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Abstract: Chagas disease, caused by the Trypanosoma cruzi (T. cruzi) parasite, is the third most common
parasitosis worldwide. Most of the infected subjects can remain asymptomatic without an opportune
and early detection or an objective diagnostic is not conducted. Frequently, the disease manifests
itself after a long time, accompanied by severe heart disease or by sudden death. Thus, the diagnosis
is a complex and challenging process where several factors must be considered. In this paper, a novel
pipeline is presented integrating temporal data from four modalities (electrocardiography signals,
echocardiography images, Doppler spectrum, and ELISA antibody titers), multiple features selection
analyses by a univariate analysis and a machine learning-based selection. The method includes
an automatic dichotomous classification of animal status (control vs. infected) based on Random
Forest, Extremely Randomized Trees, Decision Trees, and Support Vector Machine. The most relevant
multimodal attributes found were ELISA (IgGT, IgG1, IgG2a), electrocardiography (SR mean, QT
and ST intervals), ascending aorta Doppler signals, and echocardiography (left ventricle diameter
during diastole). Concerning automatic classification from selected features, the best accuracy of
control vs. acute infection groups was 93.3 ± 13.3% for cross-validation and 100% in the final test;
for control vs. chronic infection groups, it was 100% and 100%, respectively. We conclude that the
proposed machine learning-based approach can be of help to obtain a robust and objective diagnosis
in early T. cruzi infection stages.

Keywords: machine learning; feature selection; multivariate analysis; classification; Chagas disease;
Trypanosoma cruzi; echocardiography; electrocardiography; doppler; ELISA

1. Introduction

The clinical diagnosis of a disease is a complex process since there are several factors
and symptoms that must be taken into account and analyzed and integrated by clinical
expertise. The use of machine learning techniques has proven to be a valuable tool in the
diagnosis process [1]. Machine learning offers medical personnel with techniques and
methods that allow the selection of appropriate variables, a rational classification of patients
based on their stage for a given illness, and an accurate prediction of disease progression.
These computational methods and algorithms can help to obtain a robust and objective
clinical diagnosis. In addition, for some clinical diagnoses, more complex situations can
occur, such as diseases with long asymptomatic periods, as is the case for Chagas disease
(CD) patients.

The World Health Organization (WHO) recognized, in 2010, CD (American trypanoso-
miasis) as one of the 17 neglected tropical diseases in the world [2,3], and it is considered
the third most common parasitic infection in humans, only behind malaria and schistoso-
miasis [4]. CD is endemic in 21 countries in Latin America and, due to migration, cases in
Canada, United States of America, European, African, Eastern Mediterranean and Western
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Pacific countries have also been identified. This disease affects around 7–8 million people,
with 75 million people at risk of infection [5]. Between 30–40% of the affected population
are prone to developing cardiovascular, gastrointestinal, neurological problems, or all of
the above cases due to the disease [3].

CD is caused by the protozoan Trypanosoma cruzi (T. cruzi). Infection occurs majorly by
vectorial transmission, but other transmission mechanisms such as through blood trans-
fusion or organs transplant, vertically (mother to child) [6], orally, and during laboratory
accidents are also possible [7]. CD clinically manifests in two phases: acute and chronic.
The acute phase in humans lasts two to four months with high parasitemia (presence of
parasites in the blood stream), active division on nucleated cells, and clinical presentation
can be asymptomatic or symptomatic. In the chronic phase, T. cruzi is harbored into certain
tissues cells, with tropism in muscular cells, most commonly heart and digestive organs [8].
The chronic phase can be asymptomatic, and it is diagnosed by detecting antibodies against
T. cruzi. After 10–30 years after the infection, symptoms begin to emerge, which may result
in severe heart disease, heart failure and sudden death [9].

Since CD affects several organs and tissues, the presence of T. cruzi can be detected
by a systematic inspection, where several diagnostic tests can be performed in order to
detect or study the disease progression of the infected individual. The stage of the infection
can be estimated, we hypothesize, from these diagnostic tests and by applying a handful
of relevant classifiers, to be discussed in the next sections. Due to the wide range of the
referred signals, we will now briefly describe them as well as their biological sources.

The CD diagnosis in the acute phase is based on positive parasitological tests. A
common technique used in the detection, diagnosis and/or monitoring of patients with
CD is the Polymerase Chain Reaction (PCR), which is a technique used in molecular
biology able to detect DeoxyriboNucleic Acid (DNA) of T. cruzi [10,11]. For patients in the
chronic phase, the preferred method is the Enzyme-Linked Immunosorbent Assay (ELISA),
usually used to detect antibodies by a visible color change or fluorescence from quantitative
or qualitative measurements based on colorimetric reading [12,13]. If the symptomatic
chronic phase is suspected, heart disease and myocardium damage can be diagnosed using
electrocardiography (ECG) or echocardiography (ECHO), which also provides structural
and functional heart information [14,15].

Non-invasive or minimally invasive diagnostic methods are sought to carry out the
diagnosis of a disease; thus, diagnostic imaging techniques have an impact as a medical
diagnostic tool since they allow the visualization of internal organs and at the same time,
make it possible to inspect their function. Medical images have become an essential
component in the in vivo follow-up of pathological changes associated with T. cruzi infection
studies. ECG serves to evaluate the electrical activity of the heart by a visual representation
of the time-voltage heartbeat relationship and, simultaneously, allows the analysis of the
depolarization (heart muscle cells activation process) and the repolarization (return of
cardiac cells to their resting state after depolarization) of the different heart anatomical
regions in order to detect functional changes in the heart. Cardiac ultrasound or ECHO
provides real-time images of the heart structure and functional information. Spectral
Ultrasound Doppler provides information of hemodynamic function, allowing to determine
different parameters of blood flow measurement [16,17].

1.1. Previous Work on Diagnosis Techniques and Clinical Findings for T. cruzi

Several contributions have reported the relevance of diagnostic techniques such as
ECG and ECHO for the T. cruzi case. In Yacoub et al. [18], a protocol is described for patients
suffering from CD using non-invasive methods aiming to detect early heart damage. There,
the authors analyzed variables extracted from ECG and ECHO from 133 patients. It was
shown, following a statistical analysis, that the myocardial performance index, which is a
parameter obtained from the Doppler spectrum, and the ratio between the thickness of the
posterior wall to the left ventricular cavity, obtained by ECHO, are relevant characteristics
for early detection of myocardial damage in asymptomatic patients with CD.
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Viotti et al. [19] present a study with 849 patients based on ECG acquisitions, radiog-
raphy and 2D ECHO, performing both a univariate and multivariate analysis for clinical
events and mortality among four groups of patients. Their results identify the variables
related to the left ventricle systolic dimension and the ejection fraction as relevant predictors
of clinical events as well as mortality. These authors determined that ECHO analysis was
important to characterize and determine the prognosis in patients without heart failure
in the chronic stage. Valerio et al. [20] reported a study to determine clinical abnormal-
ities from ECG and ECHO acquisitions in CD infected patients at the diagnosis time, in
which 49 patients presented abnormalities significantly associated with ECG and/or ECHO
parameters (p = 0.038) in patients newly diagnosed with the infection.

Immunological tests of CD have shown their relevance as diagnostic tools. For in-
stance, Ferrer et al. [21] present a classification method sustained on a three-way scheme
comparison: i. CD patients in the acute and chronic phase, ii. patients with other diseases
and CD, and iii. CD healthy subjects, all based on immunological and molecular tests.
Immunological techniques reported a precision of 69.2% in acute phase patients and 95.2%
in chronic phase patients, while molecular tests obtained a precision of 79.5% in acute phase
patients and 23.8% in chronic phase patients, performing an assessment of concordance of
the results.

Several additional works have been conducted to monitor the disease evolution, such
is the case of Oliveira et al. [22], who carried out an experimental study to detect anomalies
in the movement of the left ventricular wall from an animal model in the chronic stage
with cardiomyopathy. The animals were evaluated in vivo by the global and segmental
left ventricular systolic function based on ECHO evaluation. Statistical analysis showed
a negative correlation of the left ventricular ejection fraction in infected animals. Santos
et al. [23] carried out an experimental study to determine, through ECHO techniques,
the medical treatment efficacy to reduce the left ventricle diastolic dysfunction, where
the left ventricle diastolic function was measured based on the mitral and pulmonary
inflow pattern by Doppler images. These authors presented a statistical analysis based on
Pearson’s linear correlation of diastolic function parameters from Doppler images, showing
that the development of diastolic function is correlated with cardiac lesions.

1.2. Machine Learning in Chagas Disease Classification

Machine learning has been applied in the study of CD in humans. Teles et al. [24]
evaluate the potential use of machine learning and the automatic selection of attributes in
discrimination of individuals with and without CD, based on clinical (ELISA and indirect
immunofluorescence) and sociodemographic data (gender, age, education level, kind of
housing, therapeutic treatment, handling or contact with triatominae, earlier diagnosis,
and history related to cardiovascular and digestive systems), where automatic attributes
selection methods (forward selection and backward elimination) and classification algo-
rithms (Genetic Neural Network Multilayer Perceptron (MLP) and Linear Regression (LR)
were implemented. Silva et al. [25] studied the relation between heart rate variability (HRV)
and ECHO in a population of patients with CD, with the hypothesis that HRV can be
used to predict numerical and categorical echocardiographic parameters. They calculated
twenty-seven HRV indices, and eight parameters were obtained from the transthoracic
two-dimensional echocardiograms; machine learning models were trained to predict the
echocardiographic parameters taking into account the HRV indices as inputs. Silva et al.
trained separated models for each echocardiographic parameter, where each parameter
(numeric or categorical) was considered a separate problem. Four different machine learn-
ing algorithms were used in their study: Random Forest (RF), MLP, K-Nearest Neighbors
with the KStar estimator, and Support Vector Machine (SVM) using the sequential minimal
optimization. Escalera et al. [26] present an analysis based on the features extraction from
10 min of high-resolution ECG recordings of 107 patients with CD of the QRS complex
to perform a multi-classification system able to learn the level of damage produced by
the disease, focused on error-correcting output codes as a general framework to combine
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binary problems to address the multi-class problem, and based on the error correcting
the bias and variance errors of the base classifiers; this work presents a comparison of the
ECOC algorithm with Discrete AdaBoost and Linear Support Vector Machines (LSVM)
algorithms for the classification of 107 patients according to the cardiac damage degree. Asl
et al. [27] present an arrhythmia classification method from the heart rate variability (HRV)
characteristics of 47 ECG recordings from a mixed population; they performed a features
reduction by General Discriminant Analysis during the training of an SVM algorithm, thus
obtaining a greater precision compared to the use of all originally extracted ECG variables.

As described in the previous paragraphs, the detection of the CD and the determination
of the clinical stage represents a challenge. Therefore, the correlation analysis of variables
based on different diagnostic methods often performed during T. cruzi infection studies,
and their association according to the clinical stage of the infection in a murine model can
be useful to establish a diagnostic approach criteria.

In this paper, a novel pipeline that integrates temporal data acquisition from four
modalities, multiple features selection analyses, and an automatic classification strategy
of T. cruzi infection model is presented. The variables of a murine experimental model of
T. cruzi infection were obtained from: ECG signals, ECHO images, Doppler spectrum, and
ELISA antibody titers. These modalities are related to the presence of certain antibodies and
abnormalities detection in cardiovascular functionality during the infection. Afterward, a
univariate and multivariate analysis of the multimodal feature relevance was performed.
Finally, a set of supervised classifiers was proposed, fed with variables from each modality
individually and different subsets combining the four modalities studied. The task is to
automatically classify T. cruzi-infected animals from the murine experimental model for
acute phase (control vs. infected), chronic phase (control vs. infected), and general infection
groups (acute phase + chronic phase vs. controls).

2. Data Acquisition and Methodology

This section presents the experimental murine model of T. cruzi infection and the
multimodal diagnostic techniques (ECG, ECHO, Doppler, and ELISA) for the acquisition
of variables involved in the diagnosis of T. cruzi and heart damage caused by the presence
of the parasite.

2.1. Experiment Description

The experimental infection model and data acquisition from 72 mice was carried out
in the Parasitology Laboratory of the Centro de Investigaciones Regionales Dr. Hideyo
Noguchi at the Universidad Autónoma de Yucatán (CIR-UADY), Mexico. A murine model
of T. cruzi infection in the acute and chronic phase was performed [28–30]. The experiment
was approved by the ethical committee of the CIR-UADY (CIRB-006-2017). The animals
were handled according to the Guide for the Care and Use of Laboratory Animals (eighth
edition) [31]. An experimental murine model was implemented for acute and chronic
stages of T. cruzi infection. The experiments were performed in duplicate, 3 control and
3 infected animals were analyzed par day during the acute and chronic stage, and the
infection model experiment was repeated to complete 6 control and 6 infected animals on
each day of study. The temporal data acquisition was obtained at different post-infection
days (12 mice par day randomly selected: 6 control mice and 6 infected mice), where all
multimodal variables of each animal were acquired on the same day.

For the acute phase, a total of thirty-six 6–8-week-old healthy female ICR mice were
considered, divided into control (18 mice) and infected (18 mice) groups. The mice of the
control group received physiological saline administered intraperitoneally. For the infected
group 1000 blood stream trypomastigotes of the H1 T. cruzi strain, previously isolated from
a human case in Yucatán, Mexico, were also administered intraperitoneally. A multimodal
data sampling period was conducted in 6 infected and 6 control animals at 15, 25 and
35 days post-infection.
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For the chronic phase, thirty-six 6–8-week-old healthy female ICR mice were consid-
ered, divided into control (18 mice) and infected (18 mice) groups. The mice of the control
group received physiological saline administered intraperitoneally, while the mice of the
infected group were infected with 500 blood stream trypomastigotes of the H1 T. cruzi
strain. Multimodal data were acquired on 6 infected and 6 control animals each 60, 90 and
120 days post-infection.

The development of infection for the acute and chronic stage was confirmed and
monitored, in order to validate the infection, by counting peripheral blood parasites by
microscopy using a Neubauer cell count every 5 days until 35 (in the acute stage) and every
30 days until day 120 (in the chronic stage). Mortality was recorded daily.

2.2. Data Acquisition

Multimodal data acquisition was performed based on four diagnostic techniques:
ECG, ECHO, Doppler, and ELISA, where the multivariables considered for the analysis
are summarized below. All multimodal samples were acquired over 24 h during the post-
infection day for each study subject, both for control and infected groups in the acute or
chronic phase.

Mice cardiac activity was recorded with non-invasive ECG equipment (Mouse Specifics
Inc., Quincy, MA, USA) for conscious animals using lead II. A series of 20–30 consecutive
ECG complexes were obtained from each animal. The ECG signals were analyzed using
software (EzCG Analysis Software package, Mouse Specifics Inc., Quincy, MA, USA), and
fourteen variables were considered related to PQ, QTc, PR, QT, RR, ST Intervals, as shown
in Figure 1, in addition to QRS Complex, Heart Rate (HR), HRV, QTc dispersion, Cardiac
Variability (CV), SR mean, and R amplitude mean. To determine the QTc, the equation
consists of a modified Bazett equation used in humans [32,33], as is shown in Equation (1),
for an approximate duration of the RR interval in mice of 100 ms:

QTc = QT/[
√

RR/100] (1)

Figure 1. The P wave (atrial depolarization) and QRS complex (ventricular depolarization); PQ
interval (beginning of the P wave to the beginning of the QRS complex); PR interval (beginning of the P
wave to the peak of the QRS complex); ST interval (ventricular repolarization); QT interval (ventricular
depolarization and repolarization); and RR interval (time between ventricular depolarization peak).
SR (mean amplitude of the signal measured from each signal minimum (S) line to the peak of the
R-wave.

To obtain ECHO images, the mice were anesthetized using inhaled anesthesia (Patter-
son Scientific, Waukesha, WI, USA) at an induction dosage of 3% isoflurane and 0.5 L/min
O2 using a chamber and maintained through a face mask with a dosage of 1.5 to 2.5% and
0.5 L/min O2. ECHO was performed using a 22 MHz lineal transducer and Mylab Seven
equipment (ESAOTE S.P.A.®, Florence, Italy). Left ventricle (LV) images were obtained in
long and short axis views, in B and M mode. A total of 5 variables were obtained: HR, LV
diameter at the end systole (LVs) and diastole (LVd), systolic function was evaluated by
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calculating fractional shortening (FS), and the ejection fraction (EF) was calculated by the
next Teichholz Equation (2):

Vol = 7D3/(2.4 + D) (2)

where Vol is the LV volume and D is the LV diameter [34,35].
Under anesthesia, blood flow acquisitions were obtained using a Doppler system

for mice (INDUS Doppler System). Signal at the level of the Mitral Valve (MV) and
Ascending Aorta (AO) were acquired using a 10 MHz transducer, and a 20 MHz transducer
was employed for the acquisition at the level of Abdominal Aorta (AbAO). Anatomical
marks and spectral signal characteristics were used to identify each structure. From the
Doppler spectral signals, which are composed of frequency changes generated by blood
flow changes, 45 variables were extracted related to parameters of heart rate, peak velocity,
flow velocity, pulsation, and acceleration [36], as is shown in Figure 2.

Figure 2. Doppler spectral variables. (a) Ascending aorta: FVS (Flow Velocity Start), LAE (Linear
Acceleration End), PFV (Peak Flow Velocity), FVE (Flow Velocity End), and (b) Abdominal aorta: FVS.

For antibodies detection against T. cruzi, an ELISA test was conducted. A blood
sample was obtained by cardiac puncture performed under anesthesia, and the animal
was euthanized after the procedure by cervical dislocation. The ELISA test was performed
in duplicate on each mouse, and IgG total (IgGT), IgG1, and IgG2a subclass antibody
concentrations were determined [37].

The total number of attributes for this study was 67, and a database consisting of all
the infected and control groups was created, during the acute and chronic T. cruzi infection
phases, as shown in Table 1. It is included at the beginning of each variable in the list as an
identification number (ID). The following section presents the proposed feature selection
methods and classification by machine learning algorithms that have been considered and
implemented in this work; then, a comparative discussion between obtained results in this
study with other reported works is presented.

2.3. Multimodal Data Analysis

The proposed methodology for multimodal data analysis is presented in Figure 3.
Initially, to observe the statistical relationships between all measured features, a general
correlation map was calculated (considering infected and controls mice in acute and chronic
stages). On the other hand, feature selection was conducted following four approaches:
(1) empirical selection by an expert; (2) feature selection by Area Under the ROC curve
(AUC-FS); (3) Random Forest (RF) and (4) Extremely Randomized Tree Classifier (ETC),
where both RF and ETC used an impurity index; and (5) an ensemble voting process
from all the features selected by the four previous approaches. Finally, since our goal
is to establish a dichotomic classification, four automatic classification algorithms were
implemented and validated: RF, ETC, Decision Trees (DT) and SVM. Data for classification
was organized and processed as follows: acute phase (control + infected), chronic phase
(control + infected), and general infection (acute phase + chronic phase).
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Table 1. Murine experimental multimodal features in Trypanosoma cruzi infection.

Diagnostic Modality ID Extracted Feature

ECG

1. HR+15,∗8

2. HRV+13,∗7

3. CV+14

4. RR Interval

5. PQ Interval∗15

6. R Interval
7. QRS
8. QT Interval+6,∗9

9. ST Interval+9,∗10

10. QTc Interval
11. QTc+11

12. QTc dispersion

13. SR mean+4

14. R Amplitude mean

ECHO
15. HR SHORTH AXIS
16. LVd+5,∗6

17. LVs
18. FS∗4

19. EF∗5

Doppler

20. AbAO HR Avg
21. AbAO HR SD
22. AbAO RR internal Avg
23. AbAO RR interval SD
24. AbAO Peak velocity Avg∗16

25. AbAO Peak velocity SD
26. AbAO Minimum Flow Velocity Avg
27. AbAO Minimum Velocity SD
28. AbAO Mean Flow velocity Avg
29. AbAO Mean Flow velocity SD
30. AbAO Pulsability Index Avg
31. AbAO Pulsability Index SD

32. AbAO Resistivity Index Avg
33. AbAO Resistivity Index SD
34. AO HR Avg
35. AO HR SD
36. AO RR Interval Avg
37. AO RR Interval SD
38. AO Pre-ejection time Avg+8

39. AO Pre-ejection time SD
40. AO Peak velocity Avg∗11

41. AO Peak velocity SD
42. AO Stroke Distance Avg

43. AO Stroke Distance SD
44. AO Ejection time Avg∗12

45. AO Ejection Time SD+10

46. AO Rise Time Avg∗14

47. AO Rise Time SD
48. AO Mean velocity Avg
49. AO Mean velocity SD
50. AO Mean Acceleration Time Avg
51. AO Mean Acceleration Time SD
52. AO Peak Acceleration Avg+7

53. AO Peak Acceleration SD

54. MV HR Avg+12

55. MV HR SD
56. MV RR Interval Avg
57. MV RR Interval SD
58. MV E Peak velocity Avg∗13

59. MV E Peak velocity SD
60. MV E Acceleration time Avg
61. MV E Acceleration time SD
62. MV E Peak to Peak time SD
63. MV E Deceleration time SD
64. MV E Deceleration Rate SD

ELISA 65. IgGT+1,∗1 66. IgG1+3,∗3 67. IgG2a+2,∗2

Doppler: AO (Aorta); AbAO (Abdominal Aorta); MV (Mitral Valve). +n Voting variables selection. ∗n Empirical
variables selection. n indicates the relevance ranking.

Figure 3. Proposed methodology diagram for multimodal data analysis. AUC-FS (Feature Selection
by Area Under the Curve), ETC (Extremely Randomized Trees Classifier, RF (Random Forest), DT
(Decision Tree), SVM (Support Vector Machine), ACC (Accuracy) and AUROC (Area Under the ROC
Curve of the posterior probability.

2.3.1. Statistic Analysis

With the aim of unveiling the relationship between multimodal features, a Pearson
correlation map was calculated. In this stage, all the variables measured from infected and
controls mice were considered.

The correlation index detects linear correlations between variables of different modal-
ities. In this type of analysis, a correlation of 1 indicates a complete dependency among
variables, whereas a correlation of zero represents complete independence of the corre-
sponding variables.

2.3.2. Feature Selection

Feature selection is considered a key stage when it comes to classification problems.
In this work, a comparison between four different feature selection methods is presented:
(a) an empirical selection; (b) a statistical method; (c) RF and (d) ETC machine learning
techniques, and (d) general voting selection.

For the empirical selection, an expert in animal models for the T. cruzi disease selected,
by descending relevance, a total of 16 features from the included variables in the experiment
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based on her clinical expertise. In this approach, the best-ranked attributes are those that,
according to the expert, best correlate with the disease stage.

From a statistical point of view, a Receiver Operating Characteristic (ROC) is a graphi-
cal plot of the fraction of True Positives (TP) vs. the fraction of False Positives (FP) for a
binary classification system. The Area Under a ROC Curve (AUC) is a global measure-
ment of the discrimination capabilities. AUC is also used to rank features and for feature
selection [38]. In this work, a statistical analysis based on AUC is proposed to measure
the individual importance of each considered variable in the study. The main objective of
this approach is to select the statistically significant variables (p < 0.05) and rank them
in relation to their AUC response. We refer to this approach as feature selection by AUC
(AUC-FS), where each AUC-FS produces an improvement in the discrimination power of
univariable classification. We applied AUC-FS to achieve a more accurate classification
between control and infected groups.

In addition, based on machine learning, a feature selection analysis derived from the
Mean Decrease in Impurity importance (MDI) [39,40] was implemented. This analysis
aims to evaluate the importance of each variable by averaging the weighted impurity
changes of all trees found by the corresponding methods. For this work, two MDIs were
calculated: one based on RF and the other based on ETC. Both are learning algorithms
widely used in classification and regression tasks, frequently applied for medical and
biological data, given their learning capabilities and well-studied performance. These
algorithms are based on multiple decision trees ensembles. The main difference between
these two approaches consists in the data classification strategy: the RF algorithm considers
an optimal segmentation of data, while the ETC algorithm considers that the separation
planes are randomly selected. Another difference is the subsampling stage of the input
data with replacement (boostrap) for RF and the complete data set processing for ETC. In
this work, a total of 500 random trees and the GINI criterion for RF and ETC were used to
calculate MDI (importance) for all analyzed features.

With the aim to identify which variables were selected by bith, the empirical method
and automated-based approaches, namely AUC-FS, RF, and ETC algorithms, a general
feature selection was carried out by voting, with the aim of identifying those that appear in
3 or 4 selection methods.

2.3.3. Automatic Classification

Four supervised classifiers were included for automatic classification of the T. cruzi-
infected animals: RF, ETC, DT and SVM. As has been described, the first three classifiers
are based on decision trees (classification model based on a logical decision graph); these
classifiers have been widely used in various data medical or biological applications given
their ability to learn from biological samples [41]. In contrast, the SVM classifier is a
supervised learning algorithm that looks for a hyperplane that optimally separates classes
using kernel functions [42]. For the RF, ETC and DT classifiers, the GINI impurity criterion
was used considering the next parameters: maximum tree depth, minimum samples
number required to split an internal node, minimum samples number required to be
at a leaf node, and number of considered features to looking for the best split, which
was optimized using a grid. Additionally, the optimization process for RF and ETC also
considered the number of used trees. In the case of the SVM classifier, a radial-based kernel
function was used, where the C and Gamma parameters were also optimized with a grid.

2.3.4. Validation

The algorithms described in the previous subsection were used for binary classification
of the three groups: acute phase (control vs. infected), chronic phase (control vs. infected),
and general infection (acute + chronic). To observe the discrimination capability of each
modality, each classifier was trained with the variables of each modality individually (ECG,
ECHO, Doppler and ELISA). Afterward, for each classifier, the applied inputs consisted
of all the multimodal variables described (67 features) and, in addition, the five subsets
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of features previously selected by the empirical selection, AUC-FS, RF, ETC and general
voting selection.

In all cases, a 5-cross-validation was carried out considering the 83.33% data for
training and the 16.67% remaining data for a final unseen data validation. To evaluate the
performance of each classifier, the accuracy (ACC) and the Area Under the ROC curve
of the posterior probability (AUROC) were used. The ACC is a metric that measures the
classification performance considering the number of correct predictions and the total
amount of classified data. This metric can be defined in terms of positive and negative
labels as:

ACC =
TP + TN

TP + FP + TN + FN
(3)

where TP, TN, FP and FN are True Positives, True Negatives, False Positives, and False
Negatives, respectively. The AUROC metric measures the posterior probability of each
piece of classified data for a given class. It is a numeric value that represents the degree to
which an instance is a member of a class. Both metrics (ACC and AUROC) range from 0 to
1, where 1 means a perfect classification.

The results and discussion of correlation maps, feature selection, and classification
performance are shown in detail in the next section.

3. Results and Discussion

In order to confirm the evolution of the infection and study the stage of the disease,
both parasitemia and mortality were recorded. During the acute phase, parasites were
detected at day 15 post-infection (50,000–100,000 parasites/mL) and the peak of para-
site was found at day 30 (0–3,450,000 parasites/mL) and dropping in count by day 35
(0–50,000 parasites/mL); the mortality rate was 24.2%. For the chronic phase, the peak of
parasites was detected at day 30 (0–2,450,000 parasites/mL) and no parasites were detected
on peripheral blood during days 60, 90 and 120; the mortality rate was over 50.8%. The
parasitemia curve was similar to the results reported in other studies using the same strain
of T. cruzi [28–30]. During the course of natural infection, the acute phase is characterized by
parasites circulating in peripheral blood, where T. cruzi parasites travel to infect nucleated
cells and replicate intracelularlly by binary fission. As the parasite has a tropism for cardiac
muscular cells, it can no longer be found circulating in peripheral blood after the acute
phase, and that is considered the beginning of the chronic phase. In the chronic phase,
the parasite stays intracellularly, causing the development of different physiopathological
mechanisms such as the immune-inflammatory response, autoimmunity, microvascular
abnormalities, and nerve damage [43], all of them contribute to cardiac tissue damage,
causing cardiomyopathy and sudden death in some cases.

Results from the univariate correlation analysis between all pairs of variables are
shown below, where the correlation patterns between the different diagnostic modalities
are displayed. Feature selection results are also presented for each one of the implemented
methods (empirical, AUC-FS, RF, ETC, and voting selection). The selected features have
been listed, according their relevance and contribution to an accurate discrimination be-
tween healthy and infected mice. We conclude this section showing the results of the
implemented unimodal and multimodal classification approaches.

3.1. Pearson Correlation Maps—Statistic Analysis

To observe the relationship between variables of each modality, a Pearson correlation
map was obtained (Figure 4). In this map, only correlations greater than or equal to 70%
are presented. Each modality analyzed (ECG, ECHO, Doppler, and ELISA) is shown in
a different line and bounding box color. An ID number has been added to each variable,
which concurs with Table 1.

It can be seen that there are no correlations higher than 70% between modalities (blue
square marks should be observed outside the bounding box of each modality). However,
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there are significant correlations (r ≥ 70%) between variables of the same modality (blue
square marks inside each bounding box). These results reflect linear independence between
variables of different modalities; therefore, it is considered that each modality can provide
different and complementary information and that a selection strategy of the best variables
of each modality is necessary for the infection study and phase classification.

From a clinical point of view, among variables with high correlation, the HRV and CV
parameters determine the cardiac cycle variability. Cardiac variability is a parameter to
evaluate the function of the autonomic nervous system and is considered a predictor of
sudden death for cardiac disease [44]. On the other hand, the high correlation between
HR duration and other ECG parameters is well known. At higher HR rates, the duration
values of the remaining parameters are reduced. The correlations between the ST and QTc
intervals are related to ventricular repolarization abnormalities [45]. EF and FS parameters
are calculated from LVd measurements during systole and diastole and, because of that,
the ECHO variables studies are correlated. Other studies found a correlation between HR
and systolic function parameters (EF and FS) and left ventricular wall motion, a parameter
not included in the present study [25].

Figure 4. Univariable Pearson correlation map (r ≥ 0.70) for Multimodal Analysis for general T. cruzi
Infection (ECG, ECHO, Doppler, and ELISA).

The results from the Doppler variables analysis show no correlations. However,
alterations in blood flow of AbAO, AO, and MV were observed during the T. cruzi infection.
They were mainly related to peak velocity and ejection time, both of which are components
of the systolic wave produced during the contraction of the left ventricle, and blood flow
volume is expelled through ascendant aorta AO and thereafter through the abdominal
aorta AbAO. Changes related to a reduction in the blood vessel diameter produce a peak
flow velocity rise. However, when a reduction in diameter is located distal to the site
interrogated, the peak of velocity is reduced and a widening of the spectrum of the wave
can be observed (rise in the pre-ejection time) [46]. Moreover, the infection with T. cruzi
modifies the pulsatility and resistivity index of AbAO, which are parameters of peripheral
resistance. The impact of T. cruzi on peripheral resistance has been poorly studied. The
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results of the present study show us that peripheral resistance parameters should be
considered during the study and diagnosis of T. cruzi infection.

The values of IgGT, IgG1, and IgG2a proved to be excellent predictors of infection in
any of the stages of infection studied, where these predictors only indicate the presence
of T. cruzi but not the stage of cardiac damage progression. The high prediction capabil-
ities of these attributes is mainly explained by their associated immunological actions:
IgG1 corresponds to an inflammatory response and IgG2a indicates anti-inflammatory
activities [47].

3.2. Feature Selection

Table 1 indicates the most relevant characteristics according to the empirical selection
(*), as well as the general selection by voting (+), where it can be seen that ELISA variables
(IgGT, IgG1, IgG2a) have been considered the most relevant for both feature selection
techniques. IgGT antibodies by ELISA are produced as a specific response against T. cruzi.
These antibodies can be detected 2 to 3 weeks after infection and persist regardless of the
stage of infection, making them a reliable test for the detection of parasite infection [47]. In
the case of empirical selection, the importance order of diagnosis techniques was established
as ELISA, ECHO, ECG, and Doppler; while, as a result of voting selection, the order of
diagnosis techniques with more number of voted variables were ELISA, ECG, Doppler,
and ECHO.

For the ECHO variables, only LVd was reported as relevant for both these feature
selection methods.

In the case of ECG variables, empirical and voting selection show the QT interval, ST
interval, HRV and HR as relevant; therefore, the assessment of cardiac electrical activity can
be considered as a useful tool to identify infection, followed by abnormalities in ventricular
repolarization (ST and QT), and the HRV and CV parameters denote changes in cardiac
autonomic function.

In contrast, for the Doppler attributes, there are no features in common between the
two selection methods, but in both cases, the majority of relevant features resulted from
acquired variables of AO, AbAO and MV. These Doppler variables allow the identification
of changes in the velocity of the flow in the blood vessels and valves, which could be
associated with modifications in the diameter of the blood vessel and the resistance of
peripheral blood vessels.

Figure 5 shows the selected features according to their relevance from the AUC-FS
statistical analysis, as well as by the RF and ETC algorithms. In this figure, the graphics
in red color are associated with the acute phase, the blue ones refer to the chronic phase,
and the green color shows results in the case of the general infection. For the acute phase,
18 variables were obtained by AUC-FS statistical features selection, while from RF and
ETC selection, 15 and 13 variables were obtained, respectively. For the chronic phase,
21 variables were obtained by AUC-FS selection, while from RF and ETC selection, 13
and 8 variables were obtained, respectively. Considering the general infection, 12 relevant
variables were obtained by AUC-FS selection, for RF, only 8 variables were selected, and
10 variables were obtained by ETC selection. In these three cases (acute phase, chronic
phase, and general infection), the ELISA variables (IgGT, IgG1, IgG2a) were considered
as relevant features, where for the chronic phase and the general infection were the three
variables with the highest relevance value. Further, in the acute phase, the relevant variables
in common for these feature selection methods, are from ECG (QT and ST interval), Doppler
(MV HR Avg), and ECHO (LVd); in the case of the chronic phase, for ECG (SR Mean, QTc,
QT Interval) and Doppler (AO Ejection Time SD); and for general infection ECG (SR Mean),
and Doppler (AO Pre ejection time AVG). Note that in the case of chronic phase and general
infection, ECHO variables do not show high values of relevance.
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Figure 5. Multimodal Feature Selection Analysis for acute phase (red), chronic phase (blue), and
general case of T. cruzi infection: (a) AUC-FS, (b) Random Forest, and (c) Extremely Randomized Trees.

During the acute phase of T. cruzi infection, the ELISA findings are the same as those
for the general infection case. The predominance of IgG1 antibodies at this stage has been
related to the presence of myocarditis [48]. Moreover, during this infection stage, the LVd
diameter obtained by ECHO stands out. During T. cruzi infection, an early remodeling
of the left ventricle occurs, where this change appeared to be characteristic for this stage.
Moreover, abnormalities in ventricular repolarization reflected in QT and QTc during
its passage through the Hiss bundle [49]. Additionally, the SR mean proves the early
myocardial damage that occurs during this stage [50]. Finally, alterations in the AO peak
acceleration time average parameter, which is the time between the start of systolic flow
and the maximum velocity reached, is considered a non-invasive index of LV contractility
in mice [51]. All these changes correspond to the relevant variables obtained by automatic
feature selection algorithms.

During the chronic phase of infection, the production of IgG2a antibodies dominates
over IgGT and IgG1. This finding concurs with other studies in mice [47]. This may be
an indication that during chronic infection the predominant immune response is anti-
inflammatory.

The findings regarding QT and QTc are repeated as in the case of acute infection, being
able to conclude that once damage in ventricular repolarization appears, it will persist
during the next stages of infection. The AO ejection time is described as the time lapse
between the opening and closing of the aortic valve, and thus, it is a parameter related
to the evaluation of ventricular function and ventricular contractility [52]. The relevant
variables for the chronic phase of infection, obtained by the methods described in this
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contribution, are rather similar to the reported clinical diagnosis and feature selection
identified by machine learning techniques [24,25].

For the identification of general infection by T. cruzi, the detection of IgGT antibodies,
as well as the IgG1 and IgG2a subtypes, is consistent with the predominance of an inflam-
matory immune response [47]. The Doppler evaluation of AO average time projection is a
useful parameter, described as the time that elapses between ventricular depolarization
and the onset of ventricular contraction while the heart valves are still closed; in addition,
it can signify changes in myocardial contractility or, in the end, diastolic pressure of the
ventricle [53]. Additionally, the SR variables, which may indicate myocardial damage [50],
are consistent among the three classifiers. It is the same case with the acute and chronic
phases of infection, the automatic feature selection is related to clinical damage reported for
T. cruzi infection. It is remarkable that the variables obtained from the Doppler spectrum
are relevant for CD diagnosis (acute phase, chronic phase and the general infection). Since
the Doppler-related attributes are highly informative and the technique is non-invasive,
those features may offer a potential tool to diagnose patients with CD.

3.3. Classification and Validation

The automatic classification metrics (ACC and AUROC), when using variables of
each modality individually (ECG, ECHO, Doppler and ELISA), are presented in Table 2.
This table shows the classification results for acute phase (control vs. infected), chronic
phase (control vs. infected), and general infection groups (acute phase + chronic phase vs.
controls). In each section, the results of the 5-fold cross-validation and final tests for the RF,
ETC, DT and SVM classifiers are shown.

The results obtained in the classification between the Control vs. Acute groups show
that ELISA modality has the best performance (around 90% for ACC and AUROC), followed
by ECHO, ECG and Doppler (Table 2).

T. cruzi infection is presented in two stages: Acute and chronic. The presence and
severity of clinical signs in each stage depends on the course of the infection on each
animal. After the infection, IgG antibodies are produced during the first weeks of infection
and remain present during the rest of the life of the infected organism. Therefore, ELISA
tests appeared as the best diagnostic tools over the different clinical stages of the disease.
Changes detected by the use of non-invasive modalities as ECHO appeared to be more
frequent in the acute phase, if compared with alterations on the electrical conduction system
of the heart detected by ECG and blood flow parameter changes diagnosed using Doppler
in the experimental model studied.

Regarding the classification in the chronic phase (Control vs. Chronic groups Table 2),
it can be observed that the ELISA test presents the best performance according to cross-
validation (up to 100% for ACC and AUROC metrics), followed by Doppler modality
(up to 80% for ACC and 85% for AUROC), ECG’s variables (up to 70% for ACC and 75%
for AUROC) and finally, ECHOs descriptors with performances up to 66% for ACC and
75% for AUROC. In contrast, in the final validation, it can be noted that ELISA and ECG
modalities showed the best performances (up to 100%) in this classification.

The ELISA test proved to be the most useful indicator to detect infected animals at the
chronic stage. On the other hand, changes detected by the sole use of Doppler were more
frequent, if compared with the other modalities such as ECG and ECHO. As mentioned
earlier, Doppler parameters should be taken into account during screening for T. cruzi
infection diagnosis.

When focused on the general infection case (acute + chronic phase vs. controls
classification), the results can be observed at the bottom of Table 2. It can be noted that
ELISA tests show, again, the best performances, followed by ECG, ECHO and Doppler-
related variables. The performances of the individual non-invasive methods were similar to
the acute stage (up to 73% for ACC and up to 76% for AUROC during the cross-validation),
which reflects the complexity of the classification task in these scenarios.
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In a clinical scenario, ELISA tests for the detection of antibodies against T. cruzi are
usually applied in patients when suspecting T.cruzi exposure. It has been demonstrated
to be an excellent screening test. On the other hand, non-invasive diagnostic methods
such as ECHO, ECG and Doppler are not specific tests that clearly indicate the exposure
to the parasite, but they are useful to discern the stage of the disease as subjects become
symptomatic. This elucidation is not possible with ELISA alone. Moreover, ECHO, ECG
and Doppler methods are performed on patients suffering cardiac disease even when there
is no suspicion of an infectious disease such as CD to be the cause of the cardiovascular
disorders. It can be useful to consider T. cruzi infection based on a differential diagnosis
considering alterations detected by these methods and include in the diagnosis whether
there is or not a history of exposure to T. cruzi or if contact with the vector is suspected.

In general, the results presented in Table 2 show poor performance for variables
obtained from non-invasive methods. Additionally, most of the results computed from the
cross-validation present a large standard deviation (up to ±30% of the mean). Therefore,
the combination of variables from different modalities and the incorporation of feature
selection strategies are considered necessary for this study.

Table 2. Classification performance (%) for each modality: ECG, ECHO, Doppler and ELISA. Cross-
validation results are expressed as mean and standard deviation. The best performances are presented
in bold.

Classifier ECG ECHO Doppler ELISA
ACC AUROC ACC AUROC ACC AUROC ACC AUROC

Control vs. Acute, 5-Fold Cross-Validation (N = 30)
RF 53.3 ± 22.1 71.1 ± 24.9 70.0 ± 12.5 66.7 ± 14.1 50.0 ± 10.5 68.9 ± 11.4 90.0 ± 13.3 92.2 ± 15.6
ETC 63.3 ± 16.3 73.3 ± 20.6 66.7 ± 10.5 66.7 ± 12.2 60.0 ± 22.6 66.7 ± 18.9 90.0 ± 13.3 94.4 ± 11.1
DT 66.7 ± 10.5 60.0 ± 17.0 70.0 ± 12.5 73.3 ± 8.2 53.3 ± 6.7 53.3 ± 6.7 86.7 ± 12.5 93.3 ± 13.3
SVM 66.7 ± 25.8 71.1 ± 23.9 63.3 ± 6.7 82.2 ± 8.9 50.0 ± 23.6 51.1 ± 15.1 90.0 ± 8.2 95.6 ± 5.2

Control vs. Acute, Final Test (N = 6)
RF 66.7 68.4 66.7 69.3 66.7 65.2 100 98.5
ETC 66.7 67.3 50.0 52.1 66.7 67.4 100 98.4
DT 50.0 53.2 66.7 65.2 33.3 40.3 100 97.3
SVM 50.0 52.4 50.0 54.4 66.7 70.2 83.3 90.7

Control vs. Chronic, 5-Fold Cross-Validation (N = 30)
RF 60.0 ± 17.0 75.6 ± 16.3 56.7 ± 22.6 64.4 ± 27.6 73.3 ± 13.3 77.8 ± 22.5 100 ± 0 100 ± 0
ETC 63.3 ± 16.3 68.9 ± 19.1 56.7 ± 22.6 52.2 ± 17.8 80.0 ± 6.7 85.6 ± 10.9 100 ± 0 100 ± 0
DT 60.0 ± 17.0 56.7 ± 17.0 53.3 ± 12.5 46.7 ± 12.5 63.3 ± 16.3 66.7 ± 18.3 100 ± 0 100 ± 0
SVM 70.0 ± 12.5 71.1 ± 11.3 66.7 ± 14.9 75.6 ± 13.0 76.7 ± 13.3 75.6 ± 10.9 95.7 ± 6.3 97.4 ± 3.5

Control vs. Chronic, Final Test (N = 6)
RF 100 100 50.0 66.7 66.7 68.9 100 100
ETC 100 100 50.0 58.9 66.7 67.5 100 100
DT 66.7 67.8 50.0 52.4 50.0 54.4 100 100
SVM 83.3 88.9 50.0 53.4 66.7 64.3 100 100

Control vs. General Infection, 5-Fold Cross-Validation (N = 60)

RF 66.7 ± 10.5 72.9 ± 8.9 73.3 ± 9.7 72.1 ± 9.0 60.0 ± 9.7 64.6 ± 17.9 95.0 ± 4.1 98.3 ± 2.3
ETC 66.7 ± 10.5 69.9 ± 12.7 65.0 ± 6.2 67.7 ± 9.7 50.0 ± 16.7 54.6 ± 16.2 95.0 ± 4.1 98.3 ± 2.3
DT 66.7 ± 9.1 64.6 ± 9.3 70.0 ± 4.1 69.6 ± 6.4 46.7 ± 12.5 45.0 ± 8.5 93.3 ± 6.2 93.0 ± 6.4
SVM 63.3 ± 11.3 69.4 ± 18.2 68.3 ± 6.2 76.0 ± 5.9 50.0 ± 9.1 49.1 ± 20.4 86.7 ± 8.5 97.7 ± 3.3

Control vs. General Infection, Final Test (N = 12)
RF 83.3 75.7 58.3 45.7 58.3 42.9 83.3 85.7
ETC 58.3 71.4 50.0 47.2 50.0 41.4 83.3 87.1
DT 50.0 51.4 50.0 51.4 50.0 41.7 83.3 82.9
SVM 50.0 52.3 50.0 51.3 50.0 45.7 80.6 85.7

Automatic multimodal classification results for the acute phase (control vs. infected),
chronic phase (control vs. infected), and general infection groups (acute phase + chronic
phase vs. controls) are shown in Tables 3–5, respectively. In each table, the results of 5-fold
cross-validation and the final tests for the RF, ETC, DT and SVM classifiers are presented.
The columns contain the feature selection performance of each method as well as the result
using all descriptors. The best performances for ACC and AUROC are highlighted in bold.

In the classification between mice with acute infection vs. control, it can be observed
that the feature selection methods that we followed show better cross-validation perfor-
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mance compared to the case in which all acquired features were considered. The best
validation performances (ACC of 93.3 ± 13.3%) were obtained by combining the ETC
classifier with RF, voting and ETC selections. Regarding AUROC, the combination of RF
classifier/ETC selection and ETC classifier/RF selection showed the best performance
(95.6± 8.9%). In the final test section, it can be seen that all approaches present good results,
with RF selection together with ETC, DT and SVM classifiers being the combinations that
showed an ACC and AUROC of 100%.

The classification results for mice with chronic infection vs. controls are presented
in Table 4. In general, it can be observed that RF, ETC and DT classifiers show a perfect
performance in combination with all sets of features used (except for the combination of
the ETC classifier and RF selection). This behavior can be clearly noticed in the validation
and final test with regard to ACC and AUROC metrics.

Regarding general infection (acute + chronic phase vs. controls), the classification
results can be observed in Table 5. For the validation stage, it can be noted that the best
obtained ACC was 96.7 ± 4.1%, considering any set of features selected considering the RF
or ETC classifier. Regarding AUROC, the best obtained performance was 99.7 ± 0.6% for
the ETC classifier with RF selection. In the final test, the RF and DT classifiers showed the
best ACC with 83.3% for all sets of features used. For AUROC, the best performance was
using classification and selection by ETC with 97.1%.

When comparing the results of the multimodal analysis (Tables 3–5) and the classi-
fication using variables of each modality individually (Table 2), it can be noted that the
performance is generally consistent (mainly for the classification of acute stage vs. controls
and general infection vs. controls). Furthermore, the standard deviation obtained during
the cross-validation for the classification using multimodal variables is considerably lower
compared to that shown in the unimodal classification. These results suggest that the
combination and optimal selection of variables of a diverse nature can contribute to the
adequate detection of T. cruzi infection.

As we already stated, the diagnosis of T. cruzi infection is complex. The acute phase
of T. cruzi infection is short-lived, and the signs may not be clinically evident. If the acute
infection is not treated, then a chronic condition is developed. In humans, diagnosis in
the acute phase is critical because at this stage the treatment is most successful (between
74–89% efficient) [54]. According to the features evaluated in this contribution, the changes
in the chronic phase are evident and easily identifiable with any of the used classifiers;
however, the treatment applied during the chronic phase has a low success rate and the
adverse effects outweigh the clinical benefit. Therefore, detection of cases in the acute
phase would allow the identification and follow-up for adequate clinical management and
timely treatment.

Comparison with Other Related Works and Clinical Diagnosis

Published works based on the ELISA test presented high accuracy in the classification
of CD patients [24]. Therefore, the best results were achieved using an MLP algorithm
presenting an ACC of 95.95%, 78.30% sensitivity, and specificity of 75.00% and AUROC
of 0.861. Additional works reported relevant results, where arrhythmia classification
from ECG variables by GDA- and SVM-based algorithms were able to discriminate six
different types of cardiac arrhythmia: sinus rhythm, premature ventricular contraction,
atrial fibrillation, sick sinus syndrome, ventricular fibrillation and 2nd-degree heart block.
The results are outstanding as shown by the metrics such as ACC of 98.94%, 98.96%, 98.53%,
98.51%, 100% and 100%, respectively [27]. In addition, Escalera et al. [26] conducted a
study regarding the classification of CD patients based on coronary damage and obtained
an ACC of 72% for the case of three levels of damage in patients, using a high- resolution
ECG and the ECOC algorithm. The attribute selection process led to the identification of
the fractal short-term scaling exponent as the most prominent attribute [25].

According to our contribution, the multimodal features selection showed the ELISA
test is the most relevant modality, followed by Doppler, ECG and ECHO in the case of the
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general infection classification, where automatic classification showed up to 96.7% for ACC
and 99.7% for AUROC during cross-validation, and as for the final test, performances of up
to 83.3% for ACC and 97.1% for AUROC were obtained.

Unlike previously reported works, in this work we introduce the combination of four
modalities. One of these modalities is the integration of Doppler-related attributes that
have been only marginally studied for the T. cruzi infection model classification. Our results
indicate that the Doppler test is a good cardiac damage descriptor for the infection stages
and, together with the ECG and ECHO modalities, may serve as the basis for a non-invasive
monitoring system.

Table 3. Multimodal classification performance (%) between control vs. acute infection groups.
Cross-validation results are expressed as mean and standard deviation. The best performances are
presented in bold.

Classifier
All

Features
Empirical
Selection

AUC-FS
Selection

ETC
Selection

RF
Selection

Voting
Selection

ACC AUROC ACC AUROC ACC AUROC ACC AUROC ACC AUROC ACC AUROC

5-Fold Cross-Validation (N = 30)

RF 90.0 ± 13.3 88.9 ± 22.2 93.3 ± 13.3 93.3 ± 13.3 90.0 ± 13.3 92.2 ± 15.6 90.0 ± 13.3 95.6 ± 8.9 90.0 ± 13.3 94.4 ± 11.1 93.3 ± 13.3 91.1 ± 17.8
ETC 86.7 ± 12.5 86.7 ± 21.5 90.0 ± 13.3 93.3 ± 13.3 86.7 ± 12.5 91.1 ± 17.8 93.3 ± 13.3 94.4 ± 11.1 93.3 ± 13.3 95.6 ± 8.9 93.3 ± 13.3 93.3 ± 13.3
DT 80.0 ± 12.5 73.3 ± 8.2 83.3 ± 14.9 76.7 ± 8.2 90.0 ± 13.3 86.7 ± 12.5 90.0 ± 13.3 86.7 ± 12.5 90.0 ± 13.3 83.3 ± 10.5 86.7 ± 12.5 90.0 ± 13.3
SVM 63.3 ± 24.5 75.6 ± 22.7 73.3 ± 22.6 80.0 ± 23.7 70.0 ± 28.7 82.2 ± 24.9 83.3 ± 18.3 91.1 ± 17.8 80.0 ± 24.5 84.4 ± 20.6 80.0 ± 24.5 82.2 ± 24.9

Final Test (N = 6)

RF 83.3 85.8 100 100 100 100 83.3 92.8 100 100 83.3 92.3
ETC 83.3 94.3 83.3 89.4 83.3 93.7 83.3 89.5 83.3 92.4 83.3 93.5
DT 100 100 100 100 100 100 100 100 100 100 100 100
SVM 100 100 83.3 91.3 83.3 92.4 100 100 100 100 66.7 72.5

Table 4. Multimodal classification performance (%) between control vs. chronic infection groups.
Cross-validation results are expressed as mean and standard deviation. The best performances are
presented in bold.

Classifier
All

Features
Empirical
Selection

AUC-FS
Selection

ETC
Selection

RF
Selection

Voting
Selection

ACC AUROC ACC AUROC ACC AUROC ACC AUROC ACC AUROC ACC AUROC

5-Fold Cross-Validation (N = 30)

RF 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
ETC 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 96.7 ± 6.7 98.4 ± 2.1 100 ± 0 100 ± 0
DT 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0
SVM 90.0 ± 8.2 95.4 ± 2.5 96.7 ± 6.7 97.5 ± 7.4 93.3 ± 8.2 97.8 ± 4.4 90.0 ± 8.2 94.3 ± 4.6 93.3 ± 8.2 95.6 ± 3.2 96.7 ± 6.7 98.5 ± 3.4

Final Test (N = 6)

RF 100 100 100 100 100 100 100 100 100 100 100 100
ETC 100 100 100 100 100 100 100 100 100 100 100 100
DT 100 100 100 100 100 100 100 100 100 100 100 100
SVM 66.7 75.4 83.3 91.4 83.3 95.3 83.3 88.4 83.3 95.1 100 100

Table 5. Multimodal classification performance (%) between control vs. general infection (acute +
chronic) groups. Cross-validation results are expressed as mean and standard deviation. The best
performances are presented in bold.

Classifier
All

Features
Empirical
Selection

AUC-FS
Selection

ETC
Selection

RF
Selection

Voting
Selection

ACC AUROC ACC AUROC ACC AUROC ACC AUROC ACC AUROC ACC AUROC

5-Fold Cross-Validation (N = 60)

RF 96.7 ± 4.1 98.0 ± 2.8 96.7 ± 4.1 98.3 ± 2.3 96.7 ± 4.1 98.3 ± 2.3 95.0 ± 4.1 98.6 ± 1.8 95.0 ± 4.1 98.9 ± 2.3 96.7 ± 4.1 98.3 ± 2.2
ETC 90.0 ± 9.7 95.5 ± 5.3 96.7 ± 4.1 96.3 ± 5.5 95.0 ± 4.1 98.9 ± 1.4 96.7 ± 4.1 97.7 ± 3.3 96.7 ± 4.1 99.7 ± 0.6 96.7 ± 4.1 98.3 ± 2.3
DT 95.0 ± 4.1 93.0 ± 6.4 91.7 ± 7.5 91.3 ± 7.5 91.7 ± 5.3 93.0 ± 3.6 93.3 ± 3.3 93.0 ± 3.6 93.3 ± 3.3 93.0 ± 3.6 93.3 ± 6.2 91.3 ± 5.3
SVM 76.7 ± 12.2 93.8 ± 7.7 86.7 ± 8.5 94.4 ± 6.9 88.3 ± 8.5 95.5 ± 4.6 88.3 ± 6.7 96.6 ± 3.3 86.7 ± 8.5 97.7 ± 2.1 85.0 ± 9.7 98.3 ± 2.2

Final Test (N = 12)

RF 83.3 82.9 83.3 85.7 83.3 94.3 83.3 88.6 83.3 85.7 83.3 90
ETC 83.3 84.3 75 88.6 83.3 88.6 75 97.1 75 85.7 75 94.3
DT 83.3 85.7 83.3 85.7 83.3 85.7 83.3 85.7 83.3 85.7 83.3 85.7
SVM 66.7 74.3 66.7 74.3 66.7 82.9 66.7 71.4 58.3 71.4 75 82.9
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4. Conclusions

In this work, we present a novel pipeline that integrates temporal data acquisition
from four modalities, multiple feature selection analyses, and an automatic classification
strategy of a T. cruzi infection model. The variables of a murine experimental model of
T. cruzi infection were obtained from: ECG signals, ECHO images, Doppler spectrum, and
ELISA antibody titers. We propose a unimodal analysis using correlation maps and a
multimodal strategy using different feature selection approaches. Following this, a set of
supervised classifiers were fed with different subsets of multimodal variables. The aim was
to automatically classify T. cruzi infected animals from the murine experimental model for
acute phase (control vs. infected), chronic phase (control vs. infected), and general infection
groups (acute phase + chronic phase vs. controls).

The correlation map analysis of all 67 variables showed that there is no significant
relationship between variables of different modalities; this suggests that the modalities
analyzed show different and complementary information regarding immune response,
electrical and cardiac mechanical functionality, and blood flow characteristics in the study
of infection.

Regarding machine learning-based feature selection, we have shown that a handful of
attributes and a strong, yet interpretable classifier, such as those in the decision tree family,
are capable of identifying relevant changes along the stages in the T. cruzi murine infection
model. The relevant attributes to tell apart T. cruzi infection (acute and chronic stages), as
well as control animals, are variables acquired by ELISA (IgGT, IgG1, IgG2a), ECG (SR
mean, QT Interval, ST Interval), Doppler (AO Peak Acceleration Avg, AO Pre-ejection time
Avg, AO Ejection time SD), and ECHO (LVd).

The classification algorithms fed with different multimodal feature sets showed good
performance in the discrimination of acute phase (control vs. infected), chronic phase
(control vs. infected), and general infection groups (acute phase + chronic phase vs. control).
In a clinical setting, one of the problems present in infected patients is the time they can
remain asymptomatic (10–30 years), and thus, having an opportune early detection or an
objective diagnostic method selection, even in symptomatic patients, is a great concern.

Some of the limitations presented in the research were the reduced number of ani-
mals studied due to the acquisition time needed per animal of the four modalities. As
future work, we intend to include other variables extracted from ECHO (e.g., strain), ECG
signals and/or other modalities such as histopathology that can be useful for a better
understanding of the causes of the clinically detected alteration caused by the infection.

Our contribution is a step forward in the direction of providing medical specialists
with an early detector of the Chagas disease. Since the path from the laboratory to the
clinic is arduous and requires several validation stages, counting with a methodology that
is able to detect physiological changes caused by the T. cruzi infection in animal models is
of relevance.

Further studies are needed in order to determine the prognostic value for the cardio-
vascular disease evolution from the relevant variables found on each modality. It could be
helpful for a better understanding of the pathophysiology of the T. cruzi infection and to
improve the diagnosis and follow-up of the patients suffering from CD disease.
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