
����������
�������

Citation: Li, Y.; Tan, Y. Hierarchical

Collaborated Fireworks Algorithm.

Electronics 2022, 11, 948. https://

doi.org/10.3390/electronics11060948

Academic Editor: Valentina E. Balas

Received: 19 February 2022

Accepted: 15 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Hierarchical Collaborated Fireworks Algorithm

Yifeng Li and Ying Tan *

School of Artificial Intelligence, Peking University, Beijing 100871, China; liyifeng@pku.edu.cn
* Correspondence: ytan@pku.edu.cn

Abstract: The fireworks algorithm (FWA) has achieved significant global optimization ability by
organizing multiple simultaneous local searches. By dynamically decomposing the target problem
and handling each one with a sub-population, it has presented distinct property and applicability
compared with traditional evolutionary algorithms. In this paper, we extend the theoretical model
of fireworks algorithm based on search space partition to obtain a hierarchical collaboration model.
It maintains both multiple local fireworks for local exploitation and one global firework for overall
population distribution control. The implemented hierarchical collaborated fireworks algorithm is
able to combine the advantages of both classic evolutionary algorithms and fireworks algorithms.
Several experiments are provided for in-depth analysis and discussion on the proposed algorithm.
The effectiveness of proposed strategy is demonstrated on the benchmark test suite from CEC 2020.
Experimental results validate that the hierarchical collaborated fireworks algorithm outperforms
former fireworks algorithms significantly and achieves similar results compared with state-of-the-art
evolutionary algorithms.

Keywords: fireworks algorithm; hierarchical collaboration; search space partition; swarm intelligence
optimization algorithm

1. Introduction

Global optimization of non-convex problems has been a significant task for numerous
academic studies and industrial applications. However, traditional gradient methods
are facing difficulties in dealing with complex optimization situations, such as multi-
modal or non-differentiable objective functions. Recently, a great number of evolutionary
algorithms (EAs) and swarm intelligence optimization algorithms (SIOAs) have been
proposed, developed, and widely applied in optimization tasks for their advantages in
terms of flexibility and robustness.

The fireworks algorithm (FWA [1]) is a novel swarm intelligence optimization frame-
work inspired from the explosion of fireworks in the night sky. Unlike the classic EAs or
SIOAs, fireworks algorithm maintains several individuals called fireworks to explore differ-
ent aspects of the objective function by sub-populations composed with basic individuals
called sparks. Meanwhile, fireworks collaborate their local strategies to achieve efficient
global optimization. For example, some studies on the fireworks algorithm have proposed
variant approaches with multi-scale [2] or multi-local [3] collaboration strategies. Fireworks
algorithms are particularly suitable for complex problems with a considerable number of
local extrema and scenarios where large scale parallel computation is supported. Currently,
it has been widely applied in fields like portfolio optimization [4], image processing [5],
and power system reconfiguration [6]. It is also implemented for complex optimization
scenarios like multi-objective optimization [7].

The fireworks algorithm framework is able to significantly improve the efficiency of
optimization by dynamically decomposing the target problem and handling each one with
a sub-population, but it can also be harmful if the decomposition and collaboration are
not performed properly. For example, when optimization is decomposed into multiple
local searches, collaboration must effectively integrate local information and analyze the
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overall landscape of the objective function. Otherwise, information about the overall trend
becomes unavailable and the efficiency of optimization is compromised.

This paper deals with this problem by combining multi-local and multi-scale decom-
position and collaboration methods in the fireworks algorithm. A hierarchical model of the
fireworks population is developed, analyzed, and implemented. In the proposed fireworks
algorithm, as global firework controls a sub-population that approximates the overall
distribution of the entire spark population, while multiple local fireworks perform local
searches within dynamically partitioned sub-regions. Specifically, this paper contributes to
the following aspects of fireworks algorithm.

1. A hierarchical model. A theoretical model based on information theory is developed
for the proposed collaboration framework, which is very helpful for the design and
interpretation of related algorithms.

2. A refined control of individual search strategy. The basic individual optimization
strategy introduced from CMA-ES is analyzed and improved for the specific require-
ments of the FWA framework.

3. A unified collaboration strategies. Both multi-local collaboration and multi-scale
collaboration are implemented in a unified strategy, which is intuitive but effectively
combines the advantages of both approaches.

4. An efficient FWA variant. The proposed algorithm is able to combine the advantages
of traditional EAs and FWAs. It achieves excellent results on benchmark test problems.

The remainder of this paper is organized as follows: Section 2 introduces the back-
ground of the target problem and related works. Then, Section 3 develops a theoretical
model of the hierarchical collaboration framework. In Section 4, the individual optimization
strategy is introduced and analyzed for global and local fireworks. The unified collabora-
tion strategy is described in Section 5. Several sets of experimental designs and results are
exhibited and discussed in Section 6. Finally, Section 7 concludes the paper.

2. Background
2.1. Problem Definition

This paper targets to solve the general continuous single-objective black-box global
optimization problem with boundary constraints, which is formulated in Equation (1).

x∗ = arg min
x∈S

f (x) (1)

where the objective function f : RD → R is sampled from an unknown distribution p( f )
related to specific task scenario. The search space or feasible space S = {x‖lbi ≤ xi ≤ ubi}
restricts each variable to some finite interval.

A general optimizer is used to approximates x∗ by proposing a finite number of
solutions or samples xi within S. For the black-box problem, the objective function provides
only one scalar y = f (x) for each sample x. A well-developed optimizer is able to combine
the historical evaluations data Dn = {(xi, yi)}n

i=1 with specific prior knowledge about p( f )
to generate additional valid samples in each iteration.

In particular, for EAs and SIOAs, a considerable number of samples are generated
in each iteration. In this case, each sample is also referred to as an individual, and the
total of all individuals in each iteration (or generation) is referred to as the population.
The objective function is also referred to as the sfitness function.

2.2. Fireworks Algorithm

Fireworks algorithm (FWA) is a novel swarm intelligence optimization algorithm
that focuses on combining multiple sub-populations with a unified local optimization
strategy. During the optimization process, the primary individuals called “sparks” are
divided into multiple parts, each of which performs a local search for some aspect of the
objective function under the leadership of an individual called “firework”. The general
firework algorithm performs the following steps in each optimization iteration until the
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termination condition is satisfied. First, each firework distributes and evaluates explosion
sparks around itself. Sometimes, several additional mutation sparks are generated utilizing
the information obtained by the explosion. Then, a new generation of fireworks is selected
from the current fireworks and sparks. Finally, the collaboration strategies are sometimes
applied to further tune the fireworks or their explosion parameters, including the range
and number of their sparks. Such a framework has significant advantages in dealing
with problems with many local extremums or scenarios where a large-scale population is
available. Currently, FWA has shown great potential for global optimization efficiency and
has become a representative swarm-based optimization algorithm.

In the early FWAs, the individual strategies for fireworks are directly decided by
comparing fitness values. The original FWA [1] decides spark number and explosion am-
plitude of a firework linearly to its relative fitness value. As a significant number of studies
focused on the efficiency of individual search are proposed in this period, the fireworks
become more and more independent. The enhanced FWA [8] made several corrections to
the original FWA, including the primary explosion method. Then, both [9,10] proposed
dynamic individual explosion amplitude strategies that improve FWA’s efficiency signifi-
cantly. Meanwhile, a large number of FWA variants with mutation operators such as [11,12]
are proposed to utilize the information obtained from explosion sparks.

Then, more and more studies have spared attention to the collaboration of fireworks.
The bare-bone FWA [13] achieved decent efficiency with a single firework and a minimalist
strategy, which implies the failure of former collaboration methods and provides a reliable
individual optimization strategy. In the cooperative framework of FWA [14], a variant
algorithm with an independent selection strategy is proposed, so each firework selects a
child from its sparks. A crowdedness-avoiding cooperative strategy is also applied to repel
fireworks from the explosion range of the best firework. A large number of subsequent
studies are based on this independent selection. In [15], a loser-out tournament strategy is
proposed to estimate the potential of each firework and timely restart ones that are unlikely
to outperform the current best. Recently, refs. [2,3] proposed collaboration strategies that
assign fireworks to different scales or different local areas, respectively.

2.3. Related Works

The main contribution of this paper is to propose a hierarchical multi-population
collaborative optimization framework. The related works are introduced in two directions.

2.3.1. Study on Optimization Algorithm with Multiple Population

According to our knowledge, there are two primary research directions on adopting
multiple populations in global optimization.

Many optimization algorithms that adopt multiple populations are called multi-
population methods. In those methods, all populations evolve to solve the optimization
problem simultaneously with diversified strategies or parameters. In the competition of
CEC 2020 [16], several differential evolution (DE) methods achieved the best results with
such a framework, including IMODE [17], J2020 [18], MP-EEH [19], and mpmL-SHADE [20].
Such methods handle the original problem with multiple sub-populations and usually
collaborate by individual sharing. In contrast, the proposed algorithm handles decomposed
sub-problems with sub-populations and directly collaborates strategies of each one.

Another branch of optimization algorithms with multiple populations is called co-
operative co-evolution. Those methods handle large-scale problems by decomposing the
variables of the solution. Ref. [21] provides an example of automatic solution decomposi-
tion and cooperative optimization. Those methods share a similar idea with the proposed
algorithm but target different problems.

2.3.2. Study on Population Structure

There have been successful applications of static population topologies since the
early research of particle swarm optimization (PSO), such as [22–24]. In [23,25], basic
static population structures, including the star, ring, and von Neumann topologies, and
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their influence on the performance of PSO were analyzed. A looser topology generally
provides better population diversity, while a tighter topology leads to a faster convergence
rate. The population topology mechanism has also been naturally applied to differential
evolution [26] and genetic algorithm [27].

Dynamic topologies are common in recent EAs and SIOAs. Some of them are simple
extensions of classic static structures. For example, [28] proposed PSO with increasing
topology connectivity to adapt to the different needs of different search stages. Other
methods achieve greater flexibility by dynamically adapting the topology, including elite
strategy [29], clustering [30], or randomization [31].

The hierarchical population topology model applied in this paper can be explained as
a combination of basic topology models, sometimes referred to as the island model. Such
a framework has already been applied in particle swarm optimization [32], differential
evolution [33], genetic algorithm [34], and genetic programming [35]. However, the pro-
posed algorithm adopts covariance matrix adaptation evolution strategy (CMA-ES) for each
sub-population and combines the population structure with the geometric relationship in
the search space. Therefore, it has a more intuitive and stronger control on the population.

3. Hierarchical Collaboration Model

In this section, the theoretical model of the proposed hierarchical framework is built
through an information perspective.

For an optimization task, the unknown objective function can be regarded as a ran-
dom sample from distribution p( f ). The desired optimal solution x∗ is then a random
variable within feasible space S. With history evaluation data Dt = {xi, yi}t

i=1, the posterior
distribution of f can be obtained, so does the posterior of x∗ in Equation (2).

p(x∗|Dt) =
∫

f
p( f |Dt)× I

(
x∗ = arg min

x∈S
f (x)

)
d f (2)

With a limited number of sample data, an optimizer targets to obtain information on
x∗, that is, to reduce the entropy of its posterior distribution, which is shown in Equation (3).

H(p(x∗|Dt)) = −
∫

x∗∈S
p(x∗|Dt) log p(x∗|Dt)dx∗ (3)

The expected entropy reduction caused by new data (x, y) is an ideal evaluation for
sampling x and is adopted in algorithms called entropy search [36]. Consider a partition of
the feasible space {Si}N

i=1 that S =
⋃N

i=1 Si and Si ∩ Sj = ∅, Appendix A indicates that the
entropy can be decomposed into each subspace, as in Equation (4).

H(pS(x∗)) =
N

∑
i=1

p(x∗ ∈ Si)× H(pSi (x
∗)) + H({p(x∗ ∈ Si)}N

i=1) (4)

where condition on history data Dt is abbreviated for each distribution of x∗. pS(x∗) means
the distribution of optimal solution restricted within S. The second term, called region
entropy, is the entropy of discrete distribution that describes which local region the global
optimal is located.

The entropy decomposition model illustrates that the overall optimization can be
performed by the independent optimization within each sub-space Si and the specification
of probability that the global optimal locates in each sub-space. This model corresponds
directly to the idea of the fireworks algorithm, in which fireworks optimize in different
local areas and collaborate.

The reduction in region entropy in Equation (4) has to be performed by the effective
collaboration between fireworks. However, it can also be regarded as a discrete approxima-
tion of H(pS(x∗)) ignoring the local details within each sub-space. When the sub-spaces
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become smaller and smaller, the region entropy gradually approximates the global entropy.
Inspired from this fact, Equation (4) can be rewritten as follow.

H(pS(x∗)) = (1− α)× H(pS(x∗))

+ α×
N

∑
i=1

p(x∗ ∈ Si)× H(pSi (x
∗))

+ α× H({p(x∗ ∈ Si)}N
i=1)

(5)

Since the entropy in the third term of Equation (5) is an approximation of entropy
in the first term, they can be combined and represented by the entropy of an auxiliary
distribution as in Equation (6).

H(pS(x∗)) ≈ H(p(α)S (x∗)) + α×
N

∑
i=1

p(x∗ ∈ Si)× H(pSi (x
∗)) (6)

where p(α)S (x∗) represents an auxiliary distribution balanced between the original distribu-
tion pS(x∗) and discrete distribution p(x∗ ∈ Si). The reduction in its entropy corresponds
to the optimization of a low-fidelity objective function that is smoothed on each sub-region.

Equation (6) describes the theoretical model of the proposed algorithm, which contains
N local fireworks optimizing in sub-spaces {Si}N

i=1 and a global firework optimizing a
low-fidelity target in the overall feasible space S. Usually, when using a local optimization
algorithm for the global firework, its sampling range is a subset of feasible space S0 ⊂ S
which implies the possible range of the global optimal. In this case, the approximation still
holds when {Si}N

i=1 be a partition of S0.
For any efficient local optimization algorithm, the model illustrates that it is better

applied in individual optimization of this framework for the following advantages than
direct optimization.

1. Task Decomposition. The hierarchical model decomposes the overall optimization
task into N + 1 independent optimization tasks. All of those sub-tasks are easier
than the original optimization. The linear decomposition equation ensures that
more overall entropy reduction can be achieved by processing multiple simpler tasks
simultaneously.

2. Sample Efficiency. On a modern parallel computation device, the number of samples
that can be evaluated at the same time is much larger than the number of samples
needed per generation for most optimization algorithms. By adopting N + 1 indepen-
dent optimization, the proposed framework can utilize the computation device more
efficiently.

3. Flexibility and Simplicity. The theoretical model does not make any limitation on
the strategy of individual optimization. They can be unified for simplicity or varied
for specific requirements. The global firework directly controls the overall balance of
exploration and exploitation. No additional collaboration strategy is necessary once
the search space partition is satisfied.

4. Multi-Scale Optimization. The framework is particularly suitable for objective func-
tions with both global trends and local patterns, which is quite common in practi-
cal problems.

For better geometric intuition, an algorithm adopting a dynamic local Gaussian dis-
tribution model for individual optimization is proposed in this paper, which evolves
according to an extended CMA-ES algorithm. Furthermore, the collaboration intends to
make their search ranges dynamically adjusted towards a partition with the minimal loss
of independent optimization efficiency. The advantages will be further examined and
discussed in experiments.
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4. Individual Optimization Strategy

During the optimization, each firework maintains sparks that follow multi-variant
Gaussian distributions. The individual optimization strategy samples sparks from the
distribution and adapts it according to their evaluations. In the remainder of this section,
the unified algorithm flow is first introduced, followed by a detailed explanation of the
different parameter choices for local and global fireworks.

4.1. Sparks Generation

Sparks of each firework are generated as i.i.d samples of a multi-variant Gaussian
distribution according to the following equation.

xi,1:λi ∼ mi + σi ×N (0, Ci) (7)

where λi is the number of sparks. mi and Ci are the mean and covariance matrix, respec-
tively. σi is an overall scale factor. All sparks beyond the boundaries are re-mapped with a
mirrored mapping rule.

xi,j,k =


2lbk − xi,j,k, if xi,j,k < lbk
xi,j,k, if lbk ≤ xi,j,k ≤ ubk
2ubk − xi,j,k, if xi,j,k > ubk

(8)

where lbk and ubk are the lower bound and upper bound on the k-th dimension, respectively.
All the samples are collected and evaluated by the objective function yij = f (xij).

4.2. Mean Shift

The new mean position m(l)
i is first adapted as a weighted average of the sparks.

m(l)
i = mi + cm

λi

∑
j=1

wij(xij −mi) (9)

where cm ∈ [0, 1] is the learning rate. The recombination weights satisfy wij ≥ 0 and

∑λi
j=1 wij = 1. Usually, the better individuals have higher weights.

4.3. Covariance Adaptation

Both rank-µ update and rank-1 update are applied for the adaptation of covariance
matrix according to Equation (10).

C(l)
i = (1− cµ − c1)Ci + cµ

λi

∑
j=1

wijyijyT
ij + c1pc,ipT

c,i (10)

where cµ and c1 are learning rates. The second term in the formula corresponds to the

rank-µ update. Sample bias yij = xij −m(r)
i , where the reference mean m(r)

i is a position
selected between the original and the new mean in order to balance the exploitation and
exploration ability.

m(r)
i = (1− cr)mi + crm(l)

i (11)

The third term in Equation (10) corresponds to the rank-1 update, which adjusts the
distribution according to the historical trajectory of the mean position. The evolution path
pc,i is updated according to the following equation.

pnew
c,i = (1− cc)pc,i +

√
cc(2− cc)µeff ×

m(l)
i −mi

σi
(12)
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where cc is the learning rate and µeff = (‖w‖1/‖w‖2)
2 is the variance effective selection

mass of the sample weights.

4.4. Scale Adaptation

The overall scale σ is adjusted according to the states of individual optimization, which
is illustrated by the conjugate evolution path pσ.

pnew
σ,i = (1− cσ)pσ,i +

√
cσ(2− cσ)µeff × C−

1
2

i
m(l)

i −mi

σi
(13)

The Euclidean norm of pσ is compared with the expectation of sample norm from
standard Gaussian. The fact that the conjugate evolution path is longer indicates the mean
position has been moving significantly in the same direction, so the overall scale σ should
be amplified. Otherwise, it will shrink.

ln σ
(l)
i = ln σi +

cσ

dσ

(
‖pnew

σ,i ‖
E‖N (0, I)‖ − 1

)
(14)

cσ is the learning rate. Damping factor dσ is used to control the magnitude of the update.

4.5. Restart

Fireworks that are stagnant or unlikely to surpass the current optimal should be reset
timely. Primary restart conditions include the following.

• Fitness Converged. std
[
yi,1:λi

]
≤ εv.

• Position Converged. σi × ‖Ci‖2 ≤ εp.
• Not Improving. The firework’s optimal solution has not improved for εl iterations.
• Mean Converged. The firework’s mean position converges with a better firework,

that is, ‖mi −mj‖ < εp.
• Cover by Better. The firework’s explosion range is covered by a better firework, which

is verified when more than 90% of its sparks lie within the explosion range of the other
firework.

Once a restart condition is met, the firework is re-initialized in a random location
within the feasible space. The explosion range will be defined later in Equation (18).

4.6. Parameter Settings

Local and global fireworks require different parameter settings for their distinct targets
with the unified individual optimization framework. In general, the local fireworks are
desired to conduct an efficient search in local areas. On the other hand, the global firework
requires a gradual and steady narrowing of its search space started from the whole feasible
space. The parameter settings of both global and local fireworks are described below,
and their behaviors are illustrated in Figure 1.
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Figure 1. Individual optimization of local and global fireworks. The solid and dashed lines are the
contours of the distribution before and after the local single-step optimization, respectively.

4.6.1. Initialization

Each firework in the proposed algorithm maintains the same number of sparks λi =
bλ/(N + 1)c. The local fireworks locate uniformly within the feasible space, while the
global firework is sampled near the origin. All covariance matrices are initialized with the
identity matrix. Additionally, the overall scale of global firework is shown in Equation (15).

σglobal =
ub− lb

2× E‖N (0, I)‖ (15)

where ub = max (ubk) and lb = max (lbk) are the upper bound and lower bound of the
feasible space. Local fireworks are initialized with σlocal = σglobal/N.

4.6.2. Recombination Weights

For efficient exploitation, local fireworks select the better half of sparks (µ = bλ/2c)
and assign logarithmic weights according to their rank as follows. Here, wj is the weight
for the j-th best spark.

wj ∝ min(0, log (µ + 0.5)− log j) (16)

For stable exploration, the global firework eliminates 5% worst sparks (µ = b0.95λc)
and assign uniform weights for the rest.

4.6.3. Referenced Mean

Scalar cr ∈ [0, 1] decides the referenced mean and balances the exploration and
exploitation of rank-µ update. Original CMA-ES uses cr = 0 for highly exploratory
population. The global firework takes cr = 1.0, so the adapted covariance matrix tends to
reproduce its selected samples with maximum probability. The local fireworks take cr = 0.5
for a balanced local optimization.

4.6.4. Rank-1 Update

The rank-1 update adjusts the sample distribution based on the historical movement
trajectory of the mean position. It is very effective for local fireworks but not suitable for
the global firework.

4.6.5. Scale Update

The damping factor dσ in Equation (14) control the magnitude of scale update, which
is shrunk to balance with the effect of collaboration. The local fireworks reduce dσ to
0.5 times its original value designed in CMA-ES. Although the global takes dσ = 0 because
it is sufficient to control search range by selection and collaboration.
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4.6.6. Restart Conditions

The value and position precisions of all fireworks both take εv = εp = 10−5. Local
fireworks restart after εl = 100 failed iterations, while N× εl is allowed for the global firework.

4.6.7. Overall Learning Rate

The converge rate of the global firework is already limited through parameters selec-
tion. However, during the optimization, it is desired to be significantly slower than local
fireworks. An additional overall learning rate cg is set for the global firework to slow down
its optimization further as follows. cg = 1/N is assigned in the proposed algorithm.

m(l)
0 ← cgm(l)

0 + (1− cg)×m0

C(l)
0 ← cgC(l)

0 + (1− cg)× C0

σ
(l)
0 ← cgσ

(l)
0 + (1− cg)× σ0

(17)

4.7. Individual Optimization Framework

The framework of individual optimization strategy is shown in Algorithm 1.

Algorithm 1 Individual optimization framework.

for all firework Fi do
Generate sparks xij according to Equation (7)

end for
Gather and evaluate sparks yij = f (xij)
for all firework Fi do

Compute m(l)
i according to Equation (9)

Update evolution path pi according to Equation (12)
Compute C(l)

i according to Equation (10)
Update conjugate evolution path pc,i according to Equation (13)

Compute overall scale σ
(l)
i according to Equation (14)

end for
Adjust global firework according to Equation (17)

5. Collaboration Strategy

Based on the model in Equation (6), the proposed algorithm mainly considers col-
laboration by adjusting fireworks’ search ranges towards a partition. Since each firework
maintains a multi-variant Gaussian distribution, its search space is defined by a bounded
region where the probability density exceeds a specific value.

BF =
{

x|‖C−
1
2 (x−m)/σ‖ = dB

}
(18)

Equation (18) defines the boundary of firework Fi as BFi , abbreviated as Bi, which
corresponds to an ellipsoidal shell. Then its closure SF = BF is the firework’s search range.
In the proposed algorithm, dB = mean(χD) + 0.5× std(χD) is taken, by which the defined
search range SF covers about 70% of samples for arbitrary dimension D.

For simplicity, the collaboration of firework’s search range is approximated in pairs,
including the following steps.

5.1. Computation of Dividing Points

For each pair of fireworks Fi and Fj, a dividing point can be obtained on the connecting
line mimj, which specifies the cut-off point of their boundaries under ideal collaboration.
Let the radius of Si on the line mimj be rij and dij =

∥∥mimj
∥∥. The dividing point dij can
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be obtain by adjusting rij and rji simultaneously until their boundaries coincide on mimj.
For local fireworks, this is completed by solving the following equation.

rije
aijw + rjie

ajiw = dij (19)

where rij changes to rije
aijw by collaboration, which also equals to

∥∥midij
∥∥. The sensitivity

factors aij and aji control the relative magnitudes of change for Fi and Fj. The collaboration
is also presented in Figure 2.

(a)rij + rji > dij (b)rij + rji < dij

Figure 2. Dividing Point in local collaboration.

The following equation should be solved when Fi is the global firework.

rije
−aijw − rjie

ajiw = dij (20)

where the negative sensitivity of global firework indicates that it changes in the opposite
direction to local firework. The collaboration with global firework is presented in Figure 3.

Figure 3. Dividing point in global collaboration.

The sensitivity factors are set to balance the influence of global collaboration on
individual optimizations. A comparison is made between their optimization states for
each pair of fireworks Fi and Fj. Only when the worst spark of Fi is still better than the
best of Fj, let aij = 0.0 and aji = 1.0 so the optimization of Fi will not be influenced.
Otherwise, let aij = aji = 1.0 so they collaborate by the same magnitude. In order to protect
effective individual optimization, the sensitivity of a local firework is adjusted to zero if it
improves within 0.2εl iterations. When both sensitivities are zeros, dividing points fall on
the boundary of each of the fireworks, so they do not change in collaboration.

The sensitivity factor of global firework is amplified by ca > 1.0 to ensure the efficiency
of local optimization. In the proposed algorithm, a significant large value ca = 5.0 is taken.

For both equations, the value on the left is always monotonic to w when the sensitivity
factors are positive. Therefore, it is guaranteed to be solved quickly for a given accuracy
and range.

5.2. Selection of Feature Points

The dividing points describe the boundaries for each pair of fireworks under the
complete and ideal collaboration. However, only several dividing points should be selected
and adjusted for firework Fi during optimization.
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First, the collaboration should only be performed between adjacent fireworks. In order
to avoid the complex computation of geometric relationship in high-dimensional space,
the τ = 2 most critical points {dik}τ

k=1 are selected for each firework. For local fireworks,
dividing points with the highest probability density are selected. On the contrary, dividing
points with the lowest density are selected for the global firework.

Then, the selected points should be clipped towards the distribution boundary to
avoid excessive change. Based on the analysis of individual searches, a similar magnitude
of change was taken within [0.85, 1.20]. The feature point is calculated in Equation (21),
and the clipping is shown in Equation (22).

fik = m(l)
i + d(clip)

ik ×
dik −m(l)

i∥∥∥dik −m(l)
i

∥∥∥ (21)

where d(clip)
ik is the distance from mean position m(l)

i to feature point fik.

d(clip)
ik =


αlrij, i f

∥∥∥dik −m(l)
i

∥∥∥ < 0.85rij

αurij, i f
∥∥∥dik −m(l)

i

∥∥∥ < 1.20rij∥∥∥dik −m(l)
i

∥∥∥, else.

(22)

5.3. Adaptation to Feature Points

The distribution of Fi after individual adaptation is then further adjusted to fit the
feature points {fik}τ

k=1 on its boundary. For simplicity, the fitting is performed one by one
for each feature point.

5.3.1. Mean Shift

First, the mean position is shifted to balance the overall boundary shape change. Then,
for each feature point fik, the reverse of its shortest vector to the boundary Bi is averaged.
The shift vector of the mean position is calculated as follows.

mvi =
1
τ

τ

∑
k=1

(fik − qik) (23)

The point qik is the closer intersection of Bi and line mifik. The shifting vector is
restricted within 20% of the radius on the corresponding direction for local fireworks and
5% for the global firework.

m(g)
i = m(l)

i + mvi ×min
{

1,
αmri
‖mvi‖

}
(24)

According to experiments, the mean shift is also helpful in reducing the condition
number of the resulted covariance matrix and avoiding possible numerical problems.

5.3.2. Boundary Adaptation

The boundary collaboration is completed separately for each feature point and av-
eraged. It is easy to examine the following theorem by simply substituting the matrix in
Equation (25) into the definition of firework boundary.

Theorem 1. For a multi-variant Gaussian distribution N (m(g), C(l)) with overall scale σ(l) and
a feature point f, the following matrix C(g)

f satisfies that f is on its boundary and it has the same
radius as C(l) on the conjugate directions.

C(g)
f = C(l) +

λ

σ2 × (f−m(g))(f−m(g))T (25)
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where
λ =

1
d2

B
− 1

zTz
(26)

and

zik =
(

C(l)
i

)− 1
2 × (fik −m(g)

i )/σ
(l)
i (27)

Then, the collaborated covariance matrix C(g)
i is obtained by averaging the effects of

each feature point.

C(g)
i = C(l)

i +
1
τ

τ

∑
k=1

λik

σ2
i
× (fik −m(g)

i )(fik −m(g)
i )T (28)

The distribution scale is changed along with the covariance matrix, so σi remains
the same.

σ
(g)
i = σ

(l)
i (29)

5.4. Collaboration Framework

The proposed algorithm is shown in Algorithm 2. An overall reboot is conducted
when the population has not improved for over M = 100 iterations.

Algorithm 2 Hierarchical collaborated fireworks algorithm.

while The termination condition is not satisfied do
Initialize local fireworks population {Fi}n

i=1
Initialize global firework F0
while the population improved within M iterations do

# Individual Optimization
for all firework Fi, i = 0, 1, ..., n do

Generate sparks xij
end for
Collect and evaluate all sparks
for all firework Fi, i = 0, 1, ..., n do

Compute m(l)
i , C(l)

i , σ
(l)
i

if any restart condition is satisfied then
Re-initialize Fi

end if
end for
# Collaboration
for all pair of fireworks Fi and Fj do

compute dividing point dij as in Section 5.1
end for
for all firework Fi do

select and adjust feature points {fik}τ
k=1 as in Section 5.2

compute m(g)
i , C(g)

i , σ
(g)
i as in Section 5.3

update firework distribution: mi ← m(g)
i , Ci ← C(g)

i , σi ← σ
(g)
i

end for
end while

end while
Return the best evaluated solution

6. Experiments and Discussions

In this section, the efficiency and properties of the proposed algorithm are experi-
mented and discussed. All the experiments are run on Ubuntu 18.04 with Intel(R) Xeon(R)
CPU E5-2675 v3.
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6.1. Experiments on the Algorithm Efficiency

The efficiency of the proposed algorithm is examined on the bound-constrained single
objective benchmark test suite from the IEEE Congress on Evolutionary Computation (CEC)
2020 [16]. The benchmark set contains ten objective functions, including uni-modal, basic,
hybrid, and composition problems. It provides a relatively comprehensive test of different
aspects of performance for optimization algorithms. Since consistent experimental results
are observed in 10, 15, and 20 dimensions, only 20-dimensional performance is presented
in this paper.

The hierarchical collaborated FWA (HCFWA) is first compared with previous impor-
tant FWAs to examine the effectiveness of the proposed strategy. The loser-out tournament
FWA (LoTFWA [15]) is a classical FWA that has received widespread attention and served
as the foundation of many subsequent studies. CMAFWA replaces the local search of
LoTFWA with CMA-ES and is used as a comparison algorithm. FWA based on search space
partition (FWASSP [3]) uses a similar collaboration strategy with the proposed algorithm
but only adopts local fireworks.

Each algorithm is tested 30 times on 20-dimensional problems with a maximum num-
ber of 10,000,000 evaluations. The proposed algorithm keeps most parameters consistent
with the previous ones as they were published. The results of the longitudinal comparisons
are shown in Table 1. The best results for each problem are shown in bold.

Table 1. Comparison with FWAs on 20 dimensional problems of CEC 2020.

LoTFWA CMA-FWA FWASSP HCFWA

Func. Mean Std Mean Std Mean Std Mean Std

1 1.625e+06 4.048e+05 + 0.000e+00 0.000e+00 − 1.238e–05 3.640e–06 = 1.751e–05 1.929e–06
2 1.531e+03 4.151e+02 + 2.647e+02 1.215e+02 − 4.299e+02 1.681e+02 = 6.815e+02 2.293e+02
3 6.873e+01 9.701e+00 + 2.437e+01 8.288e–1 + 6.181e+02 2.962e+01 + 1.721e+01 8.254e+00
4 1.074e+01 1.604e+00 + 1.421e+00 3.200e–1 + 1.867e+00 6.521e–01 + 6.636e–01 1.049e–01
5 2.692e+05 1.768e+05 + 1.230e+03 3.018e+02 + 1.891e+02 4.939e+01 − 3.757e+02 1.054e+02
6 4.579e+02 2.063e+02 + 7.375e+00 7.963e+00 + 1.594e+02 5.865e+01 + 1.632e+00 2.585e–01
7 6.508e+04 5.798e+04 + 4.565e+02 2.158e+02 + 1.005e+02 4.884e+01 − 2.374e+02 8.577e+01
8 1.084e+02 1.010e+01 + 4.589e+02 1.463e+02 + 1.000e+02 2.272e–07 + 7.201e+01 4.043e+01
9 4.505e+02 1.856e+01 + 4.049e+02 1.659e+00 + 2.112e+02 9.651e+01 + 1.067e+02 2.494e+01

10 4.185e+02 1.358e+01 + 4.063e+02 5.418e–03 − 4.024e+02 5.840e+00 = 4.028e+02 5.095e+00

Result 10 vs. 0 8 vs. 2 5 vs. 2

AR 3.80 2.40 2.10 1.70

The Wilcoxon rank-sum tests are performed to verify the difference in optimization
results’ significance. The proposed algorithm obtained the best average results on five
problems. CMAFWA presents the most outstanding local optimization ability with the
original CMA-ES strategy, especially on the first and second problems: a uni-modal problem
and a multi-modal problem with high local search capability requirements. FWASSP
and HCFWA, with fireworks collaboration, obtain all the best average results on the
rest problems. However, their local exploitation ability is slightly weaker because of the
defined minimum optimization precision εv = εp = 10−5 and the adverse effects of
collaboration. With a confidence level of 95%, HCFWA outperforms FWASSP significantly
on five problems but is worse on two problems, which might be caused by an improper
global convergence rate.

The proposed algorithm is also compared with important algorithms, including
IPOP-CMA-ES [37] and SHADE [38], which are both currently the most widely applied
and efficient evolutionary algorithms. The results of LoTFWA, IPOP-CMA-ES, SHADE,
and HCFWA are listed in Table 2. It has been complicated for firework algorithms to
complete with various differential evolution (DE) algorithms on benchmarks after CEC
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2017. The proposed algorithm achieved similar results with SHADE and is better suited to
specific problems.

Table 2. Comparison with classic algorithms on 20 dimensional problems of CEC 2020.

LoTFWA IPOP-CMA-ES SHADE HCFWA

Func. Mean Std Mean Std Mean Std Mean Std

1 1.63e+06 4.05e+05 + 0.00e+00 0.00e+00 − 0.00e+00 0.00e+00 − 1.75e–05 1.93e–06
2 1.53e+03 4.15e+02 + 2.16e+03 2.41e+01 + 2.16e+01 9.14e+00 − 6.82e+02 2.29e+02
3 6.87e+01 9.70e+00 + 5.43e+01 7.97e+00 + 2.08e+01 2.20e–01 = 1.72e+01 8.25e+00
4 1.07e+01 1.60e+00 + 2.32e+00 2.78e–01 + 6.48e–01 6.49e–02 = 6.64e–01 1.05e–01
5 2.69e+05 1.77e+05 + 1.23e+03 2.83e+02 + 4.37e+01 3.89e+01 − 3.76e+02 1.05e+02
6 4.58e+02 2.06e+02 + 4.91e+02 2.19e+00 + 2.07e+00 2.12e–01 + 1.63e+00 2.59e–01
7 6.51e+04 5.80e+04 + 7.18e+02 2.10e+02 + 1.50e+00 9.57e–01 − 2.37e+02 8.58e+01
8 1.08e+02 1.01e+01 + 2.48e+03 1.85e+02 + 1.00e+02 0.00e+00 + 7.20e+01 4.04e+01
9 4.51e+02 1.86e+01 + 4.32e+02 1.48e+00 + 4.07e+02 2.19e+00 + 1.07e+02 2.49e+01

10 4.19e+02 1.36e+01 + 4.30e+02 4.55e–01 + 4.06e+02 6.97e–03 + 4.03e+02 5.10e+00

Result 10 vs. 0 9 vs. 1 4 vs. 4

AR 3.60 3.25 1.55 1.60

Although it remains tough to compete with some state-of-art implementations of DE
such as [17,39] on this benchmark, HCFWA achieves better results on problems with a
large number of local optimal, such as function (3) and function (8), which will be further
discussed in later experiments. Function (2) also contains plenty of local optimal, but many
local areas have huge condition numbers, which is disadvantageous to the proposed
algorithm’s individual optimization.

6.2. Experiments on the Population Behavior

In the second set of experiments, the effect of global firework is analyzed and examined
from the perspective of population behavior.

The population behavior of the fireworks algorithm is quite different compared with
traditional evolutionary algorithms. For most EAs, such as CMA-ES or DE, their popu-
lations are first dispersed throughout the feasible space and then gradually converge to
a single point. However, fireworks in FWA are uniformly distributed within the feasi-
ble space, and each sub-population converges to its corresponding firework. As a result,
the population of EAs eventually converges even for multi-modal problems, while the
population of the fireworks algorithm usually does not.

The proposed algorithm forms a compromise between those two types of methods.
The optimization of global firework makes the overall population distribution converge
gradually such as a general evolutionary algorithm. Meanwhile, the local fireworks remain
relatively independent and rapidly exploit their local areas. The 2D visualizations of the
optimization progress are presented in Figure 4 to show the behavior of the population in
the proposed algorithm.

Images in the first row present the optimization process on the uni-modal cigar
function. As all fireworks approach the exact global optimum, the search ranges of local
fireworks quickly connect. The global firework also narrows its boundary quickly under
both individual optimization and collaboration. Then, the collaboration prevents local
fireworks’ search ranges from overlapping. Only the best local firework independently
exploits around the optimum position and converges. The global firework gradually
narrows down the distribution of the whole population at a much slower rate. Moreover,
the rest local fireworks fill the remained search area of the global fireworks.

Images in the second row present the optimization process on the multi-modal Rastri-
gin’s function. In this case, each local firework might converge to a local minimum near
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its initial position. Only when some local firework is not able to keep similar progress
of optimization with a better neighbor, it becomes more sensitive in collaboration and
fills up the search range of the global firework. In the last picture, two local fireworks
converged, while the other two are much more collaborative. The global firework keeps
slowly narrowing around the local fireworks. This steady-state will be maintained until
a converged firework finishes its local exploitation or another firework fails to discover
potential solutions within the remained space of global firework for too long.

Figure 4. Optimization process of HCFWA on 2D Functions. The solid, dashed, and dotted eclipses
correspond to each firework’s original distribution, locally adapted distribution, and collaborated
distribution. The dots represent sparks. The learning rates of fireworks’ individual optimization are
reduced for better visualization.

6.3. Experiments on the Algorithm Applicability

Combining the analysis on theoretical modal and population behavior, the applicability
of the proposed algorithm is discussed and examined below.

According to the “no free lunch” (NFL) theorem [40], any optimization algorithm can
only be effective for a particular class of target problems. The distinct population behaviors
of classic EAs and FWAs result in different performance characteristics during optimization,
leading to their respective suitability for objective functions.

Evolutionary algorithms usually widely distribute their population within the feasible
space and slowly narrow the search range until convergence. Therefore, it always considers
the global trend of objective functions first and turns to the local pattern after entering a spe-
cific local area. On the other hand, the fireworks algorithm directly starts exploiting random
local areas. Therefore, the global trend information needs to be obtained and utilized by an
effective collaboration strategy, usually absent from the previous algorithms. As analyzed
before, the proposed HCFWA combines both types of population behaviors. The global
firework keeps continuous optimization on the global trend. Meanwhile, the local fireworks
keep exploitation of different local areas. This compromise is built on collaboration and
achieved at the cost of the individual optimization efficiency of some worse fireworks.

A set of toy experiments on Rastrigin’s function are conducted to show the optimiza-
tion characteristics of those algorithms. CMAFWA, SHADE, and HCFWA with different
global firework learning rates are tested on the adjusted objective function, containing many
local minimums and considerable high-frequency amplitude. Each algorithm is repeated
30 times. The mean and variance value of the best fitness evaluated in each iteration are
present in Figure 5.
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Figure 5. Optimization curves on the Rastrigin’s function.

The first image in Figure 5 presents the optimization performances of CMAFWA,
SHADE, and HCFWA. CMAFWA, and SHADE exhibit very different search patterns.
As discussed before, the single population evolutionary algorithm SHADE first observes
the global trend of the objective function. Therefore, it improves relatively slowly but is
stable with significantly low variance. On the contrary, CMAFWA directly exploits random
local areas, improving rapidly in the early stage and having a considerable variance.
As HCFWA shares properties of both algorithms, its performance also lies in between.

The second image in Figure 5 presents the optimization performance of HCFWA
with different global firework learning rates. As the learning rate gradually increases,
the behavior pattern of the proposed algorithm gradually shifts from CMAFWA to SHADE.
However, if the learning rate is too large, the pattern can become much more complicated
due to the restart of the global fireworks.

Such an optimization pattern of the proposed algorithm indicates that it is more
suitable for problems that have both global trends and local patterns. Its convergence rate is
better specified based on the global structure of the target problem. When the global feature
is significant, the global firework should optimize faster and guide the local fireworks to
more potential areas. When the global feature is not significant, the global firework should
optimize slowly or stop to guide the local fireworks to broad exploration. Fortunately, such
a global structure can usually be evaluated at a relatively small cost in plenty of practical
optimization scenarios by techniques, such as approximations, sampling, and simulations.

7. Conclusions

This paper extends the fireworks algorithm based on search space partition into a hier-
archical collaborative framework. A theoretical model is developed from an information-
theoretic perspective and used to guide the algorithm’s design and analyze its properties.
In the proposed framework, multiple local fireworks exploit each local area, such as classic
fireworks algorithms, while a global firework optimizes on a larger scale and controls
the overall distribution of the whole population. The hierarchical collaborated fireworks
algorithm is implemented based on a unified individual optimization algorithm and col-
laboration strategy. Experimental results on the CEC 2020 benchmark demonstrate that
the proposed algorithm achieved better performance than former variants of FWA and a
competitive efficiency compared with other successful frameworks, especially for complex
multi-modal problems. Additional experiments are provided to analyze the properties
of the proposed framework. It can be observed that HCFWA can simultaneously main-
tain optimizations on the global trend and local patterns at multiple locations. Therefore,
the stability of global exploration and the convergence speed of local exploitation can be
guaranteed simultaneously.

Based on the theoretical model of hierarchical collaborative fireworks algorithm, it
can analyze the fundamental principle of multi-local and multi-scale optimization and
helps build effective optimization algorithms with multiple populations. Furthermore,
the significantly experimental results also imply the outstanding ability of the proposed
algorithm on specific types of problems. The fireworks algorithm based on such a model
contains the considerable potential for further efficiency improvements.
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The proposed hierarchical collaborated fireworks algorithm is a basic implementa-
tion of a theoretical modal. There are still tremendous possible improvements in many
approximation details in collaboration. For example, the utilization of the spatial neighbor
relationship of fireworks and the dynamic strategy adjustment of global fireworks seem to
have significant effects on the efficiency improvement of the algorithm.
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Appendix A. Decomposition of Entropy

Here, the entropy decomposition of random variable x ∈ S into the partition {Si}n
i=1

is presented in Equation (A1). During the derivation, p(x ∈ A) = p(x)/p(A) presents the
distribution restricted in A ⊂ S. Additionally, H(x ∈ A) corresponds to the entropy of
p(x ∈ A).

H(x ∈ S) =−
∫

x∈S
p(x ∈ S) log p(x ∈ S)dx

=−
n

∑
i=1

∫
x∈Si

p(x ∈ S) log p(x ∈ S)dx

=−
n

∑
i=1

∫
x∈Si

p(x ∈ Si)p(Si) log p(x ∈ Si)p(Si)dx

=−
n

∑
i=1

∫
x∈Si

p(x ∈ Si)p(Si) log p(x ∈ Si)dx

−
n

∑
i=1

∫
x∈Si

p(x ∈ Si)p(Si) log p(Si)dx

=
n

∑
i=1

p(Si)H(x ∈ Si) + H(p(Si))

(A1)
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