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Abstract: Dynamic complex matrix inversion (DCMI) problems frequently arise in the territories
of mathematics and engineering, and various recurrent neural network (RNN) models have been
reported to effectively find the solutions of the DCMI problems. However, most of the reported works
concentrated on solving DCMI problems in ideal no noise environment, and the inevitable noises in
reality are not considered. To enhance the robustness of the existing models, an anti-noise parameter-
variable zeroing neural network (ANPVZNN) is proposed by introducing a novel activation function
(NAF). Both of mathematical analysis and numerical simulation results demonstrate that the proposed
ANPVZNN model possesses fixed-time convergence and robustness for solving DCMI problems.
Besides, a successful ANPVZNN-based manipulator trajectory tracking example further verifies its
robustness and effectiveness in practical applications.

Keywords: dynamic complex matrix inversion; anti-noise parameter-variable zeroing neural network;
fixed-time convergence; robustness

1. Introduction

Complex-valued matrix inversion (CMI) has been frequently encountered in signal
processing [1], hyperparameters estimation [2] and MIMO systems [3,4]. Many numerical
iterative algorithms have been reported to handle CMI problems. As an effective CMI
problem solver, the Newton iterative method is deeply studied [5]. However, with the
increase of matrix dimension, the Newton iterative method cannot deal with the sharply
increasing computational workload. Generally, the computational complexity of numerical
iterative method is O(%) in each iteration [6]. For example, the Newton iterative method
and the neural network method are both used to solve matrix inversion problem in refer-
ence [7], although the iterative method is effective in some situations, it may have high
computational complexity when handling large-scale data.

As the parallel computing and distributed storage for large scale computation, the
neural network method has been paid more in recent years. For example, the Gradient
neural network (GNN) is applied to solve static matrix inversion (SMI) [8,9], and they
can find the solutions of the SMI problems effectively. However, the GNN method is
only suitable for static problems solving, and they cannot effectively deal with dynamic
problems [10].

In order to solve large-scale dynamic problems properly, the zeroing neural network
(ZNN) model was proposed [11]. With the development of ZNN model in last two decades,
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it has been widely applied in various practical dynamic problems, such as dynamic al-
gebraic matrix equations solving [12-15], linear and quadratic programming problems
solving [16] and robotic manipulator path tracking [17-19]. It is worth mentioning that
some intelligent control systems and NARX neural networks have been applied in un-
manned aerial vehicle control and path tracking [20-23]. There are two methods to improve
its convergence and robustness, one is the improvement of ZNN model, and the other is
to find new activation functions (AF). Many novel modified ZNN models are reported
in reference [24-26], and the modified models improved its performance greatly. Besides,
many novel new AFs have been proposed in reference [27-30], and these new AFs further
improve its convergence performance. However, most of the reported works focus on the
improvement of its convergence, and the robustness to noises is rarely considered. It is
worth to mention that the inevitable noises, in reality, greatly reduce the performance of
dynamic systems. Although, several anti-noise ZNN models have been reported in refer-
ence [31,32], they only achieve exponential convergence. Based on the above-mentioned
issues, it can be known that the further improvement of the effectiveness and robustness to
noise of the ZNN model is still open.

Dynamic complex matrix problems exist in many fields, such as input signals contain
both amplitude and phase information [33-35]. How to find the solutions of dynamic
complex matrix equations efficiently becomes more and more important. Till now, there are
two methods to solve dynamic CMI problems. The first method is transforming the complex
value problem into two real value problems, which means the real and imaginary parts of
a complex matrix are separately considered, and a complex matrix should be transformed
into two real matrices [36-38]. For example, in reference [36], Xiao et al. proposed a
NTZNN to solve the CMI problem with noises. In reference [37], Jin proposed an IFTCRNN
to solve the CMI problem with fast convergent speed. However, the calculation workload
of this method is relatively heavy, as its real and imaginary parts are calculated separately.
The other method is adopting complex modulus conversion technique (CMCT), which has
less calculation workload than the former method [39].

Moreover, considering the noises, in reality, the robustness of the dynamic model
should also be taken into account. In reference [40], an HZNN model is designed to
solve time-varying matrix inversion, and it has fast convergent speed than the GNN
and ZNN model. In reference [41], a varying parameter recurrent neural network is
proposed for solving time-varying matrix inversion, and it has accelerated convergence
time. In reference [42], a TVDZNN is designed to realize matrix inversion. In reference [43],
a CVZNN is used for dynamic Moore—-Penrose inverse solving, and it relaxes convex
constraint of the AF. However, all the above mentioned works only consider the ideal no
noise condition, and their robustness is unpredictable in noisy environment.

Motivated by the above issues, an NAF-based ANPVZNN model with fixed-time con-
vergence and robustness to noises for solving DCMI problems is proposed. The proposed
ANPVZNN model not only improves the effectiveness and robustness of the original ZNN
(OZNN) model, but also adopts the CMCT to reduce the calculation workload for solving
DCMI problems. Thus, the contributions of this paper are summarized below.

(1) On the basis of the OZNN model and existing AFs, an ANPVZNN model is proposed;

(2) Compared with the OZNN model activated by existing AFs, the proposed ANPVZNN
model has better effectiveness and robustness for dynamic time-varying problems
solving, which guarantees its fast online solving dynamic time-varying problems in
real noisy environment;

(3) Both of strict mathematical theoretical proof and experimental simulation results are
provided to validate its fixed-time convergence and robustness to noises.
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2. Problem and Mathematical Preparation
2.1. Problem Formulation
The DCMI problem is introduced below.
A(t)B(t) =1 e C™" (1)

where A(t) € C"*" is a known complex matrix, B(t) is the unknown complex matrix to be
solved, I € C"*" is the unit matrix. In other words, B(t) is the inverse of A(t) which need to
be solved. Our purpose is to find the complex matrix B(t) quickly and efficiently by using
the proposed ANPVZNN model under various external noises.

2.2. OZNN Model

The construction of the OZNN consists of three steps.
Firstly, a dynamic complex error matrix is defined.

E(t) = A(t)B(t) — [ € C"™" @)

Obviously, if E(f) converges to 0, B(t) is obtained. Therefore, we adopt the following
formula for the convergence of E(t).

e 20) ®

where the adjustable parameter y > 0. ®(e) is a monotonically increasing AF array, ¢(e) is
the element of ®(e). Both of v and AF ¢(e) are related to the convergent speed of E(t).
Finally, substituting Equation (2) into (3) yields

BN
=
or]
=
|

|

BN
=
oo
~—~ e

t) = y®(A(H)B(t) —I) )
The recently reported AFs are listed below.

e Linear activation function (LAF)

o) =y (5)

e  Power activation function (PAF)

ply) =y (6)
where 7 is an odd number and r > 3.

e  Bi-power activation function (BPAF)

1— e(fey)

)= e

,y>1 7

e  Power-sigmoid activation function (PSAF)

k
v yl =1
¢(y) = -0_—0 ®)
Lie ey <1
e  Sign-bi-power activation function (SBPAF)
o(y) = (|y\‘+|y\j>sgn<y>, 0<e<1 )

e  Versatile activation function (VAF)
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¢(y) = lylPsign(y) +y, 0<p<1 (10)

ZNN model (4) with AFs (5)—(8) realizes exponential or super-exponential convergence;
it realizes finite-time convergence activated by AF (9), and fixed-time convergence activated
by AF (10). To further enhance its convergence and robustness, a NAF is proposed in this
work, and its analysis will be discussed in the following section.

Remark 1. The convergence and robustness of the OZNN model is related to the parameter y and
AF ¢(e) in Equation (3). Generally, the parameter <y is a constant, and most of the recently reported
works focus on the improvement of the AF ¢(e) to enhance the performance of the ZNN model. This
work focus on the improvements both on the parameter v and AF ¢(e), and the variable parameter
v and new AF ¢(e) will be presented in the following Section 3.

3. PVCZNN Model and Its Theoretical Analysis
3.1. Design of PVCZNN Model

As mentioned in Equation (3), the parameter 7 is related to the convergent speed of
E(t), and the following new formula with variable parameter v = aexp(djarccot(t)+0dyt) is
proposed.

E(t) = —aexp(dqarccot(t)+dat)p(E(t)) (11)

where d1, d5, a > 0.
Besides, on the basis of the existing SBPAF (9) and VAF (10), the following new AF
¢(e) is proposed for its further improvement.

@(x) = (kp|x|p + ko |x|4)sgn(x) + kax (12)

where ky, kp, k3 >0, 0 < p <1, g > 1, sgn(e) denotes the sign function.
On the basis of Equations (11) and (12), the ANPVZNN for solving DCMI problems is
obtained below.

AZt)B(t) = —A(t)B(t) — aexp(dyarccot(t)+d2t) p(A(t)B(t) — I) (13)

The ANPVZNN model with additive noise is

A(DB() = —A(D)B(t) — xexp(drarccot(t)+0:t) g (A(E)B(E) — I) + AN(£)  (14)
where AN(t) represents the external noise.

3.2. Convergence Analysis of the ANPVZNN Model
Theorem 1 guarantees fixed-time convergence of the ANPVZNN (13).

Theorem 1. The error matrix E(t) of ANPVZNN model (13) converges to 0 in fixed-time with
arbitrary initial states, and the convergent time t. is

1 o
< - e
tc_ézln{l—i_(xkl(l—p)] (15)

where «, kq, ko are the same as defined before.

Proof. First, a Lyapunov function is defined.

wij(t) = |e;j(t)] (16)
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Its time derivative is
wij(t) = e;j(t)sign (e;j(t)) = —aexp(Srarccot(t)+8, ) p(e;(t))sign(e;j(t))  (17)
As dyarccot(t) > 0, Formula (17) can be written in the following form as

u)'l-j(t) < —aexp(oat)p(e;i(t))sign(e;(t)) (18)

Then, substitute NAF (12) into the above equation, inequation (19) is obtained.

w.ij(t) = —aexp(dat)g(e;i(t)) = —wexp(dt) [kl‘eij(t)’p + ko|eij (1) + k3|€ij(f)|} < —akq|e;(t)|” (19)
The following inequation can be obtained by transforming inequality (19).
wij(t)fpdwij(t) < —aky exp(52t)dt (20)

Integrating Equation (20) from 0 to ¢, yields

wij(t) n-p B te 1 1- w‘7<t) wky fe 1 1- wky
./w,.,.<o> w;i () Pduw;(t) g/o ks xp(82)dt 3w o < ~Theplonte)| — ey <~ lexp(ante) 1] @1)
Then, solving Equation (21) yields
1 o2
< —In|14+ ——F—— 22
T o n{ +04k1(1—i7)] 22

O

3.3. Robustness Analysis of the ANPVZNN

The robustness to noises of the ANPVZNN (14) will be guaranteed by the following
Theorem 2.

Theorem 2. If AN(t) in Equation (14) is an unknown dynamic bounded or unbounded noise, and
the error matrix E(t) of ANPVZNN model (14) will converge to 0 even under noises.

Proof. Error matrix E(t) of the ANPVZNN (14) is

E() = —aexp(drarccot(f)+52t) @ (E(t)) + AN(#) (23)

The n? subsystems of E(t) are

ei(t) = —exp(drarccot(t)+6,1) p(e;; (1)) + Ay (t) (24)

where e;(f) is the ijth element of E(t).
Define the Lyapunov function hj(f).

hi(t) = 5]ei (1) (25)

Deriving Equation (25) yields

hij () = €ij(t)ei;(t) = eii(t) (—aexp(Srarccot(t)+02t) @ (eij (1)) + Any(£))  (26)

Equation (26) should be divided into two cases to be discussed.
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The first case: if h;;(t)

£) ‘ will decrease to 0.

The second case: if h;j(t) > (t)| will increase.

Obviously, e;;(t)An;;(t) > 0 and hl]( ) > 0, inequality (27) is obtained.
|Anl~j(t)| > |rxexp(&larccot(t)—i—ézt)(p(el-]-(t))| (27)
It is clear that |e;;(t)| will stop increasing when An;i(t) — aexp(d1arccot(t)+dyt)

¢(eij(t)) = 0.

Therefore, we can obtain the inequality of ‘ei]'(t)| when t — oco.

Any(t) )
aexp(darccot(t)+d,t)

0 < lesi(t)| < ’ ! (28)

where q)*l(o) is the inverse function of ¢(e).
On the basis of NAF (12), |¢(x)| > |ksx|, hence |¢~1(x)| < |x/ks|. The inequality (28)
can be written as
Any(t) ‘

< leq(H)] <
0 >~ |€l](t)’ — 0(k3 exp(&larCCOt(t)+52t)

(29)

The convergent analysis is given in the following subsection.

Case one: In this case, we consider AN(t) in Equation (14) is an unknown dynamic
bounded noise. Define a constant parameter y with }Anij(t) | < p, and then inequality (29)
can be written as

leij(1)] < ! ’ (30)

ks exp(darccot(t)+d,t)

The limit of |e;;(t)| can be obtained when t — co.

e <
ey )] < fim,

K <
aks exp(81arccot(t)+d,t) ‘ =0 S

Therefore,

lim |E(t) Zth‘eZ] ’ = (32)
t—o0 i=1j=1

Case two: In this case, we consider AN(t) in Equation (14) is an unknown dynamic
unbounded noise. Its derivation is Anij ) (t) € (0, 7], where y is a non-zero nature number

and 7 is a non-zero constant number. The limit of |eij(t)| can be obtained when t — co.

()
Angi(t Angi(t Ani(t)
lim |e;;(t)| < lim i) = lim _ Anlt) = lim|——~2 (33)
f— 00 t—oo| aks exp(dqarccot(t)+dat) t—oo| k3 exp(dat) f—00 0ck3(5£‘ exp(dat)
Because Anl(]-y ) (t) € (0, 7], Equation (33) can be written as
lim |e;;(#)| < lim | —————| =0 (34)
t—oo t=oo| akdl exp(dat)

Therefore,

i=1j=1

11m|E $ 2 2 11m|el] | = (35)

In conclusion, the proposed ANPVZNN model is stable under the noise AN(t). [
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4. ANPVZNN Model Applications
The ANPVZNN model will be used to solve two DCMI problems in this section.

Example 1. First-order DCMI problem solving

Consider the following first-order DCMI (FODCMI).

A(t)B(t) =1 e C!

A(t) = [sin3t + i cos 3] (36)

Here, for the comparison purpose, the proposed ANPVZNN and the OZNN (4) activated by
LAF, SBPAF and VAF will be applied to solve the above FODCMI problem, and the following two
cases are considered, respectively.

Case one: Noiseless
Figures 1 and 2 are the simulated results of ANPVZNN (13) and the SBPAF-based

OZNN model (4) for solving the above FODCMI (36), respectively.

X11(t) XI12(t)

- 0
imaginary T~ _p.5 real
-1 -1

Figure 1. State solutions of ANPVZNN (13) for solving FODCMI (36) without noise.

X11(t) X12(t)

time
(s)
t(s)

~ < 0
imaginary }(’/ =1 real

=1 =2 =2 -

Figure 2. State solutions of the SBPAF-based OZNN (4) for solving FODCMI (36) without noise.

As shown in Figures 1 and 2, the state solutions (blue solid curves) generated by AN-
PVZNN (13) and the SBPAF-based OZNN model (4) all accurately converge to theoretical
solution (red dotted curves) of the above FODCMI (36) in noiseless environment. Besides,
the residual errors ||A(t)B(t) — I||p of ANPVZNN model (13) and the OZNN model (4)
activated by the AFs (LAF, SBPAF and VAF) are presented in Figure 3. As seen in Figure 3,
although the ANPVZNN model (13) and the OZNN model (4) all solve FODCMI (36)
properly, the ANPVZNN model (13) is the most effective model among them for solving
DCMI problems in noiseless environment. Specifically, the ANPVZNN model (13) takes
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about 0.1 s to find the solution of FODCMI (36), and the OZNN models (4) activated by the
AFs (LAF, SBPAF and VAF) spend more than 4 s to find the solution of FODCMI (36).

2 -
IAOBM—I]i . [——ANPVZNN

Original ZNN activated by VAF

Original ZNN activated by SBPAF

Original ZNN activated by LAF

S s)
6 8 10

Figure 3. Residual errors of the ANPVZNN model (13) and the OZNN model (4) activated by the
AFs in (LAF, SBPAF and VAF) for solving FODCMI (36) without noise.

Case two: With various noises
In this subsection, the proposed ANPVZNN model (14) and the OZNN (4) activated by

the LAF and SBPAF for solving FODCMI (36) are discussed, and the following Figures 4-11
are the state solutions of ANPVZNN (14) and OZNN (4) in various noise environments.

X11(t) X12(t)

10 10

time
o

imaginary el =05 real

imaginary et =0.5 peal

Figure 4. State solutions of ANPVZNN model (14) for solving FODCMI (36) with constant noise
(AN(t) = 0.5).

X12(t)

X11(t)

imaginary : =05 real

Figure 5. State solutions of ANPVZNN model (14) for solving FODCMI (36) with random noise
(AN(t) = 0.5 x (rand(16,1))).
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X11(t) X12(t)

10 10

o
E Es

= 5

0 0

2 2

2 2
imaginary -1 1 i i y -1
ginary 2 rea imaginary 2 real

Figure 6. State solutions of the SBPAF-based OZNN (4) for solving FODCMI (36) with constant noise

(AN(t) = 0.5).

X11(t) X12(t)
10 10
&
& &
0. 0
2 2

2 2
imaginary i =1 real imaginary - -1 real

Figure 7. State solutions of the SBPAF-based OZNN (4) for solving FODCMI (36) with random noise
(AN(t) = 0.5 x (rand(16,1))).

2.5

f T r r
[AOBO=Ili . [——ANPVZNN
Original ZNN activated by VAF
2 Original ZNN activated by SBPAF| |
Original ZNN activated by LAF
1.5 b
1 /_\ i
03 ‘ / \
t(s
0 ‘ : (s)
(1] 2 4 6 8 10

Figure 8. Residual errors of the ANPVZNN (14) and the OZNN model (4) activated by LAF, SBPAF
and VAF for solving FODCMI (36) with linear noise (AN () = 0.1).
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[A@BO=Ii . [——ANPVZNN

Original ZNN activated by VAF
Original ZNN activated by SBPAF
151 Original ZNN activated by LAF

\t@)

0 2 4 6 8 10

Figure 9. Residual errors of the ANPVZNN (14) and the OZNN model (4) for solving FODCMI (36)
with constant noise (AN(t) = 0.5).

IAMBO—I]  [——ANPVZNN

Original ZNN activated by VAF
Original ZNN activated by SBPAF
1.5 Original ZNN activated by LAF

: ‘ t(s)
0 2 4 6 8 10

Figure 10. Residual errors of the ANPVZNN (14) and the OZNN model (4) for solving FODCMI (36)
with random noise (AN(#) = 0.5 x (rand(16,1))).

[IAOBO—I|| . [——ANPVZNN
Original ZNN activated by VAF
2| Original ZNN activated by SBPAF| |
Original ZNN activated by LAF
1.5
1
0.5
(s
o ‘ (s)
(1] 2 4 6 8 10

Figure 11. Residual errors of the ANPVZNN (14) and the OZNN model (4) for solving FODCMI (36)
with dynamic exponential noise (AN(t) = ™).

Figures 4 and 5 are the state solutions of ANPVZNN model (14) for solving FODCMI
(36) with constant noise and random noise, respectively. As observed in Figures 4 and 5, the
proposed ANPVZNN model (14) successfully finds the solution of FODCMI (36) in noisy
polluted environment, which indicates its strong robustness to noises. Figures 6 and 7 are
the state solutions of the OZNN model (4) activated by the SBPAF for solving FODCMI (36)
in noisy environment and it fails to solve FODCMI (36) due to noises.

Besides, the residual errors || A(t)B(t) — I||; of the ANPVZNN model (14) and the
OZNN model (4) activated by other AFs with various noises are presented in Figures 8-11.
As observed in Figures 8-11, the OZNN model (4) activated by other AFs fails to find
theoretical solution of FODCMI (36) due to the noises, and their residual errors cannot
effectively converge to 0. The proposed ANPVZNN model (14) and the OZNN model (4)
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activated by VAF still accurately converge to the theoretical solution of FODCMI (36) in
noisy environment, but the proposed ANPVZNN model (14) possess better robustness and
effectiveness than OZNN model (4) activated by VAF.

Example 2. Second-order DCMI problem solving

Consider the following second-order DCMI (SODCMI).

A(t)B(t) = 1 € C?*2
exp(8it)  —iexp(—8it) (37)

Alt) = —iexp(8it)  exp(—8it)

Similar as Example 1, the proposed ANPVZNN model and the OZNN model (4) activated
by other AFs (LAF, SBPAF and VAF) are all applied to solve the above SODCMI (37), and the
simulation results are presented in Figures 12-22.

X11(t) X12(t)

time

imaginary—%5 —0.5 a4

X21(t) X22(t)

10 10

)

time
[]]
fii
1)
f,!tf&!ff!fi’?n

QK

RE——12 o
~— 0.5

|

0.5

imaginary —0.5 _o.5 real imaginary —0.5 —o0.5 real

Figure 12. State solutions of ANPVZNN model (13) for solving SODCMI (37) without noise.

4

[[AOB®O—I| . | ——ANPVZNN
Original ZNN activated by VAF 4
Original ZNN activated by SBPAF
Original ZNN activated by LAF 4

3.5

3

2571
2t
1.5

1

\ ]
\,\,,. t(S)_

0 2 4 6 8 10

0.5

Figure 13. Residual errors of ANPVZNN (13) and the OZNN model (4) activated by LAF, SBPAF and
VAF for solving SODCMI (37) without noise.
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Figure 15. State solutions of ANPVZNN (14) for solving SODCMI (37) with constant noise (AN (t)
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Figure 18. State solutions of the SBPAF-based OZNN (4) for solving SODCMI (37) with random noise
(AN(t) = 0.5 x (rand(16,1))).
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Figure 19. Residual errors of ANPVZNN (14) and the OZNN (4) activated by the LAF, SBPAF and
VAF for solving SODCMI (37) with linear noise (AN (t) = 0.1¢).
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Figure 20. Residual errors of ANPVZNN (14) and the OZNN model (4) activated by LAF, SBPAF and
VAF for solving SODCMI (37) with constant noise (AN(t) = 0.5).
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Figure 21. Residual errors of ANPVZNN (14) and the OZNN model (4) activated by LAF, SBPAF and
VAF for solving SODCMI (37) with random noise (AN () = 0.5 * (rand(16,1))).
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Figure 22. Residual errors of ANPVZNN (14) and the OZNN model (4) activated by LAF, SBPAF and
VAF for solving SODCMI (37) with dynamic exponential noise (AN (t) = e~%).

Case one: Noiseless

Figure 12 is the simulated results of the ANPVZNN model (13) for solving SODCMI
(37), and Figure 13 is the residual errors of the ANPVZNN (13) and the OZNN (4) activated
by other AFs.

As observed in Figures 12 and 13, both of the ANPVZNN model (13) and the OZNN
model (4) activated by the VAF still solve SODCMI (37) in noiseless environment. However,
the OZNN model (4) activated by the LAF and VAF cannot deal with high-dimensional
DCMI problems effectively, and their residual errors ||A(t)B(t) — I|| take a long time to
converge to 0. Based on the above analysis, we can draw the conclusion that the proposed
ANPVZNN model (13) is the most effective model among them for the FODCMI problem
solving in noiseless environment. Specifically, the ANPVZNN model (13) takes about 0.1 s
to find the solution of SODCMI (37), and the OZNN models (4) activated by the AFs (LAF,
SBPAF and VAF) spend more than 4 s.

Case two: With various noises

Figures 14-18 are the state solutions of ANPVZNN (14) and the SBPAF-based OZNN
(4) for solving SODCMI (37) with various noises.

It can also be observed from Figures 14-16 that the proposed ANPVZNN (14) still
effectively solves SODCMI (37) in various noises polluted environment, and its performance
is not affected by noises. As seen in Figures 17 and 18, the state solutions (blue solid curves)
generated by the SBPAF-based OZNN model (4) cannot converge to the theoretical solution
(red dotted curves) of SODCMI (37), which indicates the SBPAF-based OZNN model (4)
fails to effectively find the solution of SODCMI (37) due to noises.
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Figures 19-21 are the residual errors of the ANPVZNN model (14) and the OZNN
model (4) activated by other AFs with various noises. As observed in Figures 19-21, the
proposed ANPVZNN model (14) successfully solved SODCMI (37) within 0.1 s; the residual
errors of the OZNN model (4) activated by other AFs cannot converge to 0, and they fail to
find the theoretical solution of SODCMI (37) due to noises.

Remark 2. Based on the above two examples of the ANPVZNN model and the OZNN model for
solving FODCMI (36) and SODCMI (37), we can know that the proposed ANPVZNN model works
properly in both of noiseless and noisy environment, it solves FODCMI (36) and SODCMI (37)
within 0.1 s with strong robustness to noises. Besides, the VAF-activated OZNN model (4) also
possesses anti-noise ability, and it can successfully solve FODCMI (36) and SODCMI (37) in noisy
environment, but its convergence time is more than 4 s. The OZNN model (4) activated by the AFs
(LAF, SBPAF and VAF) can work in noiseless environment, but it is sensitive to noises. The proposed
ANPVZNN model (14) is the best DCMI problem solver in noiseless and noisy environments.

5. Application to Robotic Manipulator

With the development of Al technology, the robots have become a hot research spot in
recent years [44-48]. To further validate the effectiveness and robustness of the ANPVZNN
on real-time applications, comparative simulation results of the ANPVZNN and SBPAF-
activated OZNN for robotic manipulator trajectory tracking with periodic noise is applied
this section.

According to reference [49,50], the kinematics model of wheeled mobile manipulator
is established below.

R(t) = W(O(1)) (38)
where R(t) represents the position of the end effector in spatial coordinates. W(e) stands for
a nonlinear mapping function. ® = [ ¢7(t), () ]T represents the angle vector and
it consists of the platform angle vector §(t) = [{.(t),¢ r(H)]" and the manipulator angle
vector w(t) = [wy(t),- -, wn(t)]".

The ANPVZNN-based and OZNN-based mobile manipulator tracking models are
presented the following dynamic equations.

V(G)(t))C:)(t) = I.Q(t) + wexp(drarccot(t)+d2t)p(R(t) — W(O(t))) (39)
V(©(1)O(t) = R(t) + ¢(R(t) — W(O(1))) (40)

where «, 81, 6, are same as previously defined, and V(®(t)) is the derivative of W(O(t)).
¢(e) in Equations (39) and (40) is the proposed AF in Equation (12) and SBPAF in Equation
(9), respectively.

The desired path is a tricuspid valve, and the ANPVZNN-based model (39) and
OZNN-based model (40) are applied to control the mobile manipulator to track the desired
tricuspid valve path in periodic noise cos(t) polluted environment, and the simulated
results are presented in Figures 23 and 24.

Figures 23a and 24a present the entire trajectories of ANPVZNN-based and OZNN-
based mobile manipulator; Figures 23b and 24b are the desired path and the actual manip-
ulator trajectories. It can be seen directly from Figures 23b and 24b, the ANPVZNN-based
mobile manipulator completes the trajectory tracking task accurately in noisy environment,
while the OZNN-based mobile manipulator fails due to the periodic noise.
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Figure 23. Trajectory tracking results of the manipulator synthesized by the ANPVZNN-based model
(39) with periodic noise (AN(t) = cos(t)). (a)Whole tracking trajectories; (b) Desired path and actual
trajectory; (c) Tracking errors.
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Figure 24. Trajectory tracking results of the manipulator synthesized by the OZNN-based model (40)
with periodic noise (AN(t) = cos(t)). (a) Whole tracking trajectories; (b) Desired path and actual
trajectory; (c) Tracking errors.
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Figures 23c and 24c are the tracking errors of the ANPVZNN-based and OZNN-based
mobile manipulator. From Figures 23c and 24c, it can be seen that the tracking errors of
ANPVZNN-based model (39) are much smaller than the OZNN-based model (40) in noisy
environment, which further demonstrates its accuracy and robustness.

To further validate the accurateness and practicability of the ANPVZNN in manipula-
tor trajectory tracking application, the physical experiments are conducted with IRB120
robot manipulator, and the experiment results are presented in Figure 25. The dotted
blue tricuspid valve is the desired path, and the red curve is the tracking trajectory of the
manipulator.

5. 7, I
W P -
v Y R
- 1 = == 3
/] A\
S/
y. . =
s W 5 mm 6

Figure 25. Physical experiment results of the ANPVZNN-based model (39) for the robot manipulator
trajectory tracking (the blue dotted curve is the desired path to be tracked, and the red solid curve is
the actual trajectory of the robot manipulator).

It can be observed in Figure 25, the IRB120 robot manipulator controlled by NTPVZNN-
based model (39) successfully finishes the tracking task, which further validates its accu-
rateness and practicability.

6. Conclusions

By designing a NAF, an ANPVZNN model is proposed. On the basis of the OZNN
model and existing AFs, the mathematical model of the ANPVZNN model has been
derived. The stability and robustness of the ANPVZNN model has been verified by strict
mathematical analysis, and the performance of the proposed ANPVZNN model has been
validated comparing with the OZNN model in various scenarios. This work successfully
demonstrates the applications of the ANPVZNN model for DCMI problems solving and
manipulator path tracking under external noises. Taking into account its performance,
the applications of the ANPVZNN model for natural language processing and dynamic
electronic circuit currents computing will be considered in our future work.
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