks use the original minibatch
stochastic gradient descent with momentum, which is set to 0.9. Weight decay is set to
0.0001. For Cityscapes [34], we set the batch size to 16, patch size to 512 × 512, and the
initial learning rate to 0.01, respectively. The performance of mIou and loss with different
training epochs is shown in Figure 5. The oiou can be improved and maintained with the
proper setting of epoch. Therefore, we trained the network 200 epochs with a fine set of
Cityscapes [34] and adopted a step decay learning rate policy during training. At the time
of the 100th and 150th epoch, the learning rate is decreased, multiplied by 0.1. We use the
validation set to evaluate the performance of our proposed method.

Figure 5. mIou-loss performance with different epochs.

We evaluate our MTSGD on the Cityscapes dataset with state-of-the-art methods and
the performances are listed in Table 1. These are MC-CNN, STAN, MTAN, and AdaMt
are the newly proposed MTL models, and Joint + SGD is our baseline method. The mIou
value reflects that our network has the best Segmentation performance (65.0%) with a
relatively large margin (2.47% improvement) compared to other comparison networks.
Specifically, the proposed Joint + MTSGD without regularization obtains a significant
increase in segmentation with the slightly worse performance of disparity estimation.
Moreover, visual improvement on Cityscapes [34] is shown in Figure 6.
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Table 1. Performance comparison with representative methods. ’Joint + SGD’ denotes the joint
learning of semantic segmentation and disparity estimation with the original SGD algorithm,
’Joint + MTSGD with regularization’ denotes the model that is trained with our proposed MTSGD
optimization algorithm and L2 regularization, and ’Joint + MTSGD without regularization’ de-
notes the model that is trained with our proposed MTSGD optimization algorithm but without
L2 regularization.

Methods Segmentation (mIoU) Disparity (AEPE)

MC-CNN [37] - 3.41
Joint + SGD 44.4 3.98
STAN [13] 51.9 -
MTAN [13] 53.40 -
AdaMT [33] 62.53 -

Joint + MTSGD with
regularization 62.0 4.26

Joint + MTSGD without
regularization 65.0 3.91

Input Image

Grouth Truth
(Semantic)

Single-Task
Learning

Ours

Baseline

Grouth Truth
(Semantic)

Single-Task
Learning

Ours

Baseline

Figure 6. Visual improvement on Cityscapes [34].

4.4. Ablation Studies

Ablation Study for Gradient Balance and Clipping. To prove that the imbalanced
sub-gradient will cause the updating of the parameters of the networks in favor of the
task with a larger gradient, we experiment with whether the gradient balance will relieve
the above issue. We set up three baseline models: the semantic segmentation only model,
disparity only model, and joint model of semantic segmentation and disparity, respectively.
All of the three baseline models are trained with the original stochastic gradient descent
with the momentum algorithm. In addition, we set the weights of the loss function of the
joint model to 1:1 regarding semantic segmentation and disparity. Then, we replace the
SGD with our proposed MTSGD and set the gradient clipping rate to −1, which means that
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there is no gradient clipping. As Table 2 shows, the balanced sub-gradient of two tasks can
bring significant performance improvements, especially the performance of the semantic
segmentation task. It is interesting to note that the the performance of the disparity task
of the joint learning model is even better than the disparity only model. It suggests that
some tasks can benefit from other tasks during multi-task learning. Furthermore, when the
sub-gradient direction similarity is lower than a certain threshold, the performance can be
further improved. Figure 7 shows 2D projections of the performance profile for Disparity
Estimation and Semantic Segmentation. The bottom-right is better.

Figure 7. Performance profile for Disparity Estimation–Semantic Segmentation.

Table 2. Investigation of gradients balance and gradient clipping for MTSGD. ’Segmentation +
SGD’ and ’Disparity + SGD’ denote a single task model of semantic segmentation and disparity
estimation, respectively. Both of them are trained using the original SGD optimization algorithm.
’Joint + SGD’ denotes the joint learning of semantic segmentation and disparity estimation with the
original SGD algorithm, and ’Joint + MTSGD’ denotes the model that is trained with our proposed
MTSGD optimization algorithm. ’Threshold’ denotes the threshold for gradient clipping based on
the similarity of the sub-gradient of different tasks.

Methods Tasks Weight Threshold Segmentation Disparity
Segmentation Disparity (mIoU) (AEPE)

Segmentaion
+ SGD 1.0 0.0 - 70.3 -

Disparity +
SGD 0.0 1.0 - - 4.39

Joint + SGD 0.5 0.5 - 44.4 3.98
Joint +

MTSGD 0.5 0.5 −1.0 60.4 4.67

Joint +
MTSGD 0.5 0.5 −0.75 61.2 4.39

Joint +
MTSGD 0.5 0.5 −0.5 61.4 4.28

Joint +
MTSGD 0.5 0.5 0.0 62.0 4.26

Ablation Study for Weight Decay. Generally speaking, the regularization technique is a
powerful tool to prevent network overfitting during network training by limiting the value
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of each parameter. The classic L2 regularization term is the most common regularization
technique in deep learning. During training, with the L2 regularization term, the total loss
function is altered to:

totalloss = loss +
1
2

α · w2 (11)

where α denotes the weight decay, and w is the value of parameters of the network. To
investigate whether the regularization term still works in multi-tasks learning, we conduct
an experiment that removes the L2 regularization term during training. As shown in
Table 3, interestingly, we found that the performance of the model on the validation set
improved significantly. One possible explanation is that, during propagation, the value of
the parameters needs to be subtracted by themselves to prevent some parameters with a
large value because the parameters with large values are easily overfitted to some accidental
pattern. However, in multi-task learning, there are existing multiple tasks to compete the
resource to update the parameters. During training, the total gradient is often not consistent
with the same direction, which is likely to result in small value parameters. In this situation,
the network tends to be underfit, and the extra regularization technique may backfire and
undermine the performance of the network.

Table 3. Investigation of weight decay for MTSGD. ’Weight Decay’ denotes the L2 regularization
term of weight decay, and 0 indicates that there is no regularization term during training.

Methods Weight Decay Threshold Seg Disp
(mIoU) (AEPE)

MTSGD 0.0 −1.0 62.6 4.13
MTSGD 0.0 −0.75 63.2 4.10
MTSGD 0.0 −0.5 64.3 4.05
MTSGD 0.0 0.0 65.0 3.91
MTSGD 0.0001 −1.0 60.4 4.67
MTSGD 0.0001 −0.75 61.2 4.39
MTSGD 0.0001 −0.5 61.4 4.28
MTSGD 0.0001 0.0 62.0 4.26

Ablation Study for Groups for Gradient Clipping. As we all know that each parameter
(convolutional kernel) in the neural network can be regarded as a high dimensional vector,
and the gradient represents the increment of the parameters in a backpropagation. When
we calculate the direction vector of the gradient with a dimension of (c · k · k), the calculated
dimension is a key step. Hence, inspired by the group convolution [38–40], we try to
calculate in two ways: one way is to calculate the direction vectors on each channel of each
convolutional kernel, which indicates that a kernel with dimensional of (c · k · k) results in c
direction vectors. Another is based on the whole convolutional kernel as the calculating
unit that obtains a single direction vector of a convolutional kernel with a dimensional of
(c · k · k). As shown in Table 4, we find that the prior way to calculate the direction vector
can bring more performance improvement when it is used as the calculating unit. This
may be due to higher dimensional vectors that can bring more stable gradient updates, as
Table 4 shows.

4.5. Discussion

There is unbalanced gradient distribution in MTL, and the network parameters update
is biased towards the task with the larger gradient. Its performance relies heavily on how
to balance the proportion of loss function of different tasks. From the perspective of opti-
mization, our MTL model learns task-specific and shared representation in the deep neural
network via gradient balance and clipping operations. In this way, our MTSGD method can
obtain the satisfying performance of specific task optimization while maintaining the shared
representation. Moreover, the extra regularization technique may not have a positive effect
on MTL.
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Table 4. Investigation of the level of direction vector for MTSGD. The ’channel’ denotes the direction
vector that is calculated based on each channel of the convolutional kernel of each convolution kernel.
In addition, ’filter’ denotes that the direction vector is calculated based on the whole parameter

Methods Level Threshold Seg Disp
(mIoU) (AEPE)

MTSGD channel −1.0 60.4 4.67
MTSGD channel −0.75 61.2 4.39
MTSGD channel −0.5 61.4 4.28
MTSGD channel 0.0 62.0 4.26
MTSGD filter −1.0 59.7 5.32
MTSGD filter −0.75 59.8 5.27
MTSGD filter −0.5 60.0 5.12
MTSGD filter 0.0 60.4 4.98

5. Conclusions

In recent years, deep learning has made great progress in various tasks in the area of
computer vision, but there is still a lot of potential and problems to be solved in the field of
multi-task learning. In this paper, we discuss some challenges that hinder the performance
of multi-task learning. The main problem is that the various distribution of gradients
between different tasks, which is caused by different tasks, has different optimal solution
spaces. This usually makes the model biased towards one task or converge to a poor local
optimal situation. The prior works try to appropriately allocate the weight of the loss of
a different task or use a cumbersome decoder to recover the lost performance caused by
the weak encoder that can not provide enough mutual features. The method we proposed
allows the encoder to better learn the relationship between tasks. The experimental results
demonstrate the effectiveness of our method. It is worth noting that our method does
not conflict with the prior works. Through our method, the encoder has learned many
more mutual features, that is, it provides a better starting point for the subsequent decoder
network. Hence, the decoder can better focus on learning the task-specific feature.

At the same time, there remain some opening questions and potential for future
research. The network architecture adopted in this work is relatively simple, and a better
network structure may be able to further improve the performance. In addition, to some
extent, the number of the well-learned parameters that have learned the mutual features
between different tasks indicates the effectiveness of the network. How to reuse the less
learned parameters will be a very interesting and meaningful problem.
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