
����������
�������

Citation: Vranjkovic, V.; Teodorovic,

P.; Struharik, R. Universal

Reconfigurable Hardware

Accelerator for Sparse Machine

Learning Predictive Models.

Electronics 2022, 11, 1178.

https://doi.org/10.3390/

electronics11081178

Academic Editors: Iakovos

Mavroidis, Sotiris Ioannidis and

Konstantinos Georgopoulos

Received: 1 March 2022

Accepted: 25 March 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Universal Reconfigurable Hardware Accelerator for Sparse
Machine Learning Predictive Models
Vuk Vranjkovic †,‡ , Predrag Teodorovic *,‡ and Rastislav Struharik ‡

Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; bykbpa@uns.ac.rs (V.V.);
rasti@uns.ac.rs (R.S.)
* Correspondence: t_pedja@uns.ac.rs; Tel.: +381-6310-28-109
† Current address: Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia.
‡ These authors contributed equally to this work.

Abstract: This study presents a universal reconfigurable hardware accelerator for efficient processing
of sparse decision trees, artificial neural networks and support vector machines. The main idea is to
develop a hardware accelerator that will be able to directly process sparse machine learning models,
resulting in shorter inference times and lower power consumption compared to existing solutions. To
the author’s best knowledge, this is the first hardware accelerator of this type. Additionally, this is
the first accelerator that is capable of processing sparse machine learning models of different types.
Besides the hardware accelerator itself, algorithms for induction of sparse decision trees, pruning of
support vector machines and artificial neural networks are presented. Such sparse machine learning
classifiers are attractive since they require significantly less memory resources for storing model
parameters. This results in reduced data movement between the accelerator and the DRAM memory,
as well as a reduced number of operations required to process input instances, leading to faster and
more energy-efficient processing. This could be of a significant interest in edge-based applications,
with severely constrained memory, computation resources and power consumption. The performance
of algorithms and the developed hardware accelerator are demonstrated using standard benchmark
datasets from the UCI Machine Learning Repository database. The results of the experimental study
reveal that the proposed algorithms and presented hardware accelerator are superior when compared
to some of the existing solutions. Throughput is increased up to 2 times for decision trees, 2.3 times
for support vector machines and 38 times for artificial neural networks. When the processing latency
is considered, maximum performance improvement is even higher: up to a 4.4 times reduction for
decision trees, a 84.1 times reduction for support vector machines and a 22.2 times reduction for
artificial neural networks. Finally, since it is capable of supporting sparse classifiers, the usage of
the proposed hardware accelerator leads to a significant reduction in energy spent on DRAM data
transfers and a reduction of 50.16% for decision trees, 93.65% for support vector machines and as
much as 93.75% for artificial neural networks, respectively.

Keywords: decision trees; support vector machines; artificial neural networks; hardware accelerator
architectures; edge computing; sparse predictive models

1. Introduction

Until recent discoveries of convolutional neural networks and the other deep learning
architectures, multi layer perceptron (MLP) artificial neural networks (ANNs), decision
trees (DTs) and support vector machines (SVMs) were recognized as the most popular
predictive models in the field of machine learning (ML). Although CNNs have replaced
ANNs, DTs and SVMs in the fields of computer vision and natural language processing,
ANNs, DTs and SVMs are still among the most widely used predictive models in the field
of data mining [1–3].

Electronics 2022, 11, 1178. https://doi.org/10.3390/electronics11081178 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11081178
https://doi.org/10.3390/electronics11081178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4419-8189
https://doi.org/10.3390/electronics11081178
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11081178?type=check_update&version=1


Electronics 2022, 11, 1178 2 of 37

A predictive model based on DTs was first presented in the literature in 1984 [4],
while axis-parallel DTs were introduced a few years later [5]. SVMs were first introduced
in 1995 [6], while ANNs were presented as a predictive model in [7], even though the
computational model for ANNs was proposed a long time ago in [8]. Although ANNs,
DTs and SVMs have long been known by the scientific community, they are still widely
used for discovering patterns in large datasets (data mining) [1–3]. There are numerous
software platforms used for this purpose, such as RapidMiner [9], R project [10] or Pen-
taho/WEKA [11]. However, when machine learning classifiers are used for solving large
scale classification problems, like data mining, or in real time data processing applications,
such as network anomaly detection [12] or real-time trading [13,14], the instance classifi-
cation duration becomes a critical metric for the classifier performance evaluation. One
way to improve the instance classification duration is to implement ML classifiers directly
in hardware.

A significant effort has been made by the scientific community in this direction. Regard-
ing DTs, a number of FPGA DT implementations were presented in the literature [15–20].
These proposed architectures dealt with the acceleration of the axis-parallel, oblique or
nonlinear DTs and the ensembles of dense DTs. There are numerous SVM hardware im-
plementations presented in the literature [21–27], while ANNs is, arguably, the predictive
model with the most hardware implementations [28–32].

Even though the above-mentioned hardware implementations of ML predictive mod-
els outperform corresponding software solutions by several orders of magnitude, all of
them can implement only a single type of the classifier: DT, SVM or ANN. In [33], the
authors presented the universal coarse-grained reconfigurable hardware accelerator for
hardware implementation of three ML predictive model types: ANNs, DTs and SVMs.
The implementation is based on the fact that the DOT product of two multi-dimensional
vectors, as the core data processing operation, is common for all three supported ML
models. The same authors extended their solution to homogeneous and heterogeneous
ensemble classifiers in [34].

Another way to improve classifier throughput performance is to compress and reduce
the size of the predictive model, by using different sparsification approaches. Sparsification
techniques have been mainly explored in the field of ANNs and convolutional neural
networks (CNNs) [35–40] and have resulted in the significant reduction in model size.
Compression has been significantly less explored in the fields of DTs and SVMs. Authors
in [41,42] recognized the benefits of minimizing the number of non-zero hyperplane co-
efficients in oblique DTs. However, the focus in these studies was a feature/attribute
selection and detection of irrelevant and noisy features and not the reduction in model size
or inference process acceleration. Compression of the SVM size by using a smart selection
of support vectors during the training was presented in [43], while in [44] authors proposed
the complementary idea for the SVM size reduction through the removal of attributes from
support vectors.

The benefits of having a sparse predictive model are fully exploited only when the
model is being executed on a hardware accelerator that can process sparsified models.
In the field of CNN accelerators this has been heavily exploited, resulting in numerous
solutions being proposed [45–49]. Surprisingly, in the field of DTs, SVMs and ANNs, only
a handful of hardware accelerators capable of directly processing sparse models have
been proposed in [44,50], despite the obvious benefits of accelerating sparse ML predictive
models. A hardware accelerator of sparse oblique DTs was presented in [50], where it
was reported that oblique DT sparsification led to both instance processing speedup and
memory reduction. A hardware accelerator for sparse SMVs was proposed in [44], with
similar benefits regarding the improvements in inference speed.

To the best of our knowledge, there is no published result concerned with the develop-
ment of a hardware accelerator capable of accelerating different sparse ML model types,
like DTs, SVMs and ANNs. This could be of a great interest for the applications relying on
using hybrid-classifier systems, for example, [51–56].



Electronics 2022, 11, 1178 3 of 37

In this study, we present the Sparse Reconfigurable Machine Learning Classifier,
SRMLC—an application specific hardware accelerator for efficient processing of sparsified
decision trees, support vector machines and artificial neural networks. The SRMLC is
based on the implementation proposed in [33] where the underlying core operation is
MAC (multiply and accumulate); however, it is optimized in order to support the acceler-
ation of sparse predictive models in which the majority of model weights are set to zero.
Consequently, without any performance degradation in terms of classifier accuracy, the
SRMLC processing latency is significantly reduced, as a result of skipping numerous MAC
operations with zero-valued operands. Compared to previously published results in [33],
there are five major contributions of our approach:

1. Sparsification—our design is the first universal reconfigurable machine learning
classifier accelerator which is optimized to support sparse data representations and
which benefits from such sparse data manipulations.

2. Scalability—one of the major design goals during the development of the SRMLC
architecture was supporting better scalability on FPGA platforms. This is feasible due
to the fact that one MAC unit, a basic building block within the SRMLC, uses one
DSP, one BRAM and 300 LUTs, compared to previously published RMLC [33], where
scalability was constrained by using too many BRAM blocks per one DSP.

3. Improved throughput—as a result of the classifier sparsification, the SRMLC has signif-
icantly improved throughput for DTs and SVMs. Regarding MLP ANNs, throughput
is improved as a result of the fact that a single layer can be assigned to multiple MAC
units for processing, which is not possible in the architecture proposed in [33].

4. Reduced processing latency—the SRMLC introduces a huge reduction in instance
processing latency, as it allows for the usage of multiple MAC blocks for processing a
single classification instance. The latency is reduced for all supported classifier types.

5. Energy efficiency—since the SRMLC uses sparse data representation, it suffers much
less from the well known issue of power hungry data transfer between the DRAM
and the accelerator. Improved energy efficiency is a consequence of the significantly
reduced amount of data that needs to be transferred between the external DRAM and
the accelerator core.

To the best of our knowledge, the SRMLC is the first reported hardware accelerator
for sparse classifiers of this kind. In order to demonstrate functionality of the SRMLC, in
this study we will also present algorithms for the training of sparse ANNs, SVMs and DTs
and translate the compressed trained models into the sparse binary format, which can be
directly handled by the SRMLC.

The remainder of this study is organized in the following way. In Section 2, we will
present training algorithms for sparse classifiers which can be used to obtain predictive
models that are significantly reduced in size. Three algorithms are presented: one for sparse
ANN training, another for sparse DT induction and the third for sparse SVM training. In
Section 3, a universal reconfigurable hardware accelerator for sparse classifiers is introduced.
The proposed hardware accelerator benefits from the sparsity in predictive models and
performs faster classifications by computing only multiplication operations with non-zero
operands. In Section 4, we report the experimental results of the benchmarking of our
SRMLC architecture performance using datasets from the UCI machine learning repository.
The conclusion and final remarks are given in the Section 5.

2. Training of Sparse Predictive Models

In order to provide a sparse representation that will be efficiently processed by the
SRMLC, a classifier’s training process is modified by removing model parameters, ac-
cording to the desired level of compression. However, the reduction in predictive model
size has to take into account the resulting model accuracy drop. Usually, in the available
literature, 1% of the absolute accuracy drop is acceptable when sparsifying the predictive
model, so we have used this as a reference during our training process: model sparsification
stops when the absolute accuracy of the sparse model is more than 1% below the absolute



Electronics 2022, 11, 1178 4 of 37

accuracy of a non-sparsified model. The same approach is used for all three classifiers, even
though the training process itself is significantly different for each classifier type.

2.1. Pruning of ANN Model during Training

First, we will present a pruning algorithm of ANN model, which is used during the
ANN training phase, in order to obtain sparse ANN model.

An ANN can be considered as a weighted directed graph, where nodes are artificial
neurons, which are connected by directed weighted edges. Recurrent ANNs are ANNs
which allow feedback connections, while feed-forward ANNs do not. In Multi-Layer
Perceptron, a widely used type of feed-forward ANNs, individual neurons are organized
into layers and the only connections that are allowed are the ones between adjacent layers
of the network. Besides that, neurons are connected in a feed-forward manner, with no
connections between neurons of the same layer and no feedback connections between the
layers. The structure of the MLP ANN is shown in Figure 1.

Figure 1. MLP ANN structure.

Three types of layers exist in MLP ANN: input, hidden and output. The input layer is
composed of N input neurons, where N is the number of problem attributes. The output
layer calculates the output values of the MLP ANN, while all layers between the input and
the output are considered as hidden. Each hidden layer consists of an arbitrary number
of neurons. Each (let us say kth) neuron in the hidden or the output layer calculates its
output as:

yk = f (w · x + bk) (1)

where x is the input vector for a neuron containing N neuron outputs from the previous
ANN layer

x = (x1, x2, . . . , xN),

w is a weight vector
w = (wk1, xk2, . . . , xkN),

and bk is a scalar, usually called the offset. For neurons in the input layer, x is a vector
holding attribute values of the input instance. As mentioned above, for the neurons within
hidden and output layers, vector x is the vector composed of the outputs from neurons in
the previous layer of the network. Weight vector w for each layer has the same length as x
for that particular layer. Function f : R→ R is called the activation function and it can be



Electronics 2022, 11, 1178 5 of 37

either a linear or nonlinear real function. Many different activation functions can be used
in MLP ANNs, for example, the hyperbolic tangent and sigmoid functions:

ftanh(x) = tanh(x) (2)

fsigmoid(x) =
1

1 + e−x . (3)

In order to understand the ANN pruning process, let us observe a hidden or the
output layer with M neurons and with N-dimensional input x. Then, the output of this
layer can be written as

Y = F(x ·W + B) (4)

where x1×N = (x1, x2, . . . , xN) is an input for the layer, W is a matrix

WN×M =


w11, w12, . . . , w1N
w21, w22, . . . , w2N

...
wM1, wM2, . . . , wMN

 (5)

and B1×M = (b1, b2, . . . , bM) is a vector consisting of the corresponding layer’s neuron
offsets. Finally, Y1×M = (y1, y2, . . . , yM) is an output vector consisting of the outputs from
all neurons in the given layer.

The training of the ANN is the process by which the dataset consisting of Ninst problem
instances is applied to the ANN. During the training, network parameters W and b (for
each layer) are fine-tuned to provide the ANN output, for each given input instance, that is
equal to the expected output.

The pruning ANN algorithm is run once the ANN training is complete. The goal of
the pruning algorithm is to determine which network weights are the least significant and
set corresponding elements of matrix W to zero, for each ANN layer. The pruning ANN
algorithm iteratively repeats this procedure, as long as the accuracy drop of the reduced
model is acceptable. As a result, the pruned ANN will have the majority of weights set to
zero, allowing the SRMLC to skip all computations where these zero-valued weights are
multiplicands in multiply operations. In order to prune the ANN, the pruning algorithm
starts with a low pruning factor MIN_PRUN_FACT (for example 10%), increasing the
pruning factor by PRUN_FACT_INC_STEP (for example 5%) in each iteration.

At the beginning, Algorithm 1 initializes the current pruning factor and evaluates
the non-pruned trained ANN model. At line 5, a main loop starts and repeats as long
as the accuracy of a pruned model is not degraded. Algorithm creates an empty array
abs_W_array of the same size as W_array and populates it with the absolute values from
corresponding elements in W_array, at lines 7–10. W_array, which is an input to the
algorithm, represents all connections within the MLP ANN and hence holds W matrices
from Equation (5) for all layers in the given MLP ANN. At line 11, a required number of
zero elements is determined based on the current pruning factor, number of ANN layers
and matrix W size. At lines 13–34, num_zero_elem minimum elements in abs_W_array are
found and corresponding elements in temp_W_array are set to zero. In order to avoid
selection of the same element several times, min_elem_set is used to store previously
selected elements. Prior to updating current_acc at line 37, we retrain the MLP ANN with
modified weights in order to increase the classifying accuracy, at line 36. Please note that
temp_W_array is used for pruning, while W_array is only updated once we are confident
that the accuracy of pruned model is still acceptable, at the beginning of a new iteration.
If W_array was updated directly, the returned value from the algorithm would not be the
correct one.



Electronics 2022, 11, 1178 6 of 37

Algorithm 1 ANN_Pruning
Input: W_array
Output: pruned W_array

1: current_pruning_ f actor ← MIN_PRUN_FACT
2: non_pruned_acc← accuracy of model with weights W_array
3: current_acc← non_pruned_acc
4: temp_W_array←W_array
5: while current_acc ≥ non_pruned_acc− 1% do
6: W_array← temp_W_array
7: abs_W_array← empty array same size as temp_W_array
8: for i = 1, 2, . . . , length(temp_W_array) do
9: abs_W_array[i] = abs(temp_W_array[i])

10: end for
11: num_zero_elem = current_pruning_ f actor ∗ lenght(temp_W_array) ∗ size(W)
12: min_elem_set← empty set
13: while num_zero_elem > 0 do
14: valuemin ← MAX_FLOAT
15: imin ← −1
16: jmin ← −1
17: kmin ← −1
18: for i = 1, 2, . . . , length(temp_W_array) do
19: for j = 1, 2, . . . , width(W) do
20: for k = 1, 2, . . . , height(W) do
21: Wcurrent ← abs_W_array[i]
22: if Wcurrent[j][k] < valuemin and (i, j, k) not in min_elem_set then
23: Add (i, j, k) into min_elem_set
24: imin ← i
25: jmin ← j
26: kmin ← k
27: valuemin ←Wcurrent[j][k]
28: end if
29: end for
30: end for
31: end for
32: temp_W_array[imin][jmin][kmin] = 0
33: num_zero_elem← num_zero_elem− 1
34: end while
35: current_pruning_ f actor ← current_pruning_ f actor + PRUN_FACT_INC_STEP
36: retrain ANN with weights temp_W_array
37: current_acc← accuracy of model with weights temp_W_array
38: end while
39: return W_array

2.2. DT Model Sparsification during Induction

For the given classification problem, represented by a set of n numerical attributes
Ai, i = 1, 2, . . . , n, axis-parallel DTs compare a single attribute Ai, from the test instance,
against the corresponding threshold ai and check if Ai > ai. Such test is performed in
each of the DT nodes. Inducing (training) of axis-parallel (or orthogonal) DT assumes the
assignment of an attribute to each DT node, hence the order of comparisons, as well as the
threshold value required for each comparison, ai. Oblique DTs represent generalization of
axis-parallel DTs, allowing multiple attribute testing in each DT node. As a result, oblique
DTs are usually smaller in size, while providing higher classifying accuracy, when compared



Electronics 2022, 11, 1178 7 of 37

to corresponding axis-parallel DTs. In oblique DTs, multivariate testing is expressed with
the following formula:

n

∑
i=1

ai · Ai + an+1 > 0 (6)

In Equation (6) coefficients ai, i = 1, . . . , n + 1 are called the hyperplane coefficients.
Finding the optimal oblique DT is proven to be an NP-complete problem [57], so many
oblique DT induction algorithms use some kind of heuristic in order to find sub-optimal
hyperplane coefficients, some of them being [58,59]. HereBoy evolutionary algorithm [60]
was used in [61] to solve the hard oblique induction problem, while the authors in [50]
extended the algorithm in order to support the induction of sparse oblique DTs. In order to
obtain sparse DTs with high accuracy, which will be processed by the SRMLC, we decided
to use the similar recursive evolutionary algorithm for the induction of sparse DTs in
this study.

Algorithm 2 builds maximally sparsified DT which has an acceptable accuracy drop,
compared to the non-sparsified DT. At lines 1–2, non-sparsified DT is built using Algorithm 3
and its accuracy is evaluated on a validation subset. Using the same Algorithm 3, at
lines 5–10, sparsified DTs are built, each time with increased sparsification factor (starting
from MIN_SPARS_FACT, increased by SPARS_INC_FACT in each iteration), until the
evaluated accuracy drops below the tolerated threshold. Algorithm 3, used by Algorithm 2,
is a recursive algorithm which builds sparse oblique DT, based on a target sparsification
factor (required percentage of zero-valued coefficients in the output DT), provided as an
input parameter. The other input for the algorithm is a set of input instances, where each
instance contains the instance attributes and output class. At line 1, a new node is created.
Lines 2–4 represent the terminating condition of the recursive algorithm—once all input
instances belong to the same class, that root is marked as a leaf and the corresponding
label is added. If this is not the case, assign the most appropriate label to this node before
entering the loop at lines 7–22. In this loop, after finding sub-optimal hyperplane position
by using the HereBoy algorithm, a required number of hyperplane coefficients, calculated
from sparse_coe f _perc, is set to zero. This is completed in the loop at lines 11–19 where, one
after the other, each coefficient from the copy of hyperplane_coe f s is set to zero, followed
by the calculation of resulting fitness. The coefficient which has the smaller impact on the
fitness is considered the least important and set to zero after the complete set of coefficients
has been investigated (lines 20–21). This is repeated until the percentage of zero-valued
coefficients reaches sparse_coe f _perc. When completed, at lines 23 and 24, input instance
set input_instances is split into two disjoint subsets based on their position relative to the
hyperplane. Two subsets are then used as an input for recursive calls of Algorithm 3
(lines 25–26) where the right and the left subtree from the node root are built in the same
manner. Once a complete DT is built, the root node representing the tree is returned
from the algorithm. Next, we will explain in more detail the evolutionary algorithm
Find_best_hyperplane_pos, which is invoked at line 8.

An input for Algorithm 4 is a set of input instances. First, it creates initial hyperplane
coefficients providing that not all instances from input_instances are located on the same
side of the hyperplane. The algorithm then iterates through a predefined number of gener-
ations, mutating hyperplane coefficients with certain probability in each generation. Muta-
tion here refers to a random bit flip in the binary representation of hyperplane coefficients. If
new, a mutated hyperplane has a better fitness compared to the old one, and it will proceed
to the next generation as the best individual. At the end, after NUM_GENERATIONS,
the best individual will be returned back as the output of the algorithm.

In order to calculate a fitness, both in Algorithms 3 and 4, the Algorithm 5 is used.
Algorithm 5 first finds k as the total number of classes in the given classification

problem. Then, the total number of input instances, N, is determined as the length of
the input array input_instances which is used in the current DT node. Ni is also de-
termined as the number of training instances that belong to class i, i = 1, . . . , k, from
the total of N instances. At the end, N1i is calculated as the number of instances be-



Electronics 2022, 11, 1178 8 of 37

longing to class i, i = 1, . . . , k , which is located above the hyperplane represented by
hyperplane_coe f f icients. Algorithm 5 returns value 0 ≤ f itness ≤ 1.

Algorithm 2 Sparsify_oblique_DT
Input: input_instances
Output: maximally sparsified DT

1: non_sparse_model ← Sparse_oblique_DT_induction(input_instances, 0)
2: non_sparse_acc← evaluate non_sparse_model on validation subset
3: current_spars_ f actor ← MIN_SPARS_FACT
4: sparse_acc← non_sparse_acc
5: while sparse_acc ≥ non_sparse_acc− 1% do
6: sparse_model ← temp_sparse_model
7: temp_sparse_model ← Sparse_oblique_DT_induction(input_instances,

current_spars_ f actor)
8: sparse_acc← evaluate temp_sparse_model on validation subset
9: current_spars_ f actor ← current_spars_ f actor + SPARS_INC_FACT

10: end while
11: return sparse_model

Algorithm 3 Sparse_oblique_DT_induction
Input: input_instances, sparse_coef_perc
Output: sparsified dt

1: root← new node in DT
2: if for all elements of input_instances output class is the same then
3: Declare root as a leaf and set root.label = input_instances.output_class
4: else
5: Set root.label to most frequent input_instances.output_class
6: removed_coe f s← emtpy set
7: repeat
8: hyperplane_coe f s =Find_best_hyperplane_pos(input_instances)
9: best_ f itness = Calc_fitness(hyperplane_coe f s)

10: f it_di f f ← best_ f itness
11: for all index in {1,2, . . .length(hyperplane_coe f s)} \removed_coe f s do
12: Copy hyperplane_coe f s to new_hyperplane_coe f s
13: new_hyperplane_coe f s[index]← 0
14: new_ f itness =Calc_fitness(new_hyperplane_coe f s)
15: if best_ f itness− new_ f itness < f it_di f f then
16: worst_coe f _index ← index
17: f it_di f f ← best_ f itness− new_ f itness
18: end if
19: end for
20: hyperplane_coe f s[worst_coe f _index]← 0
21: Add worst_coe f _index to removed_coe f s
22: until percentage of zero elements in hyperplane_coe f s ≥ sparse_coe f _perc
23: input_instances_above← all elements from input_instances above hyperplane
24: input_instances_below← all elements from input_instances below hyperplane
25: root.right = Sparse_oblique_DT_induction(input_instances_above, sparse_coe f _perc)

26: root.le f t = Sparse_oblique_DT_induction(input_instances_below, sparse_coe f _perc)
27: end if
28: return root



Electronics 2022, 11, 1178 9 of 37

Algorithm 4 Find_best_hyperplane_pos
Input: input_instances
Output: hyperplane_coefficients

1: hyperplane_coe f ← initial hyperplane coefficients
2: for i in 1,. . . NUM_GENERATIONS do
3: if random(0..100) > mutation_probability then
4: new_hyperplane_coe f ←Mutate(hyperplane_coe f )
5: else
6: new_hyperplane_coe f ← hyperplane_coe f
7: end if
8: if Calc_fitness(new_hyperplane_coe f ) > Calc_fitness(hyperplane_coe f ) then
9: hyperplane_coe f ← new_hyperplane_coe f

10: end if
11: end for
12: return hyperplane_coe f

Algorithm 5 Calc_fitness
Input: hyperplane_coefficients, input_instances
Output: fitness

1: k← number of classes of the classification problem
2: N ← len(input_instances)
3: for i = 1, . . . , k do
4: Ni ← number of training instances that belong to class i
5: N1i ← number of training instances that belong to class i and are located above

hyperplane defined by hyperplane_coe f f icients
6: end for

7: f itness← 1 +
1
N

 k
∑

i=1
N1i · log2

N1i
k
∑

j=1
N1j

+
k
∑

i=1
(Ni − N1i) · log2

Ni − N1i

N −
k
∑

j=1
N1j


8: return f itness

2.3. Attribute Sparse Training of SVM

Similar to other supervised machine learning algorithms, SVMs are first trained
during the learning phase, followed by the predicting phase when SVMs are used to
classify input instances. During the learning phase, a training set TS with m instances is
used: TS = {xi, yi}, i = 1, 2, . . . , m, xi ∈ X ⊆ Rn, yi ∈ Y = {+1,−1}. The goal of SVM
training is to design a hyperplane which will separate “positive” input instances from the
“negative” ones, while trying to maximize the margin between the hyperplane and the
closest instances on both sides. Hyperplane equation is

wT · x + b = 0, w, x ∈ Rn. (7)

Even though the hyperplane is designed with constraint to maximize the distance
from the closest input instances, in general, this condition cannot be fulfilled for all input
instances. In order to solve this, the SVM algorithm allows the incorrect classification
for some of the instances from the training set. The problem of finding an optimal sep-
arating hyperplane can be defined formally as the constrained quadratic programming
(CQP) problem:



Electronics 2022, 11, 1178 10 of 37

min
w,b

[
1
2
‖w‖2 + C

m

∑
i=1

εi

]
yi(wTx + b) ≥ 1− εi, εi ≥ 0, ∀i ∈ 1 . . . m

C > 0

In the optimization problem given above, one part 1
2‖w‖

2 positions the hyperplane

so that the margin is maximized, while the second part C
m
∑

i=1
εi relocates the hyperplane

in order to minimize the number of misclassified training set instances. A parameter C
defines the trade-off between those two complementary conditions. By using Lagrange
multipliers, the original CQP problem is transformed into its dual QP form, which is easier
to solve:

max
α

[
rTα− 1

2
αTWα

]
α = (α1, α2, . . . , αm), r = (r1, r2, . . . , rm), y = (y1, y2, . . . , ym)

wij = yiyjK
(

xi, xj
)
, i = 1, . . . , m, j = 1, . . . , m

0 ≤ αi ≤ C, ri = 1, i = 1, . . . , m

yT · α = 0

In the dual QP problem definition from above, W is a symmetric positive semidefinite
m×m matrix. Beside input instance labels yi, yj, each element wij from W is calculated by
using a kernel function K. Some of the most popular kernel functions are

K
(
xi, xj

)
=
(

xi · xj + 1
)d, called polynomial

K
(
xi, xj

)
= tanh

(
axi · xj + b

)
, called sigmoid

An efficient algorithm for solving the QP problem called Sequential Minimal Opti-
mization (SMO) is proposed in [62]. Once a training phase is completed, a majority of
Lagrange multipliers αi will be zero, and only non-zero multipliers will be the ones corre-
sponding to, so called, support vectors. These are the input instances that are located closest
to the hyperplane, from both the “positive” and “negative” side. A number of support
vectors (l) are usually significantly smaller than the total number of training instances:
l << m. In predicting phase, only support vectors are used for the classification of a new
input instance:

V(x) = b + ∑
i∈SV

yiαiK(xi, x)

where xi is the support vector and x is the input instance to be classified. If the result of
V(x) is negative, an input instance is classified as a class −1; otherwise, it is classified as
+1. A generalization of the presented mathematical models and methods, which allows for
multi-class prediction, is proposed in [63].

In order to decrease the number of multiplications during the predicting phase,
Algorithm 6, presented below, will eliminate some of the input instance attributes from
the input instance set. This will be done by setting “the least significant” attributes to zero,
resulting in the reduction in the multiplication number during the input instance classification.

Algorithm 6 first trains SVM by using the original input dataset and then evaluates
the model at lines 1–2. At line 3, an initial value of a target sparsification percentage is set
using the MIN_SPARS_PERC parameter. A main loop (lines 6–22) is executed until the
accuracy of a sparsified model drops below the tolerated lower threshold, calculated from
the accuracy of the non-sparsified model. Within the loop, at line 8, this algorithm sorts



Electronics 2022, 11, 1178 11 of 37

the input dataset in descending order with respect to the number of non-zero attributes
within each input instance. As a result, the first input instance in the dataset will be
the one with the largest number of non-zero attributes. The algorithm then calculates
current_sparse_perc at lines 9–11, prior to entering the inner loop (lines 12–18). In this loop,
the algorithm starts with a selection of the first input instance from the dataset. Recall that
this is the input instance with the largest number of non-zero attributes. Then, “the least
significant” attribute from that input instance is set to zero at lines 14–15. This attribute is
selected as the one with the smallest absolute value. After eliminating the least significant
attribute, current_sparse_perc is updated (line 16) and input_instances is re-sorted since the
input instances within the dataset have been modified. This inner loop is repeated until a
desired target_sparse_perc is reached. When the loop completes, a standard SVM training
is invoked on the sparsified input dataset. As a result, a trained SVM will consist of sparse
support vectors, eventually leading to improved performance of the hardware accelerator
that implements such SVM. Please note that, similar to the pruning/sparsification of ANNs
and DTs, sparse_svm is updated based on temp_sparse_svm only when a current sparsified
predictive SVM model has the acceptable accuracy (beginning of the main loop, line 7).

Algorithm 6 Attribute_sparse_SVM_training
Input: input_instances
Output: sparse support vectors

1: non_sparse_svm← Run SVM training on input_instances
2: non_sparse_acc← Evaluate SVM using non_sparse_svm
3: target_sparse_perc← MIN_SPARS_PERC
4: sparse_acc← non_sparse_acc
5: temp_sparse_svm← non_sparse_svm
6: while sparse_acc ≥ non_sparse_acc− 1% do
7: sparse_svm← temp_sparse_svm
8: Sort input_instances descending wrt number of non-zero attributes
9: current_zv← number of zero-valued attributes within input_instances

10: total_att← total number of attributes within input_instances
11: current_sparse_perc← current_zv/total_att
12: while current_sparse_perc < target_sparse_perc do
13: selected_instance← input_instances[0]
14: selected_attribute ← non-zero attribute from selected_instance with the smallest

absolute value
15: selected_attribute← 0
16: Update current_sparse_perc accordingly
17: Update/Sort input_instances
18: end while
19: sparse_svm← Run SVM training on sparsified input_instances
20: sparse_acc← Evaluate SVM using sparse_svm
21: target_sparse_perc← target_sparse_perc + SPARS_INC_PERC
22: end while
23: return sparse_svm

3. Sparse Reconfigurable Machine Learning Classifier

In order to benefit from sparse classifier models, a dedicated hardware accelerator,
called the SRMLC (sparse reconfigurable machine learning classifier), is developed. A
proposed architecture was inspired by a previously published accelerator [33], which can
be reconfigured to support different classifier types, but cannot take advantage of sparse
classifier models. The SRMLC, proposed in this study, is a novel architecture, which is
designed and optimized to work with such sparse classifiers.

A proposed SRMLC architecture has a reduced instance processing latency and en-
hanced throughput when compared to the RMLC architecture published in [33]. The
instance processing latency is reduced as a result of parallel and simultaneous DOT prod-



Electronics 2022, 11, 1178 12 of 37

uct calculation. Additionally, as a consequence of sparse data processing, outputs are
calculated faster, since a significant number of DOT product multiplications are skipped,
which results in a higher throughput.

The presented SRMLC architecture contains three main hardware modules, as shown
in Figure 2.

Figure 2. SRMLC top level architecture.

The first module (TOP-CTRL) controls the operation of the complete accelerator design.
After reading configurations from the memory through the AXI-Full interface, TOP-CTRL
configures other blocks via dc-config-bus and rc-cfg-bus interface busses, depending on the
specific configuration.

The main CPU in the system can additionally configure the accelerator core through the
AXI-lite interface. The configuration registers related to the control of the entire accelerator
are located in the CONFIG-REGS module. One of the RMLC core features, especially
important for understanding the section with the experimental results, is to fetch multiple
input instances as a single memory block in a so-called batch mode. With this approach,
the impact of DRAM memory latency is diminished and higher throughput is achieved.

For all types of supported predictive models, the second module (CALC) calculates
DOT products, which are the core operations during the input instance classification. The
CALC module receives the input instance from TOP-CTRL block. The output of this module
is an array of calculated DOT products, which will be used by the RECONF module.

The third module (RECONF) is a reconfigurable block, which, according to the config-
uration, determines the type of currently active classifier. The RECONF module receives,
as an input, an array of calculated DOT products from the CALC module and uses them to
compute the classification results at the output.

The architecture of the CALC module is shown in Figure 3. The core of the CALC
module is the array of DOT module instances, where each calculates a single DOT product
between the input data vector and coefficient/weight vector, defined by the used predictive



Electronics 2022, 11, 1178 13 of 37

model (DT, SVM or ANN). As the SRMLC accelerator core can be parametrized, Ld, which
is the number of DOT module instances within the array, is one of the most important
system parameters. Each DOT module within the array can be configured through the
configuration bus (dc-config-bus). The input data vector is transferred to DOT modules
via the CALC module controller (CALC-CTRL). It is actually transferred in segments, as
explained later in the text.

Figure 3. CALC architecture.

The architecture of the DOT module is shown in Figure 4. Please note that all
submodules in the figure are shown conceptually, since the actual implementation con-
tains more than one level of pipeline processing. The DOT module is the most impor-
tant for the system performance and, in most configurations, it also utilizes the most
hardware resources.

Figure 4. The DOT module architecture.

In order to support a sparse data processing, the configuration of each DOT module
consists of classifier weights and increment values, stored within the internal DOT module
memory (CFG-MEM). Classifier weights are coefficients that are used in DOT products
for a given classifier type—weights in MLP ANNs, sparse hyperplane coefficients in DTs
and sparse support vector coefficients in SVMs. Due to the compression of classifier
weights, increment values are also stored in CFG-MEM to enable reconstruction of the
actual positions within the original dense weight/coefficient vector. For example, assume
that 10 pruned/sparsified classifier weights are 10, 0, 0, 25, 0, 0, 0, 0, 129, 38. For such a
small compressed classifier weights segment, values stored in CFG-MEM would be:

• Classifier weights: 10, 25, 129, 38.
• Increment values: 0, 3, 5, 1.

Please note that due to a narrower dynamic range of increment values, they can be
represented with fewer bits. Specifically, in the SRMLC architecture, weights are stored
as 16-bit wide words and increments are stored as 4-bit wide nibbles, which results in the
reduction in memory required for storing predictive model weights.



Electronics 2022, 11, 1178 14 of 37

CFG-MEM memory is a main consumer of the memory resources within the DOT
module. It is modeled so that the highest possible speed can be achieved with FPGA
implementation. Additionally, the model is such that it can be easily mapped to the
memory resources of FPGA devices, which is why this module is the main consumer of
memory resources. The module also contains the control logic necessary to control multiple
phases of a pipeline processing.

Figure 5 shows how the compressed classifier weights are stored in CFG-MEM memory.
Within each memory location, a single non-zero classifier weight (denoted by V), and its
corresponding increment value (denoted by I), is stored. CFG-MEM memory is divided
into a number of sections. In the case of processing SVMs, each section holds the non-zero
coefficients of a single support vector. In the case of processing MLP ANNs, each section
holds the non-zero weights of one neuron. Finally, in the case of DT processing, one section
holds the non-zero hyperplane coefficients of a single DT node. The section number is
shown as the subscript of V and I in Figure 5, and the shaded locations indicate memory
locations belonging to one section. The numbers shown below the Vi and Ii symbols
indicate the index of a non-zero classifier weight and its corresponding increment value,
within the current section. Please note that the width of the given section depends on the
number of contained non-zero weights. Hence, it is not necessary that all sections within
the CFG-MEM have the same width.

Figure 5. Layout of CFG-MEM memory.

The input vector values, obtained from the other input of the DOT module, are sent
directly to the selection module (IFM-SEL). The IFM-SEL module, with respect to the
increment values from CFG-MEM, determines which values from the input vector are
required for the calculation, while remaining vector values are skipped in order to avoid
multiplications with zero-valued operands.

The main component of the IFM-SEL module is the multiplexer, which selects the
correct input vector value as an operand for multiplication. A multiplexer requires LUTs for
implementation, so this module is the main consumer of LUTs in the FPGA implementation.

The outputs of the IFM-SEL module are used by the MAC-CALC module, which
performs multiplication operations and accumulates the results in order to calculate the
DOT product. The main goal when designing this module was to implement it within a
single DSP block of the FPGA device, with the smallest possible utilized logic overhead.
Therefore, this module is the main consumer of DSP blocks during FPGA implementation
of the accelerator core.

Each of the submodules within the DOT module is designed to consume the critical
FPGA resources (DSP, memory and random logic-LUTs) in a balanced way. With such
an approach, the entire architecture scaled well, when increasing the available hardware
resources of the FPGA device, since all resources were consumed equally. This is in
stark contrast to the RMLC architecture which failed to balance the utilization of memory
resources and, therefore, scaled poorly.

Figure 6 shows the architecture of the RECONF module. The SHIFT-CUT block
receives the array of calculated DOT roduct values and stores them internally, allowing



Electronics 2022, 11, 1178 15 of 37

DOT modules to process new input vector values, which results in a specific course grained
parallelism within the SRMLC architecture. Buffered values are stored within the shift
register, large enough to store Ld DOT product values. The lowest Lr out of those Ld values
are passed to computing lanes (RC-LANE), where Lr is the number of used computing
lanes within the design and is also an additional SRMLC configuration parameter. After
distributing Lr values to appropriate computing lanes, the SHIFT-CUT block will shift
contained DOT products in order to prepare the next batch of Lr points for processing.

Figure 6. The RECONF architecture.

Each RC-LANE can perform multiple functions, depending on the configuration of the
SRMLC accelerator. Figure 7 shows that the RC-LANE module contains several pipeline
stages, where each is configurable via the configuration bus. Depending on the current
configuration, the RC-LANE can perform non-linear function evaluation, multiplication or
shift contained value in order to adjust its fixed point number format. Each of these stages
can be skipped, if not needed for the calculation.

Figure 7. The RC-LANE architecture.

The reduction submodule from the RECONF (RC-REDUCE) receives all inputs from
the RC-LANEs and performs different post-processing steps, depending on the current
configuration. When the final stages of SMVs are processed, it will accumulate received
values. In the case of MLP classifier processing, the RC-REDUCE module will pass calcu-
lated values from neurons or accumulate values depending on the configuration. At the
end, the RC-REDUCE module is in charge of the selection process within decision trees,
selecting the right or the left subtree, based on a previously calculated DOT product.

Next, we will show how the RC-LANE modules are configured in order to process
SVM, DT or MLP ANN classifier types. Please notice that Figures 8–10 show the required
configuration of a single RECONF block for simplification. In the examples below, active
blocks within the RECONF module are shaded.

Figure 8 presents the configuration of one RECONF module in the case of DT pro-
cessing. The figure also shows an example DT, as well as the way the DT is mapped to a
corresponding configuration, stored inside the RC-REDUCE module. In this configuration,
each DOT module computes a DOT product of the input instance and assigned DT node
hyperplane coefficients and outputs the result for the RECONF module. The selected
DT nodes’ hyperplane coefficients are stored inside the CFG-MEM module, labeled with



Electronics 2022, 11, 1178 16 of 37

nd0, nd1 . . . in Figure 8. In this configuration, RC-LANE modules only adjust the number
formats of computed DOT products. The RC-REDUCE module takes computed DOT
products and iteratively compares them with the appropriate threshold values, ti, while
traversing a DT from the root node until a leaf node is reached.

In the example DT from Figure 8, a classification of input instance will go as follows.
In the first step, the DOT product d0 will be compared to the threshold value t0. Depending
on the outcome, the RC-REDUCE module will select which DOT product to use for the
following comparison. For example, let us assume that the result of the d0 > t0 comparison
is such that we should visit the DT node n1 next. This means that the RC-REDUCE module
will next compare the dot product d1 with threshold t1. This procedure is repeated until RC-
REDUCE reaches a leaf node. This completes the current input instance classification, and
the computed input instance class membership value is transmitted through the val_out
output port. For example, if the result of the d1 > t1 test leads to reaching the c0 leaf
node, the classification of the input instance is completed and the RC-REDUCE module
will output the c0 value on the val_out output port.

Figure 8. The RECONF architecture—DT configuration.

Figure 9 shows one non-linear SVM configuration. In this configuration, each DOT
module calculates DOT product of the input instance and the subset of support vectors,
associated with the corresponding DOT module. The subset of support vectors is stored
within the CFG-MEM module, labeled with sv0, sv1 . . . in the Figure 9. The calculated DOT
values are passed from the CALC module to the RECONF module. In the Figure 9 these
values are designated as di, i = 0, 1, . . . , Lr − 1. When operating in SVM mode, RC-LANE
modules use non-linear memory to calculate the kernel function, specified by the user.
The values after calculating the non-linear function are labeled with ai, i = 0, 1, . . . , Lr − 1.
The MUL submodule is used to multiply non-linear values with Lagrange multipliers,



Electronics 2022, 11, 1178 17 of 37

αi, i = 0, 1, . . . , Lr − 1. SHIFT modules are used to adjust number formats, in order to mini-
mize a quantization loss during the calculation. The values ki, i = 0, 1, . . . , Lr − 1, obtained
after multiplication with Lagrange multipliers, are sent to the RC-REDUCE module, which
accumulates them in this operating mode. With such configuration, accumulated sum of
values ki is obtained. Additionally, this module adds offset value to the accumulated sum
and compares it with zero to obtain the final SVM classification result of the current input
instance. Lagrange multipliers, kernel function samples and the offset are an integral part
of the SVM architecture configuration and they are set by the TOP-CTRL module.

Figure 9. The RECONF architecture—SVM configuration.

Figure 10 shows the SRMLC configuration processing the sparse MLP classifier with a
single hidden layer. As shown in Figure 10, when the architecture is configured to work
as MLP, each DOT module calculates DOT products of the input instances and neuron
weights for each neuron from a subset associated with a corresponding DOT module. The
subset of neuron weights is stored inside the CFG-MEM module, labeled with n0, n1 . . . in
Figure 10. The calculated neuron output values are forwarded to the RECONF module,
marked with di, i = 0, 1, . . . , Lr− 1 in the Figure 10. RC-LANE modules receive these values
and pass them to non-linear memory, where the samples of specified activation function
are stored. In this way, the output values ai, i = 0, 1, . . . , Lr − 1 are obtained after applying
the activation function, as shown in Figure 10. These values are sent to the RC-REDUCE
module which only forwards them to the output, without additional processing.



Electronics 2022, 11, 1178 18 of 37

Figure 10. The RECONF architecture—MLP layer configuration.

Analytical Model of Instance Processing Throughput of SRMLC Architecture

In this section, we will provide an analytical model of the SRMLC architecture that
shows the number of cycles required to classify a single input instance. The analysis will
focus on the instance processing throughput of the architecture, so the latency required
to deliver the data to the computing module will be neglected. The following description
of the analytical model corresponds to the operation of the SRMLC architecture in a
batch mode.

The architecture contains two main computing modules: the CALC module and the
RECONF module. These two modules work in parallel, organized as a two-stage pipeline.
Please note that both the CALC and RECONF modules internally also use pipelining.
For different configurations of the SRMLC architecture, one of these modules will be a
processing bottleneck during the instance classification.

Let Nproc be the number of tree nodes, the number of support vectors or the number
of neurons, depending on the architecture configuration (DT, SVM or MLP). Let Ld be the
number of DOT modules available in the current configuration of the SRMLC architecture.
When Nproc ≤ Ld, Nproc DOT modules will be active in parallel during the current input
instance processing in a single run. However, if Nproc > Ld, the current input instance will
be processed in

⌊
Nproc/Ld

⌋
iterations during which all Ld DOT modules are engaged and

the last iteration in which the number of active DOT modules equals:

D = Nproc mod Ld (8)



Electronics 2022, 11, 1178 19 of 37

Let Lr be the number of RC-LANE modules within the RECONF module, and let Nr be
the number of cycles necessary to perform a single instance classification by the RECONF
module. The architecture should always be configured so that relation Ld > Lr holds. Then:

Nr =

{ ⌊
Nproc/Ld

⌋
dLd/Lre+ dD/Lre, Nproc > Ld

dD/Lre, Nproc <= Ld
(9)

Let Nnzv be the number of non-zero weights and let Nc be the number of cycles
required by the DOT module to compute all DOT products using the current instance.
Then, due to a three cycles delay of pipeline processing:

Nc = (Nnzv + 3)
⌈

Nproc/Ld
⌉

(10)

If Na is the input instance attributes number, and P is the factor with which the
classification models are pruned (percentage of weights that will be set to zero), then,

Nc = (Na(1− P) + 3)
⌈

Nproc/Ld
⌉

(11)

Since the CALC and RECONF modules are connected in a pipeline, the number of
cycles, N, required for the SRMLC architecture to classify a single input instance, equals

N = max(Nc, Nr) (12)

Throughput with which the SRMLC architecture can process input instances can be
calculated as:

Throu =
f
N

=
f

max(Nc, Nr)
(13)

where f is the operating frequency of the SRMLC accelerator.
From the above analysis, it can be concluded that in order to obtain higher throughput,

by increasing the pruning factor, the architecture needs to be configured so that Nc becomes
a dominant factor in Equation (12).

For fixed architecture parameters (Ld and Lr), the values of Nr and Nc change as a
staircase function when Nproc is changed. Nr is increased by 1 whenever Nproc is increased
by Lr. Nc is increased by (1− P)Na, when Nproc is increased by Ld. As a result, the value
of Nr increases more frequently in smaller steps. If we want the relation Nc > Nr to hold,
then the worst case scenario happens if Nproc reaches the value which causes the update of
Nc. That is the case when D = Ld, so:

dD/Lre = dLd/Lre (14)

In that case, Equation (9) becomes:

Nr =
⌈

Nproc/Ld
⌉
dLd/Lre (15)

From Equations (11) and (15), we can derive the condition that the CALC module
is the real processing bottleneck, meaning that the sparsification/pruning factor has an
impact on the processing throughput of the accelerator.

Nc > Nr (16)

(Na(1− P) + 3)
⌈

Nproc/Ld
⌉
> dLd/Lre

⌈
Nproc/Ld

⌉
(17)

Na(1− P) + 3 > dLd/Lre (18)

P < 1− dLd/Lre − 3
Na

(19)



Electronics 2022, 11, 1178 20 of 37

If Equation (19) holds, the sparsification/pruning factor P increases throughput for
the given architecture parameters (Ld and Lr) and the problem instance (Na). In the
experimental results (Section 4), the SRMLC architecture is configured so that Equation (19)
holds for almost all cases.

4. Experimental Results

In order to benchmark our approach, we have conveyed several experiments and
the results are presented in this section. In the first subsection, we show the result of
ANN pruning by using our Algorithm 1 and the results of DT and SVM sparsification
by using Algorithms 2 and 6. In the second subsection, we compare our work with
previously published work [33], while in the third subsection we present the comparison
with embedded software implementations of ML predictive models.

4.1. Experiments for Pruning ANNs and Sparsification of DTs and SVMs

In order to be able to benchmark the performance of Algorithms 1, 2 and 6, UCI
machine learning repository datasets from Table 1 were used. Short names shown in
Table 1 correspond to the names used in Figures 11–22.

Table 1. Experimental datasets’ basic characteristics.

Dataset Name Short Name Attributes Instances

Australian—Statlog australian 14 690
Pima Indians Diabetes diabetes 8 768

Glass Identification glass 9 214
Heart—Statlog heart 13 270

Heart disease Cleveland heart-disease 13 303
Hepatitis hepatitis 19 155

Ionosphere ionosphere 34 351
Page blocks page-blocks 10 5473

Sonar sonar 60 208
Statlog (Vehicle Silhouettes) vehicle 18 846

Waveform 21 waveform21 21 5000
Waveform 40 waveform40 40 5000

Wisconsin Breast Cancer—WDBC wdbc 10 683
Wine Recognition wine 13 178

Zoo zoo 17 101

The Tensorflow framework [64] has been used for evaluating Algorithm 1. The
instances from the UCI machine learning repository with missing values are removed from
datasets, while all results reported below are the averages of five ten-fold cross-validation
experiments. This assumes that the original dataset D is divided into 10 non-overlapping
subsets, D1, D2, . . . , D10, which consist of uniformly selected instances from D. During
each cross-validation iteration, ANN is built by using the instances from the D \ Di set and
tested on Di the set (i = 1, . . . , 10). By repeating this procedure five times, 50 ANNs are
constructed in total for each dataset. Then, the average classification accuracy is calculated
as the percentage of input instances, which are correctly classified. In order to obtain
the ANN pruning curve, which shows how the accuracy of a pruned ANN drops as the
pruning factor increases, we slightly modified Algorithm 1. The Algorithm 1 presented
in Section 2 exits the main loop as soon as the accuracy of a pruned ANN drops more
than 1% below the absolute accuracy of non-pruned ANN. Instead of this upper limit, for
experimental purposes, we have swept current_pruning_ f actor from MIN_PRUN_FACT
to MAX_PRUN_FACT. In our experiments, a MIN_PRUN_FACT parameter was set to
5% and a MAX_PRUN_FACT parameter was set to 99%.



Electronics 2022, 11, 1178 21 of 37

Figures 11–14 show the results of training and pruning the ANN with a single hidden
layer which has 64 neurons on 15 datasets from the UCI repository. The presented charts
show the impact of a pruning factor (X-axis) on classification accuracy (Y-axis), where the
name of the dataset is given above the chart. While the blue line shows the accuracy of the
pruned ANN, which depends on a pruning factor and eventually drops, a red dashed line
shows the lower limit of a pruning tolerance, since it is drawn 1% below the value of the
non-pruned ANN absolute accuracy. Figures 11–14 show that max_pruning_ f actor above
80% can be used with the accepted accuracy drop on 13 out of 15 datasets, which means
that, most of the time, more than 80% of the ANN weights can be set to zero, without
any loss in accuracy. During the training and pruning, several ANN architectures were
used, containing multiple hidden layers and a varying number of neurons per hidden layer.
Neither increasing number of hidden layers nor increasing number of neurons within the
hidden layer above 64, resulted in better accuracy on the chosen datasets.

Figure 11. Results of pruning MLP ANN structure on Australian, diabetes, glass and heart-disease datasets.

Figure 12. Results of pruning MLP ANN structure on heart, hepatitis, ionosphere and page-blocks datasets.



Electronics 2022, 11, 1178 22 of 37

Figure 13. Results of pruning MLP ANN structure on sonar, vehicle, waveform21 and waveform40 datasets.

Figures 15–18 show results of the sparse oblique DT induction, performed on the same
subset of datasets from the UCI repository which were used for the training and pruning
of ANNs. Once again, we slightly modified Algorithm 2 in order to obtain the sparsi-
fication curve. Hence, instead of exiting the main loop once the accuracy of sparse DT
drops below the tolerated lower accuracy limit, we sweep current_spars_ f actor between
MIN_SPARS_FACT and MAX_SPARS_FACT in our experiment set to 10% and 90%, re-
spectively. In Figures 15–18, a blue line shows the accuracy of a sparse DT, which decreases
as a sparsification factor increases (similar to pruning of ANNs). A red dashed line shows a
lower limit for accepted accuracy, calculated as an absolute 1% drop from the non-sparse DT
model accuracy. Although sparsification factors are lower compared to ANNs, the results
show that a significant percentage of DT coefficients can be set to zero during induction,
with the acceptable accuracy drop. However, opposite from ANN pruning, during DT
sparsification, high percentages of sparsification factor could not be obtained for most of the
datasets, since iterative evolutionary algorithm could not converge in those scenarios. This
is the reason why, for some datasets, MAX_SPARS_FACT of 90% could not be reached in
Figures 15–18. Similar to the experimental results for MLP ANNs, all reported results are
calculated as averages of five ten-fold cross-validation experiments.

Figure 14. Results of pruning MLP ANN structure on wdbc, wine and zoo datasets.



Electronics 2022, 11, 1178 23 of 37

Figure 15. Results of pruning DT structure on Australian, diabetes, glass and heart-disease datasets.

Figure 16. Results of pruning DT structure on heart, hepatitis, ionosphere and page-blocks datasets.

Figure 17. Results of pruning DT structure on sonar, vehicle, waveform21 and waveform40 datasets.



Electronics 2022, 11, 1178 24 of 37

Figure 18. Results of pruning DT structure on wdbc, wine and zoo datasets.

Figures 19–22 show results of the attribute sparse SVM training, performed on the
same 15 UCI datasets, which were used for the training and pruning of the ANNs and the
sparse induction of DTs. As with other two algorithms, we had to modify Algorithm 6 in
order to be able to draw the sparsification curve for SVM predictive models. Hence, instead
of using the main loop exiting condition at line 6, we swept target_spars_perc between
MIN_SPARS_PERC set to 5% and MAX_SPARS_PERC set to 95%. Similar to previous
charts, a blue line was used to present the accuracy of an attribute sparse SVM for a given
dataset, decreasing as the sparsification factor increases. A dashed red line shows the
lower limit for tolerated accuracy and it is calculated after subtracting the 1% absolute
accuracy drop from the non-sparse SVM model accuracy (accepting absolute 1% for the
tolerated accuracy drop). As results show, at least 60% of the sparsification factor can be
achieved for the majority of the used datasets. Similar to previously presented results for
ANN pruning and DT sparsification, results shown here are calculated as averages of five
ten-fold cross-validation experiments.

Figure 19. Results of pruning SVM structure on Australian, diabetes, glass and heart-disease datasets.



Electronics 2022, 11, 1178 25 of 37

Figure 20. Results of pruning SVM structure on heart, hepatitis, ionosphere and page-blocks datasets.

Figure 21. Results of pruning SVM structure on sonar, vehicle, waveform21 and waveform40 datasets.

Figure 22. Results of pruning SVM structure on wdbc, wine and zoo datasets.



Electronics 2022, 11, 1178 26 of 37

Predictive model evaluations are presented in Tables 2–4. For the dataset given in the
first column, the achieved sparsification/pruning factor is shown in column 2. The accuracy
of non-sparsified and sparsified models is presented in columns 3 and 4, respectively,
while the last two columns show corresponding size, expressed as the number of model
parameters (weights/coefficients).

From Tables 2–4, one can conclude that the ANN predictive model performs better
than the other two with the average accuracy of 84.58% and the average maximum achieved
pruning factor of 81.33%. For the SVM predictive model, an average accuracy on the given
datasets is 79.64%, with an average maximum achieved sparsification factor of 57.67%.
Finally, the DT classifier can be sparsified 61.71% on average, with a slightly worse average
accuracy of 77.06%. Columns 3 and 4 from Tables 2, 3 and 4 also show that, for all three
classifier types, even heavily sparsified predictive models can score a better predicting
accuracy, when compared to a non-sparsified model, for some datasets.

Table 2. Sparse DT predictive model characteristics.

Dataset Spars. [%] Acc. [%] Sparse Acc. [%] Size Sparse Size

australian 40 74.33 73.87 454.2 251.34
diabetes 66.67 65.17 65.18 262.44 343.74

glass 70 59.88 60.1 117.2 94.54
heart 71.43 75.52 75.41 87.08 87.6

heart-disease 78.57 51.5 52.28 195.44 97.4
hepatitis 70 81.12 80.25 26.4 21.2

ionosphere 48.57 85.98 85.15 164.5 246.56
page-blocks 63.64 96.75 96.52 262.46 334.04

sonar 54.1 72.33 73.58 414.8 351.56
vehicle 68.42 67.66 67.16 571.14 447

waveform21 59.09 81.43 80.47 1155.88 1593.76
waveform40 68.29 80.27 79.3 1808.1 1391.02

wdbc 63.64 92.78 92.15 55.44 45
wine 64.29 89.9 90.13 36.4 42.8
zoo 38.89 81.25 80.27 135.36 96.34

Table 3. Sparse SVM predictive model characteristics.

Dataset Spars. [%] Acc. [%] Sparse Acc. [%] Size Sparse Size

australian 75 86.67 86.09 3122 1395
diabetes 65 78.65 77.66 3768 1223

glass 75 44.76 46.67 1503 430
heart 80 82.22 83.7 1612 353

heart-disease 80 55.17 55.17 2509 483
hepatitis 90 72 72 1292 82

ionosphere 55 87.43 86.86 5780 3319
page-blocks 55 91.66 91.81 8660 3385

sonar 60 78 78 10,200 5340
vehicle 15 68.33 67.62 11,700 11,963

waveform21 55 87.32 86.52 53,088 30,297
waveform40 55 85.92 85.36 113,720 66,263

wdbc 15 96.07 95.1 1730 1900
wine 45 96.47 96.47 1105 770
zoo 45 84 84 1003 777



Electronics 2022, 11, 1178 27 of 37

Table 4. Sparse ANN predictive model characteristics.

Dataset Spars. [%] Acc. [%] Sparse Acc. [%] Size Sparse Size

australian 90 85.74 86.72 1024 128
diabetes 80 76.83 77.08 640 160

glass 70 68.83 71.42 1024 384
heart 80 79.78 84.81 960 240

heart-disease 95 53.68 53.86 1152 72
hepatitis 80 88 87.75 1344 335

ionosphere 90 91.56 92.64 2304 288
page-blocks 80 97.44 97.18 960 240

sonar 80 85.77 87.1 3968 992
vehicle 40 82.07 81.96 1408 1055

waveform21 90 84.69 84.74 1536 192
waveform40 95 82.94 82.52 2752 172

wdbc 90 97.33 97.22 768 95
wine 80 97.75 97.31 1024 255
zoo 80 96.22 96.44 1536 384

4.2. Comparison with RMLC Architecture

In order to compare the resource utilization and scalability of the RMLC and SRMLC
architectures, both of them were implemented by using FPGA technology. Xilinx Vivado
Design Suite [65] was used for the implementation of both architectures, targeting the ZU9
FPGA device, with default values of settings for the synthesis and implementation. In
order to measure an achievable instance processing performance, Zynq Ultrascale+ MPSoC
ZCU102 Evaluation Board [66] was used as the test platform for conducting experiments.
Please note that the ZCU102 evaluation board was used to conduct the experiments due to
its availability. However, as results presented in Table 5 illustrate, smaller instances of the
SRMLC architecture can easily fit even the entry level FPGA devices.

Table 5. SRMLC FPGA implementation results.

DOT# Freq [Mhz] LUT BRAM DSP Power [W]

32 250 11,852 36.5 40 0.37
64 250 21,164 69 72 0.687
96 250 30,571 101.5 104 1.01
128 225 39,773 134 136 1.173
160 200 48,773 166.5 168 1.28
192 200 58,106 199 200 1.539
224 150 66,804 231.5 232 1.39
256 150 76,168 264 264 1.496
288 150 85,445 300 296 1.679
320 125 94,143 333 328 1.551
352 125 106,822 366 360 1.66
384 125 112,852 399 392 1.875
416 125 126,081 432 424 2.15
448 125 136,019 464.5 456 2.279

Table 5 presents a power consumption dependency from the number of used multiply-
accumulate blocks within the design. The first column (DOT#) shows the number of
used multiply-accumulate blocks, the second one shows the operating frequency after the
synthesis and the following three columns show the usage of LUTs, BRAMs and DSPs,
respectively. The last column (power) shows the estimated power consumption of the
implementation. From Table 5, it can be seen that the SRMLC architecture is highly scalable.
The smallest SRMLC instances (with 32 and 64 DOT modules) can be fitted to the cost-
effective FPGA devices from the Spartan-7, Kintex-7 and Zynq-7000 families. If more
performance is required, larger SRMLC instances can be used.



Electronics 2022, 11, 1178 28 of 37

For comparison purposes, Table 6 shows resource utilization after the implementation
of RMLC FPGA [33]. The first column (RB#) shows the number of used reconfigurable
blocks in the RMLC architecture, which have a similar function to DOT modules in the
SRMLC architecture. As it can be seen from Tables 5 and 6, the SRMLC architecture,
presented in this study, provides significantly better scalability when compared to the
RMLC architecture. In the SRMLC, a single DOT unit requires only 1 DSP block, 1 BRAM
and 300 LUTs, which ensures an optimal utilization of available FPGA resources. This is
not the case for the architecture proposed in [33], where the exceeding utilization of BRAM
blocks is a limiting factor for efficient scalability of the RMLC architecture, clearly seen
from Table 6, where the largest instance of the RMLC architecture that can fit inside the
ZU9 FPGA device only has 96 RB units. This is significantly less than the largest SRMLC
architecture that fits inside ZU9 FPGA and contains 448 DOT units, as can be seen from
Table 5. This improved scalability on FPGA platforms was one of the main architecture
design goals during the development of the SRMLC.

Table 6. RMLC FPGA implementation results.

RB# Freq [Mhz] LUT BRAM DSP Power [W]

32 250 12,219 260.5 32 1.549
64 250 20,382 516.5 64 2.282
96 250 28,843 772 96 2.968

The ASIC implementation layout is shown in Figure 23, while the summary is provided
in Table 7 for comparison purposes. Our block-level implementation was developed in the
Genus [67] and Innovus [68] Cadence tools, using 40 nm TSMC process standard libraries.

Figure 23. SRMLC ASIC layout.

Table 7. SRMLC ASIC TSMC 40 nm implementation results.

DOT# Freq [Mhz] Gate_COUNT Area [mm2] Power [mW]

64 300 1,947,837 7.833 868.066

4.2.1. Comparison of Scalability

A scalability comparison of two architectures is shown in Figure 24. All architecture
configurations are implemented for the ZCU102 development board.



Electronics 2022, 11, 1178 29 of 37

Figure 24. Resource scaling for the architectures.

We set the smallest configurations to have 32 RB / DOT modules. We then increased
the number of RB / DOT modules with a step of 32. For RMLC configurations we stopped
at 96, as this is the largest configuration that can fit on a ZCU102 development board. The
graphs also show the limits for different FPGA devices from the Xilinx Ultrascale+ family.
When the graph intersects one of these lines, it represents the largest possible number of
RB / DOT modules that can be implemented on the corresponding FPGA device.

The weak point of the RMLC architecture is the consumption of BRAM resources.
Therefore, we quickly approach the point on the graph (Figure 24) where the limit for the
XCZU9EG device is crossed (XCZU9EG FPGA is used on the ZCU102 development board).
As seen from Figure 24, all configurations for the SRMLC architecture can be implemented
on all FPGA devices. The SRMLC architecture allows a significantly larger number of
computing blocks to be accommodated because the resources required for implementation
are balanced significantly better.

4.2.2. Comparison of the Achieved Throughput

From Table 8, we can see that the throughput of the proposed architecture is sig-
nificantly improved, compared to RMLC architecture. The SRMLC architecture was pa-
rameterized so that the CALC module had 64 DOT modules, while the RECONF mod-
ule had 8 RC-LANE modules. The RMLC architecture was parameterized to have 64
reconfigurable blocks.

For DTs, throughput is from 1.167 to 2 times higher (1.58 times on average), for
SVMs it is from 0.467 to 2.3 times higher (1.65 times on average) and for MLP ANNs it
is from 8.381 to 38 times higher (15.2 times on average), all compared to the correspond-
ing RMLC implementations [33]. The results in Table 8 show, assuming that architec-
tures contain the same number of compute blocks, so called RBs in RMLC and DOTs in
SRMLC, that better throughput for DTs and SVMs in the SRMLC is achieved through the
classifier sparsification.

When considering SVM models, for some datasets there was a decrease in through-
put, as can be seen from Table 8. In these test cases, the bottleneck of the system is the
RECONF module, which is not configured to have sufficient width. This can be seen
from Equation (12) as the case where the value of Nr is higher than the value of Nc; hence,
Equation (19) does not hold. It can be seen that this happens rarely and only for small



Electronics 2022, 11, 1178 30 of 37

datasets, showing that it is not a good compromise to spend additional resources to expand
this module for scenarios that seldom happen.

Table 8. Throughput gain of SRMLC compared to RMLC [33].

Dataset DTs SVMs MLPs

australian 2 1.636364 8.5
diabetes 1.166667 1.5 8.380952

glass 1.5 1.3 10.105263
heart 1.461538 2.125 12.8
hrtc 1.461538 2.125 8.533333

hepatitis 1.470588 2.3 13.538462
ionosphere 2 2.111111 25.191489

pblocks 1.6 1.076923 10.947368
sonar 1.833333 2.064516 38.037736

vehicle 1.5 1.157895 18.162162
wf21 1.5 1.470588 15.058824
wf40 1.483871 1.833333 25.962264
wdbc 1.6 0.466667 10.666667
wine 1.461538 2.125 12.8
zoo 1.642857 1.5 9.411765

Additionally, the results show that for MLP models the throughput is more improved.
The reason is that the blocks in the RMLC architecture processed whole layers, while in the
SRMLC architecture they processed individual neurons. This allows more than one neuron
to be processed simultaneously when using the SRMLC architecture, which significantly
contributes to increasing the architecture throughput.

The SRMLC architecture has another significant advantage, which these results do not
show. When we implement both architectures (RMLC and SRMLC) on the same FPGA
device, due to better SRMLC architecture scalability, it is possible to instantiate more DOTs,
compared to RBs from RMLC architecture.

4.2.3. Comparison of the Achieved Processing Latency

As it can be seen from Table 9, the processing latency, as one of the most important
performance metric parameters for most of the applications, is drastically improved in
the SRMLC when compared to the previously published RMLC architecture [33]. For
comparison purposes, the SRMLC architecture was parameterized so that the CALC
module had 64 DOT modules, while the RECONF module had 8 RC-LANE modules.
The RMLC architecture was parameterized to have 64 reconfigurable blocks.

Table 9. Processing latency reduction in SRMLC compared to RMLC [33].

Dataset DTs SVMs MLPs

australian 3.349398 31.972603 3.192308
diabetes 2.989011 31.333333 3.551724

glass 3.011905 20.612903 5.376623
heart 3.174419 28.169492 6.860759
hrtc 3.174419 33.938462 3.098039

hepatitis 2.659091 28.339623 6.063492
ionosphere 3.695652 49.702703 14.116279

pblocks 3.213483 33.57764 5.792208
sonar 4.111111 66.032086 22.23913

vehicle 3.404255 41.588235 9.236842
wf21 3.730769 59.96347 6.624
wf40 4.428571 84.124524 15.282609
wdbc 2.97561 14.934783 5.717949
wine 2.845238 52.795181 6.860759
zoo 3.162791 24.105263 3.584906



Electronics 2022, 11, 1178 31 of 37

From Table 9, we can see that the latency during the processing of DTs in the SRMLC
is reduced from 2.66 to 4.43 times (3.33 on average), for MLP ANNs the latency is reduced
from 3.1 to 22.2 times (7.84 on average) and for SMVs the processing latency can be from
14.9 to 84.1 times shorter (40.08 on average).

This significant latency reduction is obtained through the parallelization and sparsifi-
cation. Most of the latency reduction was achieved from implementation in which a large
number of DOTs processed a given input classification instance in parallel. This approach
is in complete contrast to the RMLC architecture [33] and leads to significantly improved la-
tency for all classifier types. Sparsification has less effect on improving latency compared to
parallelization. The impact that sparsification has on improving throughput is proportional
to the impact it has on reducing latency. For example, if the throughput is improved two
times and the latency is reduced eight times, that means that the sparsification improved
the latency two times, while the additional improvement of four times can be attributed
to parallelization.

4.2.4. Comparison of the Energy Consumption

Table 10 shows the reduction in memory requirements for storing classifier coefficients
needed by the SRMLC, when compared to the RMLC architecture, proposed in [33].

Table 10. SRMLC memory storage reduction compared to RMLC [33], expressed in % as a result of
sparse data representation.

Dataset DTs SVMs MLPs

australian −44.66 −55.32 −87.50
diabetes 30.98 −67.54 −75

glass −19.33 −71.39 −62.50
heart 0.60 −78.10 −75
hrtc −50.16 −80.75 −93.75

hepatitis −19.70 −93.65 −75.07
ionosphere 49.88 −42.58 −87.50

pblocks 27.27 −60.91 −75
sonar −15.25 −47.65 −75

vehicle −21.74 2.25 −25.07
wf21 37.88 −42.93 −87.50
wf40 −23.07 −41.73 −93.75
wdbc −18.83 9.83 −87.63
wine 17.58 −30.32 −75.10
zoo −28.83 −22.53 −75

Negative values in Table 10 indicate that the SRMLC requires fewer memory resources
compared to RMLC [33], while positive values indicate that, for the corresponding datasets,
the SRMLC requires additional memory resources. As it can be seen from Table 10, a mem-
ory reduction for DTs can be positive, at least for some datasets used in the experiments,
which can be explained by the fact that sparsification of hyperplane coefficients leads to
larger and “deeper” DTs, with a large number of nodes, where each node must store one
hyperplane coefficients set. Table 10 also shows that for the majority of datasets, especially
for SVMs and MLP ANNs, the required memory for storing model parameters is reduced
and for several datasets it is severely reduced.

In the case of SVM classifiers, memory usage is generally improved, sometimes
drastically, except in some cases. In these cases, the level of sparsification is small, so the
extra space needed to accommodate the increments actually increases memory usage.

As a consequence of the model parameters sparsification, the energy consumption
is significantly reduced as well. It is a well known fact from the available literature
that data transfers from external DRAM are the most expensive in terms of the energy
consumption [39]. As a result, reduced storage requirements in the SRMLC lead to sig-
nificant energy saving, compared to solutions where dense data representation is used.



Electronics 2022, 11, 1178 32 of 37

Due to the reduced number of DRAM accesses, as a result of sparsification, the energy
consumption for DRAM data transfers is reduced from −49.88% up to 50.16% in the case of
DT processing (5.16% on average), from−9.83% up to 93.65% in the case of SVM processing
(48.22% on average) and from 25.07% up to 93.75% in the case of ANN processing (76.69%
on average), compared to the scenario when non-sparsified models are being processed.

4.3. Comparison with Embedded Software Implementation

Tables 11–13 present the processing latency of different classifiers when they are being
executed on the SRMLC hardware accelerator, compared to their software implementations
being executed on the embedded processor. All three embedded software applications,
providing results from Tables 11–13, were developed as GCC embedded Linux applications.
The hardware platform used for testing was the ZCU102 evaluation board [66], so all
embedded applications were executed on a quad-core Arm® Cortex®-A53 processor. The
DT benchmarking application was implemented as a plain GCC application, without the
usage of any specific libraries, where all underlying data structures were developed from
scratch. However, SVM benchmarking GCC application was based on the LIBSVM library
for Support Vector Machines [69], while the GCC embedded application for benchmarking
ANNs used Tensorflow-lite framework [70] to model MLP ANNs.

Table 11. Processing latency comparison between the software implementation of DT classifier
compared to SRMLC.

Dtst Inst# SWmin [ns] SWmax [ns] SWavg [ns] HWb [ns] HW [ns] Gb G

australian 138 1180 7601 3094 40 332 77.354 9.32
diabetes 154 860 5961 2240 48 364 46.669 6.154

glass 43 900 2840 1699 40 336 42.475 5.057
heart 54 620 17,062 1569 52 344 30.166 4.560
hrtc 60 1110 3371 1951 52 344 37.536 5.674

hepatitis 16 780 1610 1401 68 352 20.609 3.981
ionosphere 71 1180 3931 2916 80 368 36.453 7.925

pblocks 5001 1450 1086 1758 40 356 43.947 4.938
sonar 42 1920 5630 3755 144 432 26.078 8.693

vehicle 170 2001 6061 3748 64 376 58.56 9.968
waveform21 1000 2510 19,512 3886 72 416 53.975 9.341
waveform40 1000 3831 35,464 6717 124 448 54.171 14.993

wdbc 114 2021 6161 2461 40 328 61.516 7.502
wine 36 1100 1400 1156 52 336 22.236 3.441
zoo 20 1320 3180 1755 56 344 31.339 5.102

Table 12. Processing latency comparison between the software implementation of SVM classifier
compared to SRMLC.

Dtst Inst# SWmin [ns] SWmax [ns] SWavg [ns] HWb [ns] HW [ns] Gb G

australian 138 8677.01 9101.15 8857.68 176 584 50.328 15.167
diabetes 153 10,699.51 11,215.45 10,943.79 256 792 42.749 13.818

glass 42 7956.03 8391.86 8146.1 120 496 67.884 16.424
heart 54 7401.94 7791.28 7600.95 96 472 79.177 16.104
hrtc 59 8553.5 8945.94 8691.98 128 520 67.906 16.715

hepatitis 31 6703.85 7043.12 6807.13 80 424 85.089 16.055
ionosphere 70 11,845.82 11,949.78 11,629.36 216 592 53.840 19.644

pblocks 1085 18,039.23 28,246.4 18,328.87 624 1288 29.373 14.230
sonar 41 18,805.5 19,426.11 19,042.93 372 748 51.191 25.458

vehicle 169 21,289.59 22,107.6 21,526.56 760 1360 28.324 15.828
waveform21 1000 76,443.91 82,371.23 77,257.10 2788 4380 27.711 17.639
waveform40 1000 154,107.09 317,612.89 155,688.16 4512 6296 34.505 24.728



Electronics 2022, 11, 1178 33 of 37

Table 12. Cont.

Dtst Inst# SWmin [ns] SWmax [ns] SWavg [ns] HWb [ns] HW [ns] Gb G

wdbc 113 12,567.04 13,126.85 12,770.17 360 736 35.473 17.351
wine 35 7369.76 7758.14 7528.95 256 664 29.410 11.339
zoo 20 6816.63 7173.78 6963.81 112 456 62.177 15.272

Column Dtst shows the dataset which was used. Tests were conducted on different
numbers of input classification instances and those are shown in column inst#. SWmin,
SWmax and SWavg stand for the minimum, maximum and average processing latency of
classifying one instance when executed in software, respectively. HWb shows the instance
processing latency when the classifier is running on the SRMLC, while using the batch
mode of processing, in which multiple input instances are read from external DRAM, which
significantly reduces classification time. For the chosen datasets, the size of the batch was
set to be the maximum for the corresponding experiments, which means that it was equal
to the value of inst#. On the other side, the HW column presents processing latencies of the
running classifier on the SRMLC in normal mode, where a single input instance is fetched
each time, before starting classification.

Table 13. Processing latency comparison between the software implementation of ANN classifier
compared to SRMLC.

Dtst Inst# SWmin [ns] SWmax [ns] SWavg [ns] HWb [ns] HW [ns] Gb G

australian 690 6860 143,471 8174.86 320 632 25.546 12.935
diabetes 768 5910 412,680 8027.00 296 608 27.118 13.202

glass 214 6970 149,393 9503.35 304 616 31.261 15.428
heart 270 6370 44,101 6946.23 320 632 21.707 10.991
hrtc 297 7090 529,399 14,229.04 312 624 45.606 22.803

hepatitis 80 7341 33,510 7868.64 336 648 23.419 12.143
ionosphere 351 8350 94,292 9466.01 376 688 25.176 13.759

pblocks 5427 6960 434,109 7819.18 304 616 25.721 12.693
sonar 208 10,150 57,852 11,048.09 424 736 26.057 15.011

vehicle 846 7300 441,552 12,000.27 296 608 40.541 19.737
waveform21 5000 7410 222,466 8307.54 332 644 25.023 12.900
waveform40 5000 8560 675,946 10,524.11 424 736 24.821 14.299

wdbc 569 8090 300,625 9415.08 312 624 30.177 15.088
wine 178 6991 1,370,359 17,856.08 320 632 55.800 28.253
zoo 101 8370 481,810 20,403.84 328 640 62.207 31.881

All processing latencies presented in Tables 11–13 are expressed in nanoseconds. The
last two columns show the gain of the running classifier on the SRMLC, compared to
the corresponding embedded software implementations, where the Gb column shows
the gain of batch-mode processing latency and the G column presents the normal-mode
gain. Table 11 shows that the processing latency gain of the SRMLC accelerated DT
classifier in normal mode ranges from 3.98 up to 14.99 (7.11 on average). Similarly, from
Table 12 it can be seen that, when run on the SRMLC in normal mode, the processing latency
gain of the SVM classifier ranges from 11.34 up to 25.46 times (17.05 on average). Finally,
Table 13 shows that the MLP ANN classifier, run in normal mode on the SRMLC accelerator,
outperforms the one running in the software from 10.99 up to 31.88 times (16.74 on average),
when the processing latency gain is used as a comparison metric. As it can be seen from
the columns Gb in Tables 11–13 that when classifiers are run on the SRMLC accelerator in
a batch mode, the gain is even higher: from 20.61 up to 77.35 (42.87 on average) for DTs,
from 27.71 up to 85.09 (49.68 on average) for SMVs and from 21.71 up to 62.21 (32.68 on
average) for MLP ANNs.

As can be seen from the results presented in Tables 11–13, the SRMLC architecture
offers high-performance results when compared with traditional software implementations



Electronics 2022, 11, 1178 34 of 37

of ANN, DT, and SVM classifiers. There are several reasons why this was achieved. The
SRMLC architecture uses a pipelining technique at several levels to increase the instance
of processing throughput. Similarly, due to the parallelization of the main operations,
implemented within the array of DOT modules, an additional increase in the processing
throughput, but even more importantly, a decrease in the instance processing latency, has
been achieved. Finally, by the fact that the SRMLC is able to directly process sparsified ML
models, additional performance improvement was attained.

Apart from the obvious performance improvement due to the significant processing
latency reduction, an additional benefit of using the SRMLC hardware accelerator is related
to the fact that the classification processing latancy is deterministic, always taking exactly
the same amount of time, which can be crucial for real-time applications in which the
response latency is critical.

5. Conclusions

In this study, the universal reconfigurable hardware accelerator for sparse machine
learning classifiers is proposed, which supports three classifier types: decision trees, ar-
tificial neural networks and support vector machines. While hardware accelerators for
these classifiers can be found in the available literature, to the author’s best knowledge, the
accelerator presented in this study is the first hardware accelerator that is optimized to work
with sparse classifier models, which results in a higher throughput, reduced processing
latency, smaller memory footprint and decreased energy consumption due to reduced
data movements, compared to the hardware implementations of traditional predictive
models. In order to benchmark the proposed hardware accelerating platform, we have
also presented the algorithms for sparse decision trees induction, sparsification of support
vector machines and artificial neural networks pruning. Experiments carried out on stan-
dard benchmark datasets from the UCI Machine Learning Repository database show that
the proposed sparsification algorithms allow a significant predictive models compression,
with a negligible prediction accuracy drop: on average 61.7% for decision trees, 39.12% for
support vector machines and 81.3% for artificial neural networks. Experimental results also
show that using such compressed classifier models increases throughput up to 38 times,
decreases processing latency up to 84 times and reduces energy consumption for DRAM
data transfers up to 76.69%. Our hardware accelerator, as it is shown in the experimental
results section, significantly outperforms machine learning classifiers implemented in em-
bedded software. DT classification, accelerated by the SRMLC, is up to 77 times faster when
compared to the corresponding DT classification implemented in the software. Similarly,
when run on our accelerator, the SVM classification relative speedup is up to 85 times faster
and the MLP ANN classification relative speedup is up to 62 times faster, when compared
to corresponding embedded software implementations.

Author Contributions: Conceptualization, V.V. and R.S.; Methodology, V.V., P.T. and R.S.; Software,
V.V. and P.T.; Supervision, R.S.; Visualization, V.V. and P.T.; Writing—original draft, V.V., P.T. and R.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work received funding from the European Union’s Horizon 2020 research and innova-
tion programme under Grant Agreement number 856967 and has been supported by the Ministry of
Education, Science and Technological Development through project No. 451-03-68/2022-14/ 200156
“Innovative scientific and artistic research from the FTS (activity) domain”.

Data Availability Statement: UCI Machine Learning Repository, Center for Machine Learning
and Intelligent Systems. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on
28 February 2022).

Acknowledgments: The authors would like to thank the editors and reviewers for their efforts and
suggestions to improve our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://archive.ics.uci.edu/ml/index.php


Electronics 2022, 11, 1178 35 of 37

References
1. Olson, D.L.; Wu, D. Predictive Data Mining Models, 2nd ed.; Springer Nature: Singapore, 2020.
2. Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020.
3. Zaki, M.J.; Wagner, M. Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2nd ed.; Cambridge University

Press: Cambridge, UK, 2020.
4. Breiman, L.; Friedman, J.; Stone, C.; Olsen, R. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
5. Quinlan, R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
6. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
7. Haykin, S. Neural Networks and Learning Machines; Pearson Education: Delhi, NCR, Noida, India, 2007.
8. McCullock, W.; Pitts, W. A Logical Calculus of Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
9. Mierswa, I.; Wurst, M.; Klinkenberg, R.; Scholz, M.; Euler, T. Yale: Rapid prototyping for complex data mining tasks. In

Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA,
USA, 20–23 August 2006; pp. 935–940.

10. The R Project for Statistical Computing. Available online: http://www.r-project.org (accessed on 1 September 2021).
11. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. The WEKA data mining software: An update. ACM

SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
12. Eltanbouly, S.; Bashendy, M.; AlNaimi, N.; Chkirbene, Z.; Erbad, A. Machine learning techniques for network anomaly detection:

A survey. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha,
Qatar, 2–5 February 2020; pp. 156–162.

13. Rabhi, F.A.; Mehandjiev, N.; Baghdadi, A. State-of-the-Art in Applying Machine Learning to Electronic Trading. In International
Workshop on Enterprise Applications, Markets and Services in the Finance Industry; Springer: Cham, Switzerland, 2020; pp. 3–20.

14. Dixon, M.F.; Halperin, I.; Bilokon, P. Machine Learning in Finance; Springer International Publishing: New York, NY, USA, 2020.
15. Zhao, S.; Chen, S.; Yang, H.; Wang, F.; Wei, Z. RF-RISA: A novel flexible random forest accelerator based on FPGA. J. Parallel

Distrib. Comput. 2021, 157, 220–232. [CrossRef]
16. Malhotra, K.; Singh, A.P. Implementation of decision tree algorithm on FPGA devices. IAES Int. J. Artif. Intell. 2021, 10, 131.

[CrossRef]
17. Alcolea, A.; Resano, J. FPGA accelerator for gradient boosting decision trees. Electronics 2021, 10, 314. [CrossRef]
18. Molina, R.; Loor, F.; Gil-Costa, V.; Nardini, F.M.; Perego, R.; Trani, S. Efficient traversal of decision tree ensembles with FPGAs. J.

Parallel Distrib. Comput. 2021, 155, 38–49. [CrossRef]
19. Haytham, A. FPGA Acceleration of Tree-based Learning Algorithms. Adv. Sci. Technol. Eng. Syst. J. Spec. Issue Multidiscip. Sci.

Eng. 2020, 5, 237–244.
20. Owaida, M.; Kulkarni, A.; Alonso, G. Distributed inference over decision tree ensembles on clusters of FPGAs. ACM Trans.

Reconfigurable Technol. Syst. (TRETS) 2019, 12, 1–27. [CrossRef]
21. Ramadurgam, S.; Perera, D.G. An Efficient FPGA-Based Hardware Accelerator for Convex Optimization-Based SVM Classifier

for Machine Learning on Embedded Platforms. Electronics 2021, 10, 1323. [CrossRef]
22. Younes, H.; Ibrahim, A.; Rizk, M.; Valle, M. Algorithmic-level approximate tensorial SVM using high-level synthesis on FPGA.

Electronics 2021, 10, 205. [CrossRef]
23. Afifi, S.; GholamHosseini, H.; Sinha, R. FPGA implementations of SVM classifiers: A review. SN Comput. Sci. 2020, 1, 1–17.

[CrossRef]
24. Batista, G.C.; Oliveira, D.L.; Saotome, O.; Silva, W.L. A Low-Power Asynchronous Hardware Implementation of a Novel SVM

Classifier, with an Application in a Speech Recognition System. Microelectron. J. 2020, 105, 104907. [CrossRef]
25. Baez, A.; Himar, F.; Samuel, O.; Giordana, F.; Emanuele, T.; Abian, H.; Francesco, L.; Giovanni, D.; Gustavo, M.C.; Roberto, S.

High-level synthesis of multiclass SVM using code refactoring to classify brain cancer from hyperspectral images. Electronics
2019, 8, 1494. [CrossRef]

26. Afifi, S.; GholamHosseini, H.; Sinha, R. A system on chip for melanoma detection using FPGA-based SVM classifier. Microprocess.
Microsystems 2019, 65, 57–68. [CrossRef]

27. Luo, A.; An, F.; Zhang, X.; Mattausch, H.J. A hardware-efficient recognition accelerator using Haar-like feature and SVM classifier.
IEEE Access 2019, 7, 14472–14487. [CrossRef]

28. Westby, I.; Yang, X.; Liu, T.; Xu, H. FPGA acceleration on a multi-layer perceptron neural network for digit recognition. J.
Supercomput. 2021, 77, 14356–14373. [CrossRef]

29. Wu, C.; Fresse, V.; Suffran, B.; Konik, H. Accelerating DNNs from local to virtualized FPGA in the Cloud: A survey of trends. J.
Syst. Archit. 2021, 119, 102257. [CrossRef]

30. Valencia, D.; Fard, S.F.; Alimohammad, A. An artificial neural network processor with a custom instruction set architecture for
embedded applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 5200–5210. [CrossRef]

31. Medus, L.D.; Iakymchuk, T.; Frances-Villora, J.V.; Bataller-Mompeán, M.; Rosado-Muñoz, A. A novel systolic parallel hardware
architecture for the FPGA acceleration of feedforward neural networks. IEEE Access 2019, 7, 76084–76103. [CrossRef]

http://doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF02478259
http://www.r-project.org
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1016/j.jpdc.2021.07.001
http://dx.doi.org/10.11591/ijai.v10.i1.pp131-138
http://dx.doi.org/10.3390/electronics10030314
http://dx.doi.org/10.1016/j.jpdc.2021.04.008
http://dx.doi.org/10.1145/3340263
http://dx.doi.org/10.3390/electronics10111323
http://dx.doi.org/10.3390/electronics10020205
http://dx.doi.org/10.1007/s42979-020-00128-9
http://dx.doi.org/10.1016/j.mejo.2020.104907
http://dx.doi.org/10.3390/electronics8121494
http://dx.doi.org/10.1016/j.micpro.2018.12.005
http://dx.doi.org/10.1109/ACCESS.2019.2894169
http://dx.doi.org/10.1007/s11227-021-03849-7
http://dx.doi.org/10.1016/j.sysarc.2021.102257
http://dx.doi.org/10.1109/TCSI.2020.3003769
http://dx.doi.org/10.1109/ACCESS.2019.2920885


Electronics 2022, 11, 1178 36 of 37

32. Hwang, R.; Kim, T.; Kwon, Y.; Rhu, M. Centaur: A chiplet-based, hybrid sparse-dense accelerator for personalized recommenda-
tions. In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Valencia,
Spain, 30 May–3 June 2020; pp. 968–981.

33. Vranjković, V.; Struharik, R.; Novak, L. Reconfigurable hardware for machine learning applications. J. Circuits Syst. Comput. 2015,
24, 1550064. [CrossRef]

34. Vranjković, V.; Struharik, R.; Novak, L. Hardware acceleration of homogeneous and heterogeneous ensemble classifiers. Micropro-
cess. Microsyst. 2015, 39, 782–795. [CrossRef]

35. Chen, W.; Wilson, J.; Tyree, S.; Weinberger, K.; Chen, Y. Compressing neural networks with the hashing trick. In Proceedings of
the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2285–2294.

36. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

37. Han, S.; Pool, J.; Tran, J.; Dally, W.; Chen, Y. Learning both weights and connections for efficient neural network. In Proceedings
of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 1135–1143.

38. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

39. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Comput. Archit. News 2016, 44, 243–254. [CrossRef]

40. Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey.
Neurocomputing 2021, 461, 370–403. [CrossRef]

41. Kretowski, M. An evolutionary algorithm for oblique decision tree induction. In Proceedings of the International Conference on
Artificial Intelligence and Soft Computing, Zakopane, Poland, 7–11 June 2004; pp. 54–68.

42. Kretowski, M.; Grześ, M. Evolutionary learning of linear trees with embedded feature selection. In Proceedings of the International
Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 25–29 June 2006; pp. 400–409.

43. Keerthi, S.S.; Chapelle, O.; DeCoste, D. Building support vector machines with reduced classifier complexity. J. Mach. Learn. Res.
2006, 7, 1493–1515.

44. Vranjkovic, V.; Struharik, R. Hardware Acceleration of Sparse Support Vector Machines for Edge Computing. Elektron. Ir
Elektrotechnika 2020, 26, 42–53. [CrossRef]

45. Yang, J.; Fu, W.; Cheng, X.; Ye, X.; Dai, P.; Zhao, W. S2Engine: A novel systolic architecture for sparse convolutional neural
networks. IEEE Trans. Comput. 2021. [CrossRef]

46. Xu, H.; Shiomi, J.; Onodera, H. MOSDA: On-Chip Memory Optimized Sparse Deep Neural Network Accelerator with Efficient
Index Matching. IEEE Open J. Circuits Syst. 2020, 2, 144–155. [CrossRef]

47. Liu, B.; Chen, X.; Han, Y.; Xu, H. Swallow: A versatile accelerator for sparse neural networks. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 2020, 39, 4881–4893. [CrossRef]

48. You, W.; Wu, C. RSNN: A software/hardware Co-optimized framework for sparse convolutional neural networks on FPGAs.
IEEE Access 2020, 9, 949–960. [CrossRef]

49. Liang, Y.; Lu, L.; Xie, J. OMNI: A framework for integrating hardware and software optimizations for sparse CNNs. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2020, 40, 1648–1661. [CrossRef]

50. Teodorovic, P.; Struharik, R. Hardware Acceleration of Sparse Oblique Decision Trees for Edge Computing. Elektron. Ir
Elektrotechnika 2019, 25, 18–24. [CrossRef]

51. Serkani, E.; Gharaee Garakani, H.; Mohammadzadeh, N. Anomaly detection using SVM as classifier and decision tree for
optimizing feature vectors. ISC Int. J. Inf. Secur. 2019, 11, 159–171.

52. Serkani, E.; Garakani, H.G.; Mohammadzadeh, N.; Vaezpour, E. Hybrid anomaly detection using decision tree and support vector
machine. Int. J. Electr. Comput. Eng. 2018, 12, 431–436.

53. Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020,
249, 126169. [CrossRef]

54. Carson, J.; Hollingsworth, K.; Datta, R.; Clark, G.; Segev, A. A Hybrid Decision Tree-Neural Network (DT-NN) Model for
Large-Scale Classification Problems. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta,
GA, USA, 10–13 December 2020; pp. 4103–4111.

55. Jena, M.; Behera, R.K.; Dehuri, S. Hybrid Decision Tree for Machine Learning: A Big Data Perspective. In Advances in Machine
Learning for Big Data Analysis; Dehuri, S., Chen, Y.W., Eds.; Springer: Cham, Switzerland, 2022; pp. 223–239.

56. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. Hybrid intrusion detection system based on the stacking
ensemble of c5 decision tree classifier and one class support vector machine. Electronics 2020, 9, 173. [CrossRef]

57. Heath, D.; Kasif, S.; Salzberg, S. Induction of oblique decision trees. In Proceedings of the IJCAI, Chambery, France, 28 August–3
September 1993; pp. 1002–1007.

58. Cantu-Paz, E.; Kamath, C. Inducing oblique decision trees with evolutionary algorithms. IEEE Trans. Evol. Comput. 2003, 7, 54–68.
[CrossRef]

59. Otero, F.; Freitas, A.; Johnson, C.G. Inducing decision trees with an ant colony optimization algorithm. Appl. Soft Comput. 2012,
12, 3615–3626. [CrossRef]

http://dx.doi.org/10.1142/S0218126615500644
http://dx.doi.org/10.1016/j.micpro.2015.10.005
http://dx.doi.org/10.1145/3007787.3001163
http://dx.doi.org/10.1016/j.neucom.2021.07.045
http://dx.doi.org/10.5755/j01.eie.26.3.25796
http://dx.doi.org/10.1109/TC.2021.3087946
http://dx.doi.org/10.1109/OJCAS.2020.3035402
http://dx.doi.org/10.1109/TCAD.2020.2978836
http://dx.doi.org/10.1109/ACCESS.2020.3047144
http://dx.doi.org/10.1109/TCAD.2020.3023903
http://dx.doi.org/10.5755/j01.eie.25.5.24351
http://dx.doi.org/10.1016/j.chemosphere.2020.126169
http://dx.doi.org/10.3390/electronics9010173
http://dx.doi.org/10.1109/TEVC.2002.806857
http://dx.doi.org/10.1016/j.asoc.2012.05.028


Electronics 2022, 11, 1178 37 of 37

60. Levi, D. HereBoy: A fast evolutionary algorithm. In Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware,
Palo Alto, CA, USA, 13–15 July 2000; pp. 17–24.

61. Struharik, R.; Vranjković, V.; Dautović, S.; Novak, L. Inducing oblique decision trees. In Proceedings of the 2014 IEEE 12th
International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 11–13 September 2014; pp. 257–262.

62. Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines; MSRTR: Microsoft Research:
Redmond, WA, USA, 1998; Volume 3, pp. 88–95.

63. Kreßel, U. Pairwise classification and support vector machines. In Advances in Kernel Methods: Support Vector Learning; Burges,
C.J.C., Scholkopf, B., Smola, A.J., Eds.; MIT Press: Cambridge, MA, USA, 1999; pp. 255–268.

64. Tensorflow. Available online: http://www.tensorflow.org (accessed on 1 September 2021).
65. Xilinx Vivado Design Suite. Available online: https://www.xilinx.com/developer/products/vivado.html (accessed on 26

October 2021).
66. Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. Available online: https://www.xilinx.com/products/boards-and-kits/ek-u1

-zcu102-g.html# (accessed on 26 October 2021).
67. Genus Synthesis Solution. Available online: https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/

synthesis/genus-synthesis-solution.html (accessed on 26 October 2021).
68. Innovus Implementation System. Available online: https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/

soc-implementation-and-floorplanning/innovus-implementation-system.html (accessed on 26 October 2021).
69. Chang, C.; Lin, C. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 3, 27:1–27:27. [CrossRef]
70. Deploy Machine Learning Models on Mobile and IoT Devices. Available online: https://www.tensorflow.org/lite (accessed on

28 October 2021).

http://www.tensorflow.org
https://www.xilinx.com/developer/products/vivado.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
http://dx.doi.org/10.1145/1961189.1961199
https://www.tensorflow.org/lite

	Introduction
	Training of Sparse Predictive Models
	Pruning of ANN Model during Training
	DT Model Sparsification during Induction
	Attribute Sparse Training of SVM

	Sparse Reconfigurable Machine Learning Classifier
	Experimental Results
	Experiments for Pruning ANNs and Sparsification of DTs and SVMs
	Comparison with RMLC Architecture
	Comparison of Scalability
	Comparison of the Achieved Throughput
	Comparison of the Achieved Processing Latency
	Comparison of the Energy Consumption

	Comparison with Embedded Software Implementation

	Conclusions
	References

