
����������
�������

Citation: Solis Pino, A.F.; Ruiz, P.H.;

Hurtado Alegria, J.A. A Software

Products Line as Educational Tool to

Learn Industrial Robots Programming

with Arduino. Electronics 2022, 11, 769.

https://doi.org/10.3390/electronics

11050769

Academic Editor: Gwanggil Jeon

Received: 29 November 2021

Accepted: 28 December 2021

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Software Products Line as Educational Tool to Learn Industrial
Robots Programming with Arduino

Andrés Felipe Solis Pino 1,2,* , Pablo H. Ruiz 1 and Julio Ariel Hurtado Alegria 2

1 Facultad de Ingeniería, Corporación Universitaria Comfacauca—Unicomfacauca, Popayán 190003, Colombia;
pruiz@unicomfacauca.edu.co

2 Facultad de Ingeniería Electronica y Telecomunicaciones, Universidad del Cauca, Popayán 190003, Colombia;
ahurtado@unicauca.edu.co

* Correspondence: asolis@unicomfacauca.edu.co

Abstract: Software reuse has potential for educational purposes since it uses decomposition and
abstraction, two necessary skills to learn programming. Software reuse techniques require abstrac-
tions that are not obvious to students or even to professionals. Taking advantage of these techniques,
students can learn computer programming in a productive and organized way. This paper proposes
to use the Software Product Line (SPL) reuse technique as a strategy for learning to program industrial
robots with the Arduino platform. First, the paper explains SPL construction and application with
first-year university students. The SPL proposes abstractions close to the industrial robots domain
with a simplified variability. The paper uses the case study method to show the feasibility of using
the SPL approach in a learning environment. In this evaluation, students reused 38% to 43% of the
total code needed to program the robot. It represents an improvement in the time it takes students to
program industrial robotics solutions facilitating their learning. In addition, the paper unveils some
limitations related to usability, specific knowledge, and some exploitable technologies.

Keywords: software product lines; educational robotic; industrial robots; Arduino

1. Introduction

Industrial Robotic Systems (IRS) are manipulative, functional, and programmable
devices for working with objects according to defined trajectories to perform various
tasks [1]. Nowadays, programming these devices is imperative because they play a more
relevant role in the technology industry. Several domains, such as the manufacturing
industry, the automotive industry, and the health sciences [2], are witnesses to the multiple
advantages of the use of industrial robots. Moreover, areas such as the naval industry
and search and rescue operations [3] are examples of the diversification of tasks that these
devices can fulfill. The above ideas allow us to affirm that the IRS has increased importance
in society, requiring universities to work toward new training programs and educational
strategies in this area of knowledge. In particular, the construction of IRS in an educational
environment needs the realization of prototypes, allowing students to understand the
domain and its main theoretical and practical foundations [4]. These prototypes usually
use microcontrollers (Arduino) to provide the functionality to electronic devices [5], which
allows to emulate software development in the industry.

Traditional IRS software construction methodologies are key tools in engineering edu-
cation; however, these are limited. For instance, they did not frequently unify hardware and
software design as co-design approaches suggest [6]. It is widely accepted that novel ap-
proaches and reuse strategies should apply to different domains with enormous benefits [7].
Software Engineering (SE) and specifically software reuse have emerged as approaches
to improving the development of IRS, but there are few cases where these techniques are
replicable [8]. Model-Driven Engineering (MDE), Component-Based Software Engineering
(CBSE), Service Oriented Architecture (SOA), and software product lines are the main
reuse approaches applied in the area. The MDE, CBSE, and SOA are reuse approaches

Electronics 2022, 11, 769. https://doi.org/10.3390/electronics11050769 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050769
https://doi.org/10.3390/electronics11050769
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3342-0776
https://orcid.org/0000-0003-2098-2614
https://orcid.org/0000-0002-2508-0962
https://doi.org/10.3390/electronics11050769
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050769?type=check_update&version=1


Electronics 2022, 11, 769 2 of 20

that respectively segment the software of IRS into models, components, or services, in-
tending to reduce the complexity in the applications, which facilitates the implementation
of the software reuse and maintainability of domain assets [9,10]. However, engineers
and programmers are resistant to the use of these approaches, which generate rework in
software development, because the developers are unknown or because they do not trust
the strategies to be proven and successful [11]. This low adoption may be because most
IRs clients are companies that prefer reliability rather than other quality attributes, such as
modifiability, as the key quality attribute [12]. Another reason for the adoption problem
is the high variability in the hardware and software components, making the application
of these techniques difficult [13], from domain abstraction, pattern detection, and idiom
identification to characterization of granularity reuse level [8]. Moreover, general proposals
have emerged covering many problems in the IRS, but they do not solve typical problems
of the software device [14]. One of the reuse alternatives that could help to adopt software
reuse is the SPL paradigm because it systematically defines a set of software products that
share common and variable assets, which are configured and reused in a planned way to
satisfy the needs of a specific domain [15].

Encouraging and applying reuse approaches to improve the software development
process for microcontroller-based SRI helps benefit developers, particularly students, from
planned reuse as well as understand and become familiar with these SE approaches from
their academic background. In addition, it is important to note that there is a recent surge of
interest from the research community in the contribution of robotics to the development of
computational problem-solving thinking and skills, especially during the last decade. The
development of new technologies and their adaptation to the school context has allowed
the establishment of initiatives and projects to enhance new skills and competencies among
the participants. These projects are viable with the use of robotics [16].

This paper aims to expose, through a case study, the potential of a proposed SPL-based
software reuse approach on the IRS with Arduino, called IRArduino-SPL as a strategy
for educational purposes using two powerful skills from the computational thinking area:
abstraction and modularity.

The paper is organized as follows. The second section presents the major results
of a literature review in the domain of IRS. The third section describes the materials
and methods used in the research, including a study of the results found in SPL basic
construction. The four and five sections allow us to discuss and conclude the proposed
strategy and present possible future work in this direction.

2. Related Work
2.1. Software Reuse in Industrial Robots with Controllers

In previous work [10], the application of reuse approaches in IRS with controllers was
analyzed. In addition, the MDE, CBSE, SOA, and SPL approaches were identified as the
most used. The major challenges found were, among others, the variability of the hardware
and the combination of reuse approaches to take advantage of each of them.

Brugali and Hochgeschwender [17] mention that SPLs have proven to be an efficient
approach to face reuse in IRS, proposing a product line with a tool called Hyperflex, which
uses the MDE to abstract these devices, thus supporting the entire software development
cycle for robots with controllers. Finally, the authors conclude that the proposal allowed
the structure and organization of the development of robots.

Gherardi et al. [18] propose to combine SPLs and cloud technologies to reuse robots
with controllers in a tool called Rapyuta’s which allows the variability to be modeled under
three major elements: architecture variability model, variability of functionalities, and
deployment variability model. As part of the validation of this proposal, they identified as
necessary to model the constraints of the environment and the functionalities of the robot.

The SPLs have not only been implemented to build the software for IRS, but Abdelhady
also proposed a different orientation [19], where he proposes an SPL with a framework
for the development of trajectories and mappings. This work analyzes the difficulty in
developing this type of system, which integrates hardware and software elements in real-



Electronics 2022, 11, 769 3 of 20

time. The results show an improvement in modularity, reduction of time, development
effort, and deployment of these specific functionalities in the industrial robots with Arduino.

2.2. Arduino Implemented in the Robotics Domain

Multiple proposals have been developed between robotics and the Arduino platform,
where these types of microcontrollers are used as low-cost alternatives to offer robotic
solutions that work in different domains and provide various functionalities. This is the
case of Concha Sánchez et al. in [20] where they present a methodology to recycle and
update a robotic arm of 4 degrees of freedom in an educational context using elements such
as artificial vision and decentralized control. To acquire the data from the environment,
they use two Arduino Mega 2560 boards, and as the main controller, they use MATLAB
software, getting as the main result a functional robotic arm of low-cost and open source.

Another related research is that of Marsono et al. [21] in which they propose to design
and build a robotic arm to teach the GrblGru programming language (G-code) and Arduino
as an application platform. The major result of this work was related to the creation
of a functional prototype that helps to study the robotics programming language. The
generalization of Arduino is such that it is even used in other branches of robotics, such
as mobile, and in different domains such as agriculture [22], garbage collection [23], and
gerontechnology [24], among others.

Finally, the above are examples of the multiple research carried out linking robotics
and Arduino, so solutions focused on this domain that allow for improved software
development on the platform would positively affect generalization and allow developers
to focus on other hardware issues.

2.3. Software Engineering on the Arduino Platform

In the review by Geraldi et al. [25], they present an overview about SPLs application
to devices with microcontrollers for the Internet of Things, where the implementations are
made in different devices such as Raspberry Pi and Arduino. The results show the lack
of the systematic and detailed specification of the SPLs that guarantee the quality of the
derived products, as well as adaptation guidelines for their use.

Likewise, Bonfanti et al. [26] propose a code generator with MDE, from user specifi-
cations, using abstract state machines. This method guides the software development for
real-time systems, based on the principle of refinement, thus capturing the semantics of the
systems to the desired level. As part of the proposal, they developed the Asm2C++ tool us-
ing the MDE and model-to-text transformation (M2T) to generate code for microcontrollers.
In addition, they also carried out proof of concept where it was found that the proposal
allows to generate rapid prototypes and design embedded systems easily.

Ataide et al. [27] use the MDE approach to transform models to source code for
microcontrollers, the proposal comprises a set of tools and domain models that are divided
into sub-models, which are inputs to a Petri net for code generation. Moreover, they carry
out a proof of concept with two examples. The first corresponds to a single time domain, a
single microcontroller, while the second example presents three-time domains, where it is
exposed to how to generate code for different microcontrollers.

Previous works show different representations of reuse in Arduino. They have differ-
ent visions, perspectives, and approaches where reuse is carried out in a disorderly, poorly
planned, and sometimes ineffective way. In addition, they do not specifically use the SPLs
on the industrial robots with Arduino, this being the greatest contribution that this article
intends to make.

2.4. Educational Robotic and Arduino

The main Computational Thinking skills that are related to cognitive capability are
abstraction and decomposition [28]. Abstraction is an inductive process for simplifying,
categorizing, and memorizing key information for processing and storage. Decomposition
is a deductive process where a complex situation is broken down into smaller and simpler



Electronics 2022, 11, 769 4 of 20

pieces, reducing the original complexity. The need to decompose and the abstraction gave
place to the modularity [16].

Chalmers in [29] investigated how elementary teachers associate robotics and pro-
gramming learning in their classrooms, quantifying the perceived impact this has on
students’ computational thinking skills. The results show that the use of robotics kits
enables the development of skills that promote problem-solving and group work with
elementary students.

Angeli et al. report in [30] a similar result, where Bee-Bots are used for learning
computational thinking. The authors show that children from an early age can manifest
decomposition as a problem-solving skill, besides recognizing the importance of integrating
robotics into early curricula to develop the learning of computational thinking.

3. Materials and Methods

This paper presents IRArduino-SPL and evaluates its usefulness as an educative tool.
For the construction, we used the essential methods proposed by the SEI SPL Frame-
work [31], besides Small-SPL guidelines [32]. CoMeS-SPL [33] was used for scoping of
the proposal based on the opinion of experts in domains underlying industrial robotics.
To evaluate the SPL’s usefulness, we used the case study method following the Runeson
and Höst guidelines [34]. The case study was performed by three groups of mechatronic
engineering students (first year) developing software for operating a robotic arm.

The materials used in the research were source codes for programming industrial
robots with Arduino collected on the web, analysis tools for code similarity (Python, Code
Compare, and SemanticMerge [35]), S.P.L.O.T [36] and FeatureIDE [37] for modeling the
domain and variability of the tool.

The following subsections describe the SPL construction (domain engineering) and its
application (product engineering) in the educative context.

3.1. Domain Engineering
3.1.1. Arduino Code Analysis

Analyzing an SPL requires scoping and abstracting the domain model and its vari-
ability [38]. Thus, we study how industrial robots programs with Arduino are structured,
looking for relevant software idioms used in this kind of system. We created a lexicographic
analyzer of Arduino code using a Python script. This algorithm searches and retrieves
frequently structures used in the source code sample (algorithms of industrial robotic
systems with Arduino). We used tokens (keywords) for determining how the software
of industrial robots is structured [39], determining the recurrent programming idioms in
the domain.

To carry out this study, we used Code Compare and Semantic Merge tools statically
analyzing 10 IRS source codes of Arduino. The main result is the organization of Arduino
programs by structures, values (variables and constants), and functions. In addition, the
study found the most used sentences in the programming of industrial robotic systems,
which allowed to establish which are the recurrent programming idioms in Arduino for IRS.

The analysis identified that the Arduino program uses a strategy based on templates,
particularly one called BareMinimum, which is the minimum source code to compile a
program on the platform. This template does not present the necessary utility for the
industrial robotic systems domain, nor does it provide reuse options for developers or
utilities specific to this domain (kinematics or computer vision). Therefore, templates
focused on these devices could facilitate reuse in industrial robotic systems.

The analysis found three blocks with frequent statements in the analyzed codes. The
first block contains variable declarations, libraries, and headers; these statements are before
void setup(). In the second block, there are those related to the initialization of variables
and ports, the declaration of library objects; this block of code is usually inside the void
setup(). The third block relates to the logic adjacent to the IRS operation in Arduino; the
code in this section determines the trajectories, motion planning, and operation of sensors
and actuators; its position in the source code is inside the void loop().



Electronics 2022, 11, 769 5 of 20

According to the static analysis, industrial robotic programs have two relevant blocks,
the first one has the algorithms for controlling the robot (called, algorithm block), and the
other one has those for programming hardware devices (called, hardware block). The block
of algorithms contains the logic for operating the robot, expressed through a pattern of
action and reaction: for each stimulus perceived by the sensors, there is an associated
action using the actuators. The sentences analyzed in this block lack abstractions, such
as kinematics or user interface. The second block of sentences codes the drivers for the
correct operation of the physical devices; here, the developers strive to make the sensors
and actuators work in accordance and synchronize with the algorithm block.

An element of relevance that was not observed in the analyzed codes is the predeter-
mined functions or preset recipes of the robots, i.e., the functionalities that can commonly
fulfill this type of robot for a specific domain (transport of objects, assemblies, and pre-
cision work). This type of high-level abstraction could be a contribution to reuse in the
area, since it would allow the developer to simply select the functionality and reuse it as
many times as necessary. That is why within the abstractions that have been made in the
domain, the function called ‘activities’ has been added, which tries to abstract the common
functionalities that industrial robots can use in Arduino so that it can reuse them. The
above is not a novel concept in robotic arms used in industry [40], but it is in those in the
Arduino domain.

The static analysis also unveiled four fundamental elements within the construction
of the software of industrial robotic systems: sensors for detecting environmental changes,
movements to perform actions, the joints that have to do with the extension of the system,
and the functions of the electro-mechanical device. Thus, its elements were abstracted in
the domain’s modeling too.

3.1.2. Scoping of IRArduino-SPL

To define the scoping of the software product line, CoMeS-SPL was used, which is a
collaborative method that guides the definition of this type of reuse strategy. The primary
aim of CoMeS-SPL is to strengthen collaboration between different roles and mitigate
interdisciplinarity problems with participants with particular interests, using elements
such as thinklets and a facilitation process [41]. Three university professors, experts in
industrial robot programming, performed coMeS-SPL for determining the SPL Scope. The
experts have experience building industrial robots with Arduino and teaching robotics and
microcontrollers. The method was executed in two meetings using virtual tools and digital
media because of the current circumstances regarding the COVID-19 pandemic [41]; the
meetings were synchronous with a duration of one hour and a half. The tools used were
Google Meet to organize and conduct the meetings; Lucidchart as a collaborative tool to
change, add and delete features to the proposed feature model; and Google Docs for the
associated documentation.

1. Feature Model: The IRArduino-SPL feature model was defined using FeatureIDE.
Figure 1 shows the IRArduino-SPL feature model where commons (named
Nucleo_Robot) and variability features (named Personalizacion_Robot) have been orga-
nized. Common features include joints, sensors, and movements. The robot_action
feature is mandatory for executing each configuration made and triggering the robot.
There is also the addActivity feature that endows the robot with a set of sequential
logics between conditions and motions, allowing the user to save default logics or
add new ones to the robot.

2. Feature Model Analysis: Using S.P.L.O.T and FeatureIDE a syntactic analysis of the
IRArduino-SPL feature model was performed, it shows there are 24 features (20 con-
crete and 4 abstracts) in the model, of which 6 are mandatory, 8 optional, 3 alternatives,
and 9 grouped. Likewise, there are 12 composite features and 12 terminal features (leaf
nodes). The feature model does not have constraints because specific elements, such
as multitasking or computer vision, were left out when defining the scoping of the
proposal. After all, according to experts, this type of utility difficult the development



Electronics 2022, 11, 769 6 of 20

of industrial IRS in Arduino, so it is a feature that must be carefully implemented in
future versions of the SPL. It performed a semantic analysis on the feature model,
which ruled that it was consistent and valid for both tools. In addition, no dead
features were presented. It identified seven core assets as the most important reusable
elements of the SPL. In addition, it was established that there are 13,440 valid product
configurations. The degree of variability of the proposal is 8.0109 × 10−2, which
means a lower development cost for each product. Moreover, it found that it must
make a minimum of 7 decisions to have a functional derivation. Unlike the previous
iteration, this one presented one atomic set, showing that the observed separation
between hardware and software does not occur in this version. Finally, a statistical
summary of the proposed feature model is presented in the Table 1.

Figure 1. Feature model proposed for the SPL developed for industrial robots with Arduino.

Table 1. Syntactic and semantic statistics of the feature model for IRArduino-SPL.

Concept Number

Total characteristics 24
Concrete characteristics 20
Abstract characteristics 4

Composite characteristics 12
Terminal characteristics 12
Grouped characteristics 9

Alternative characteristics 3
Optional characteristics 8

Core assets 7
Dead characteristics 0

Atomic sets 1
Valid product configurations 13.340

Degree of variability (%) 8.0109 × 10−2

According to the defined scope, the professors’ opinions about the proposal were
positive, highlighting the SPL as a novel research topic that may allow the reuse approaches
to be useful for learning proposals. They also point out that empirical evidence in the
Arduino domain regarding reuse is lacking and that it is a neglected field by the research
community. Focusing on the variability of the SPL, the experts were wondering about the
many potential products helping the maintainability of the code, so they have expressed
several constraints to apply to the feature model. In addition, they suggested a pipeline
for customizing components for the device’s source code. Thus, students can perceive
the concept of mass customization of the software in the reuse strategy. In addition, they
stress the importance of focusing on a single type of industrial robot because they consider



Electronics 2022, 11, 769 7 of 20

the domain must be broad and suggest focusing on three-, four- and five-degrees-of-
freedom robotic arms. The microcontroller expert agrees with the use of the object-oriented
programming (OOP) paradigm because it is realistic and resembles how humans reason.
Each object in the program could simulate the objects (nouns) of the domain (e.g., ultrasonic,
servomotor, and gripper, among others) and the methods and actions (verbs, e.g., send a
signal, rotate, among others) that the devices can perform. It is a powerful tool for students
to learn to program arms, taking advantage of software reuse. Another notable expert’s
opinion was related to sensors and actuators. He suggested that the peripherals, ports,
and communication protocols must be properly defined through code, to organize code
associated with the hardware consistently.

3.1.3. IRArduino-SPL Architecture

The design uses an object-oriented framework architecture allowing to:

• Abstract common structures and behaviors for implementing with variability.
• Use the polymorphic capabilities to achieve flexibility for composing concrete modules.
• Reuse common structures and behaviors with a new code using the inverted con-

trol principle.

The framework created evidence of the reusability in IRArduino-SPL. This framework
allows developers of industrial robots to easily develop software through OOP, allowing
them to emulate the real entities of the domain being modeled (industrial robots with
Arduino). The framework, as Figure 2 shows, provides several high-level abstractions that
allow the builder to employ common elements and terms in industrial robot development.

Figure 2. IRArduino-SPL framework.

The framework simplifies the development processes. It implements routines and
predetermined activities, using a simple architecture for programming industrial robot
software with Arduino. The framework’s design follows the open-closed principle, al-
lowing to extend its behavior for creating or changing specific programs (improving the
maintainability of IRArduino-SPL).

3.1.4. Core Asset Development

The high-level abstractions of the framework are built based on the expressed domain
by the experts. The main abstraction of the framework was called RobotIndustrial, which
is an abstract class composed of elements such as joints, sensors, and movements that are
stored in a vector for each instantiated object (industrial robots with Arduino), each of these
data structures stores the configurations of each robot offering customization capabilities
according to the developer’s needs. Figure 3 shows these domain assets specified as a class
diagram using the Unified Modeling Language, as a result of the domain model abstracted
and presented from all domain engineering activities and reflecting the design stage.



Electronics 2022, 11, 769 8 of 20

Figure 3. A conceptual model of the abstractions made about IRS with Arduino through a class diagram.

The RobotIndustrial class has a series of constructors and public methods that allow
adding elements such as sensors, actuators, movements, joints, and actions of the robot
depending on what the developer requires. Likewise, there are some classes derived from
RobotIndustrial that are part of the abstractions made on the domain. These are Complement,
Movement, Articulation, Sensor, and RobotIndustrialspecifico. Specifically, the Motion class
sends the execution order of the actions performed by the robot actuators; in this case,
the servos that allow the displacement of the structure need an initial position and a final
position, as well as the joint to which they belong. This class provides access to the execute()
method that sends the system movement order and allows the library user to define the
movement parameters of the actuators and the joint to which they belong. There is also
another class defined within the abstractions in the domain designated as Articulation.
Similar to the physical world and allowing to work with the low-level Arduino hardware,
i.e., the framework contains the daily instructions for each actuator without high-level
abstractions. Here you can set the pins, names, and current positions of the joints of the
devices under construction. Likewise, there is the sensor class which is a generalized
abstraction of the sensors (environmental detectors) which is used in industrial robots with
Arduino. This uses a global variable that stores the data sent by the detector and executes
an action depending on the conditions set by the developer, and it also allows interacting
with the daily instructions of the sensors without high-level abstractions (e.g., ultrasonic,
PIR, LDR, and photoresistance, among others).

The developer is to extend the framework, instantiating, and assembly objects. The
developer must specify the joints, the movements, associations, and the initial and final
positions to be executed in the robot. Additionally, the developer can reuse any pre-defined
routine of the framework. Figure 4 shows a snippet of the code that supports the creation
of software products for IRArduino-SPL.



Electronics 2022, 11, 769 9 of 20

Figure 4. Snippets of source code in the framework developed for industrial robots with Arduino as
part of IRArduino-SPL.

The developed framework contains the main core assets of IRArduino-SPL (and it
itself is a core asset), showing the software reuse performed in the domain and refined
through expert opinion. These core assets allow the reuse of code fragments, high-level
abstractions, functionalities, and knowledge that were encapsulated as a library and found
thanks to the domain engineering performed. Likewise, these reusable assets can be used
in products (industrial robots with Arduino) with different capabilities and features, i.e.,
from a common reusable core, they got new customizable products.

It is worth noting a limitation that influenced the development of the library for
Arduino and that has to do with the computational power offered by the platform; it
was found that the computational resources to implement functionalities related to OOP
such as polymorphism, inheritance, and encapsulation are limited, which translates into
the fact that the possibilities and/or functionalities of the library are restricted, limiting
the implementation of high-level abstractions to get a context closer to robotics. The
above is not something new in the domain because this resource has also affected other
studies [42,43]. Therefore, attempts have also been made to implement traditional solutions
to this problem, such as parallel computing [44] or fog computing [45], although without
the expected acceptance of diffusion. This poses a problem on the Arduino platform that
can be addressed in future research and that represents an important limitation when
implementing software engineering on this type of development board.

3.2. Application Engineering

The SEI framework mentions that there are three main activities in the development
of software product lines: development of the core assets, products development, and SPL
management activities [46]. This section details the reuse of the core assets for building a
specific industrial robot.

3.2.1. Product Development at IRArduino-SPL

Product development comprises physically manufacturing IRArduino-SPL derivatives
from the core assets specified above, based on a production plan, to satisfy user require-



Electronics 2022, 11, 769 10 of 20

ments. The key inputs in product development are the requirements, product line scope,
core assets, and production plan to guide the construction of customizable software from
reusable assets [47].

The production plan for IRArduino-SPL comprises specifying the requirements for
developing a final product. For this purpose, the software requirements specification must
give a detailed description of the system’s behavior. For this reason, we have designed a base
template as a guide element to structure the development of industrial IRSs with Arduino
from the IRArduino-SPL. The template allows developers to specify requirements, such as the
general description of the device, the scope of the solution, the person in charge of it, among
other elements. Therefore, the developer knows which core assets to reuse and extend.

Figure 5 shows the activities to be performed by developers to produce a specific
product from IRArduino-SPL. First, the developer must specify the robot requirements,
which must detail characteristics, functionality, and the scope of the solution. Based on
this information, the developer structures and organizes the project to be developed. Then,
once the requirements are specified, the framework is reused. It gives access to a series of
abstractions and high-level functionalities (core assets) and customizes them to build the
desired product. Some components can be reused directly; however, the framework allows
for programming new hardware (e.g., new types of sensors) and software elements (e.g.,
creation of new predetermined routes).

Figure 5. Generic IRArduino-SPL use case diagram for production of a product in the SPL.

Subsequently, once the developer has customized the industrial robot, the source
code must be charged in the Arduino IDE, which allows the use of its compiler and its
communication interface to finally send the code to the industrial robot and perform the
relevant tests.

3.2.2. IRArduino-SPL Management

Organizing the SPL team development is a complex process that requires additional
effort. The entire process has been in charge of the IDIS research group, professors, and
students. This research provided an example application for facilitating the learning
process for programming robots solutions with Arduino. It allows students to discover the
characteristics of the framework and its main functionalities via abstraction and modularity.

The IRArduino-SPL framework follows a gray-box reuse approach. Therefore, the
source code can be extended or changed. There are no restrictions on including new hard-
ware elements, especially regarding new types of sensors and actuators. The extensibility
mechanism allows for adding many hardware devices and the use of idioms found in
domain engineering for both sensors and actuators. To add new sensors in the framework,
developers must access the .h file called complements, which is a slot reserved for adding
elements required by the programmer, besides being the only area of the library where the
developer can interact with the low-level hardware of the platform. For this, you must en-
capsulate each element to add (sensor or actuator) in a class that defines the properties (pin,
configuration, name) and functionalities (sent reading signal) of each sensor in addition to
the adjacent logic, if necessary.



Electronics 2022, 11, 769 11 of 20

Figure 6 shows an example of implementation for a PIR sensor in the proposed SPL,
also highlighting the programming idioms found in the domain engineering, which allow
simplifying and connecting with the abstractions made in the CAD process. This reuses
the logic implemented in the framework, allowing the use of common sentences for all
the sensors added and, therefore, the use of a common programming language among
all the devices that work under IRArduino-SPL. It enables to use of sentences such as
readdatafromsensor() independently of the device. The major advantage of this is that it
provides an appropriate level of abstraction for the industrial IRS domain with Arduino
and takes it away the concerns of low-level hardware and its programming.

Figure 6. Example of a class that abstracts a PIR sensor for IRArduino-SPL where the main program-
ming idioms encountered in domain engineering are highlighted.

Another activity that takes place within the management of an SPL at the corporate
level is the so-called technology foresight, which has to do with making sure that it posi-
tioned derived and planned products to take advantage of upcoming technology trends [48].
How could IRArduino-SPL support other technologies? and how could it integrate them
into future iterations? A first opportunity is given by the possibility of integrating the
Robot Operating System (ROS) as an established technology that could favorably affect
the domain of industrial IRS. If IRArduino was implemented with ROS, it could add great
technological advantages to the platform (3D simulation, dynamic motion determination,
computer vision, support for large grain reuse, and visual odometry systems, among oth-
ers). This is reflected in [10], where it is expressed that in the general domain of industrial
robots, the integration with ROS has been extremely successful, so specific courses on this
technology should make students aware of this framework.

Another technological trend that could substantially improve the application domain
of IRArduino-SPL is the concept of Smart Factories, which are collaborative manufacturing
systems that work in real-time to produce customized goods; this notion encompasses areas of
knowledge such as the internet of things, artificial intelligence, and massive data analytics [49].
Smart Factories would broaden the scope of the proposed SPL because it would move from
creating tailor-made IRS to implementing a set of collaborative industrial robots working
under a common goal. The main advantage of this would be that the learner using IRArduino-
SPL would not only understand the concept of software development for robots but would
also understand a broader concept such as smart factories with elements of collaborative
engineering, big data, and IoT, as well as perceive a leading technology in the domain [50].

To allow replication of the methods used and/or further research, the following
link (https://bit.ly/3miPRzv, accessed on 27 December 2021) provides the resources and
material used in this research.

https://bit.ly/3miPRzv


Electronics 2022, 11, 769 12 of 20

4. Case Study, Results and Discussion

A case study (Figure 7) based on the guidelines proposed in [34] allows to evaluate
with mechatronic engineering students the implementation of IRArduino-SPL. The case
is a robotic arm (Figure 8) with 5 degrees of freedom, 2 types of sensors, and 1 robotic
gripper, where the system must be derived from the core assets by students following the
guideline proposed SPL. It was carried out in a scholarly context in which students from
the mechatronics engineering career of the Corporación Universitaria Comfacauca took
part. Specifically, the collaboration involves 9 students (divided into 3 random groups)
who develop, socialize, implement, and evaluate the solution. The selected students know
areas such as microcontrollers, software programming, and the development of robotic
systems in hardware and software, so they know the areas needed to build an IRS with
Arduino. The activities that were followed during the case study were: socialization
and contextualization of the case study, presentation and introduction to IRArduino-SPL
through examples, application of the strategy proposed by the students, and finally the
evaluation of the application and a satisfaction survey to measure the usefulness of the tool.

Figure 7. Photographic evidence of the random groups that developed the case study using
IRArduino-SPL for the software development of an industrial robotics system with Arduino.

The students are to program a robot arm for transporting an object from one place to
another depending on changes in the environment (perceived by two sensors), using the
IRArduino-SPL framework. To avoid hardware influencing the results of the case study,
the same hardware was used to test each product derived from IRArduino-SPL by each
group, ensuring that hardware did not bias the results.

To determine the usefulness of IRArduino-SPL in the case study, it quantified the
software reuse index in each of the taking part groups. This reusability index is composed
of a set of three metrics that allow determining the actual usefulness of the tool concerning
the software required by the industrial robots developed. The reusability index is composed
of three metrics: the percentage of software reuse (R) proposed in [51], the Lines of Feature
Code (LoF), and the Number of Features (NoF) proposed in [52]. In addition, to evaluate the
usability perceived by the users who employed IRArduino-SPL, a 16-question questionnaire
was applied, which is based on the standardized questionnaires of Sauro et al. in [53].



Electronics 2022, 11, 769 13 of 20

Figure 8. Robotic arm that was used for the execution of the case study.

4.1. Case Study Execution and Data Collection

This section shows the execution and the record of the data taken from the case study,
where the students developed the software for the operation of an industrial robotic system
based on the guidelines provided and IRArduino-SPL. Table 2 shows the information
collected regarding the time required by each group to develop the software for this type of
electromechanical device. It measured the time taken by the activities in hours.

Table 2. Time records for the execution of the case study with IRArduino-SPL.

X Software Development Time Total Time for the Development of the Case Study

Group 1 2.0 2.3
Group 2 2.3 2.5
Group 3 2.1 2.3

The time spent by the participants in the execution of the case study indicates that
for two of the three groups, it was not enough. It could be a sign that the tool has a steep
learning curve and that the students need more time to understand the abstractions made
about the domain and the application of the tool. Students had doubts in understanding the
logic proposed by the developers for IRArduino-SPL because they needed clarifications on
the proposed abstractions, the methods to introduce them, as well as, a conditioning time to
reorient the way they usually develop (procedural) for hardware towards an object-oriented
programming approach. The above may be reasons the students took longer than expected
in the case study which could also be improved in future iterations of SPL training.

4.2. Metric 1: Percentage of Software Reuse

The percentage of software reuse (Equation (1)) estimates the number of lines of code
(without comments or blank lines) for a product P generated from IRArduino-SPL in
percentage terms [51].

R = (LR/TL) ∗ 100 (1)

where LR is the number of reused Source Lines of Code (SLOC), TL is the total lines of code
in the system, and R is the software reusability of the proposal in terms of a percentage
of the total lines of code. At a general level, results show that IRArduino-SPL is useful
because each of the three groups derived a product from the framework. Specifically, in
the first group, the percentage of reuse was 43%; for the second group it was 36%, and



Electronics 2022, 11, 769 14 of 20

for the third group, it was 38%. The framework allows for speeding up the development
of software applications for industrial robotic systems with Arduino. Table 3 shows the
percentages of software reuse in the case study.

Table 3. Records of the percentage of software reuse in the execution of the IRArduino-SPL case study.

X Percentage of Software Reuse Total SLOC

Group 1 43% 423
Group 2 36% 385
Group 3 38% 391

Focusing the analysis on the total SLOC of each of the groups, it can be observed at
a general level that the variation is 38 lines of code between groups 1 and 2. This may
be because the first ones program an extra movement (not required) to balance the robot
and that the servomotors (actuators) do not lose torque. Groups 2 and 3 have a similar
percentage of reuse presenting a difference of 2%, as in the total number of lines of code.
This small contrast is manifested because group 2 in the selection of sensors opted for a gas
sensor that is not in the repository of IRArduino-SPL, so they had to create the code for this
sensor using the logic of the proposed tool, unlike group 3 that selected two sensors (PIR
sensor and ultrasonic sensor) that were already in the repository. It shows the capability
of the framework for covering a great variety of reuse scenarios, allowing teachers and
students to explore many possible implementations.

4.3. Metric 2: Lines of Feature Code

The LoF metric allows us to determine whether a small fraction of the source code is
variable or not. A high value indicates that there are many lines of code dedicated to the
realization of the feature. The calculated value reveals the amount of variable code and
thus the complexity of maintainability [52]. The following equation allows determining
the mentioned metric, where LRF is the number of lines of feature code that are linked to a
feature, and TL is the number of total lines of the developed software.

LoF = (LRF/TL) ∗ 100 (2)

They are a few source code statements related to the feature calls. This indicates that
the most implemented features in the case study are those with a lower level of abstraction,
for example, features like Servo, Ultrasonic, addMotionForward, or addMotionBack, which
could mean that to achieve higher levels of reusability in the code, these specific statements
should be abstracted to a higher level, and linked to a hardware element. Table 4 shows the
values found for this metric.

Table 4. Lines of code of features quantified in the execution of the case study with IRArduino-SPL.

X LoF SLOC Linked Features

Group 1 16% 70
Group 2 15% 58
Group 3 17% 60

Although indeed, the value got in LoF could not be interpreted as a calculated re-
sult, some authors relate this metric with a high value suggesting a high complexity in
maintenance tasks, because each feature is a block of code that implements one or more
functionalities and its modification can lead to a series of consequences in the developed
system. Specifically, if the results of the case study are compared with other studies, the
values of the LoF metric are a little higher than normal, with IRArduino-SPL the results
show between 15 and 17%, while the consulted researches present values of around 13%,
without forgetting that these are product lines implemented only in software-related do-



Electronics 2022, 11, 769 15 of 20

mains. Therefore, in future iterations, work should be carried out to reduce the value of the
metric and thus improve the maintainability of IRArduino-SPL.

4.4. Metric 3: Number of Features

The NoF metric is directly related to the number of features used in implementing a
software product line. When the value is closer to N, the more features a program has and
its maintenance can be more complex [52].

The IRArduino-SPL implementations performed by the groups were diverse because
they gave them the possibility to include in their robot different hardware elements sup-
ported by the tool or to create some sensors or actuators. It also reflected this in the number
of features employed by the students. Therefore, in the NoF metric, some variety in the
number of features employed by each group can be observed. The diversity of features
used by the groups may also be because of the logic implemented in IRArduino-SPL, where
features such as robotAssembly or armarRobot are necessary for the code to work correctly.

Figure 9 shows sets out the features used by each group in conducting the IRArduino-
SPL case study. The images show the features used with a red box and the number of times
they were used.

Figure 9. Features used by each of the groups in the execution of the case study for IRArduino-SPL.



Electronics 2022, 11, 769 16 of 20

Specifically, group 1 used 65 feature instances that are a representation of the generated
product (industrial SR with Arduino) from IRArduino-SPL for their specific case. This group
used a PIR sensor, an ultrasonic sensor, and 5 servo motors. Regarding the sensors, it can
be shown that 4 features related to the data reading functionalities (readDataFromSensorP
and readDataFromSensorU) are also used, which could in future iterations not be a separate
feature, but be included within the sensor feature, so as not to complicate the maintainability
of the SPL. Moreover, it can be seen that the addActivity feature was used, which is linked
to the recurring activities that the robots do (movements) after detecting a change in the
environment (sensor). Here, the students used this feature so that once the PIR sensor detects
something; the robot makes a series of pre-programmed movements that have to do with
grabbing an object and leaving the robot in a central position of its axes, allowing to save
lines of source code so that the robot returns to a central position after grabbing the object.

For group 2 it can be observed that the number of feature instances (60) are like those
of group 1, with only 5 features difference, this is because the sensors of this group census
twice to ensure that the detection is correct which does not occur for group 2, this is related
more to the underlying hardware and its accuracy and not to the robot code. Moreover,
students in group 2 used a similar logic to group 1, using the addActivity feature they add
predetermined activities when the robot detects a change in the environment. Finally, it
should be noted that it used the generic feature in sensors because the students wanted to
use a gas sensor that was not among the options provided in IRArduino-SPL.

Group 3 used 58 feature instances, which compared to the other groups, is the smallest
number, which is striking since they also got the lowest percentage of reuse. Therefore, it
could be shown that for IRArduino-SPL, the more features used, the higher the reusability,
but product maintainability may be more complicated.

4.5. Usability at IRArduino-SPL

Students find it easy to use IRArduino-SPL, because it uses common terms of the
domain such as sensors, actuators, joints, among others, providing an advantage over the
normal Arduino environment. However, some difficulties were observed in the technical
knowledge of OOP, where some students do not understand facilities such as inheritance
or polymorphism that are exploited within the proposed reuse strategy. Moreover, it was
detected with the case study that IRArduino-SPL has a steep learning curve because the
students had some problems with the understanding of some software engineering concepts,
such as abstraction, modularity, product lines, or code generators. After all, these types of
tools are little used or spread in students of hardware-related careers, such as electronic
engineering or mechatronics engineering, so students should be introduced to this type of
facilities for software development, such as ROS or the same proposal of this research.

Among the different perspectives expressed by the students, it was found that
IRArduino-SPL provides some advantages that have to do with the use of object-oriented
programming since it allowed choosing among different industrial robots with Arduino
that have some similar characteristics. Using high-level abstractions has allowed us to
break down some of the most common functions used within the Arduino ecosystem in the
SRI, such as transporting objects or reacting to a change in the environment, allowing these
to be reused in future constructions of industrial robots. Another important functionality is
the use of a sensor and actuator repository that provides developers with functions specific
to these devices and acts as a hardware abstraction layer in the domain.

The current limitations of the Arduino development platform do not allow adopt-
ing specific elements of IRS such as graphical interfaces or motion kinematics, so future
research derived from this work may be related to porting IRArduino-SPL to more spe-
cialized software such as ROS allowing to count on the facilities offered by Arduino (ease
of development, compatibility, free hardware), but focusing on the specific domain of
robots using these microcontrollers so that special emphasis is placed on elements such
as virtualization, motion dynamics, signal conditioning, and software reuse, among other
specific aspects of these electromechanical systems.



Electronics 2022, 11, 769 17 of 20

5. Conclusions and Further Work

IRArduino-SPL is a software product line for educational purposes. IRArduino-SPL
development includes domain and application engineering activities for building industrial
robots with Arduino. The reusable assets, such as domain model, feature model, scope,
and production strategy, are the basis for the SPL. In addition, a case study was developed
applying the SPL with mechatronic engineering students, using Arduino with a robotic
arm with 5 degrees of freedom, 2 types of sensors, and 1 robotic gripper for the Arduino
platform. As a major result, it was found that IRArduino-SPL is a coherent, useful, and
implementable reuse strategy in academic environments. Thus, the SPL abstraction and
modularity enable it to be built by reusing generic elements. The major contribution of
this research is the empirical evidence using specific reuse approaches, such as SPLs, in
a little-explored domain from the point of view of software reuse and its opportunity in
an educational context. Implementing IRArduino-SPL contributes to the Arduino domain,
with knowledge and experience where evidence is limited and unclear. Additionally, the
robotic programming learner can establish the basis for the future development of robots
in industrial settings.

The analysis, focusing on the metrics studied in the case study, shows that a software
reuse mechanism based on engineering product lines improved the software development
reuse by approximately 40%. It represents less programming effort and raises the abstrac-
tion level to understand and achieve decomposition in the SPL. Therefore, the efforts saved
by students could be used for learning other matters in both robotic and computer science.

As future work, integrating technologies such as ROS or Gazebo could enable some
functionalities that the Arduino domain limits because of its computational capacities, such
as artificial vision or the determination of robot mobility dynamics. Moreover, the evolu-
tionary processes of SPLs can take years, so new reuse approaches, such as model-driven
engineering or component-based development, can be added for achieving new interactions.

Author Contributions: Conceptualization, A.F.S.P. and J.A.H.A.; methodology, A.F.S.P., P.H.R. and
J.A.H.A.; software, A.F.S.P. and J.A.H.A.; validation, A.F.S.P. and P.H.R.; formal analysis, A.F.S.P.,
P.H.R. and J.A.H.A.; writing—review and editing, A.F.S.P., P.H.R. and J.A.H.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding, and the APC was funded by Corporación
Universitaria Comfacauca and Universidad del Cauca.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: A video of the proof of concept and materials used in this research can
be accessed in the following link (https://bit.ly/3miPRzv, accessed on 27 December 2021).

Acknowledgments: Thanks to Corporación Universitaria Comfacauca for providing its facilities and
to Jorge Prado and Ginna Andrea Ramírez for their help in conducting the research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SPL Software Product Line
IRS Industrial Robotic Systems
MDE Model-Driven Engineering
CBSE Component-Based Software Engineering
SOA Service Oriented Architecture
OOP Object-oriented programming
SLOC Source Lines of Code
ROS Robot Operating System

https://bit.ly/3miPRzv


Electronics 2022, 11, 769 18 of 20

References
1. Pagani, R.; Nuzzi, C.; Ghidelli, M.; Borboni, A.; Lancini, M.; Legnani, G. Cobot User Frame Calibration: Evaluation and

Comparison between Positioning Repeatability Performances Achieved by Traditional and Vision-Based Methods. Robotics 2021,
10, 45. [CrossRef]

2. Ghafil, H.N.; Jármai, K. Research and Application of Industrial Robot Manipulators in Vehicle and Automotive Engineering, a
Survey. In Vehicle and Automotive Engineering 2; Jármai, K., Bolló, B., Eds.; Springer International Publishing: Cham, Switzerland,
2018; pp. 611–623. [CrossRef]

3. Zereik, E.; Bibuli, M.; Mišković, N.; Ridao, P.; Pascoal, A. Challenges and Future Trends in Marine Robotics. Annu. Rev. Control
2018, 46, 350–368. [CrossRef]

4. Garduno-Aparicio, M.; Rodriguez-Resendiz, J.; Macias-Bobadilla, G.; Thenozhi, S. A Multidisciplinary Industrial Robot Approach
for Teaching Mechatronics-Related Courses. IEEE Trans. Educ. 2018, 61, 55–62. [CrossRef]

5. Jafri, S.R.N.; Ahmed, A.; Azam, A.; Ihsan, U.B.; Syed, S.N.; Uddin, R. Assistive Mobile Robot for Industrial and Academic
Applications. In Proceedings of the 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST),
Islamabad, Pakistan, 14–18 January 2020; pp. 332–337. [CrossRef]

6. Heineck, T.; Goncalves, E.; Sousa, A.; Oliveira, M.; Castro, J. Model-Driven Development in Robotics Domain: A Systematic
Literature Review. In Proceedings of the 2016 X Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS), Maringá, Brazil, 19–20 September 2016; pp. 151–160. [CrossRef]

7. Siepmann, F.; Ziegler, L.; Kortkamp, M.; Wachsmuth, S. Deploying a Modeling Framework for Reusable Robot Behavior to Enable
Informed Strategies for Domestic Service Robots. Robot. Auton. Syst. 2014, 62, 619–631. [CrossRef]

8. Brugali, D.; Siciliano, B.; Khatib, O.; Groen, F. Software Engineering for Experimental Robotics; Springer Tracts in Advanced Robotics;
Springer: Berlin/Heidelberg, Germany, 2007; Volume 30. [CrossRef]

9. Ahmad, A.; Babar, M.A. Software Architectures for Robotic Systems: A Systematic Mapping Study. J. Syst. Softw. 2016, 122, 16–39.
[CrossRef]

10. Solis, A.; Hurtado, J. Reutilización de Software En La Robótica Industrial: Un Mapeo Sistemático. Rev. Iberoam. Autom. Inf. Ind.
2020, 17, 354–367. [CrossRef]

11. Londoño Ospina, N.J. Arquitectura software para robots móviles aplicando la metodología MDASR. Av. Sist. Inf. 2009, 6, 133–144.
12. Vrochidou, E.; Manios, M.; Papakostas, G.A.; Aitsidis, C.N.; Panagiotopoulos, F. Open-Source Robotics: Investigation on

Existing Platforms and Their Application in Education. In Proceedings of the 26th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 13–15 September 2018; pp. 1–6. [CrossRef]

13. Estévez, E.; Sánchez García, A.; Gámez García, J.; Gómez Ortega, J. Aproximación Basada en UML para el Diseño y Codificación
Automática de Plataformas Robóticas Manipuladoras. Rev. Iberoam. Autom. Inf. Ind. RIAI 2017, 14, 82–93. [CrossRef]

14. Brugali, D. Model-Driven Software Engineering in Robotics: Models Are Designed to Use the Relevant Things, Thereby Reducing
the Complexity and Cost in the Field of Robotics. IEEE Robot. Autom. Mag. 2015, 22, 155–166. [CrossRef]

15. Rodas-Silva, J.; Galindo, J.A.; Garcia-Gutierrez, J.; Benavides, D. Selection of Software Product Line Implementation Components
Using Recommender Systems: An Application to Wordpress. IEEE Access 2019, 7, 69226–69245. [CrossRef]

16. Atmatzidou, S.; Demetriadis, S. A Didactical Model for Educational Robotics Activities: A Study on Improving Skills through
Strong or Minimal Guidance. In Educational Robotics in the Makers Era; Alimisis, D., Moro, M., Menegatti, E., Eds.; Advances
in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2017; Volume 560, pp. 58–72.
[CrossRef]

17. Brugali, D.; Hochgeschwender, N. Software Product Line Engineering for Robotic Perception Systems. Int. J. Semant. Comput.
2018, 12, 89–107. [CrossRef]

18. Gherardi, L.; Hunziker, D.; Mohanarajah, G. A Software Product Line Approach for Configuring Cloud Robotics Applications.
In Proceedings of the 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 27 June–2 July 2014;
pp. 745–752. [CrossRef]

19. Abdelhady, M.A.; Dresscher, D.; Broenink, J.F. Reuse-Oriented SLAM Framework Using Software Product Lines. In Proceedings of
the 2020 Fourth IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 9–11 November 2020; pp. 187–190.
[CrossRef]

20. Concha Sánchez, A.; Figueroa-Rodríguez, J.F.; Fuentes-Covarrubias, A.G.; Fuentes-Covarrubias, R.; Gadi, S.K. Recycling and
Updating an Educational Robot Manipulator with Open-Hardware-Architecture. Sensors 2020, 20, 1694. [CrossRef] [PubMed]

21. Marsono, M.; Yoto, Y.; Suyetno, A.; Nurmalasari, R. Design and Programming of 5 Axis Manipulator Robot with GrblGru Open
Source Software on Preparing Vocational Students’ Robotic Skills. J. Robot. Control JRC 2021, 2, 539–545. [CrossRef]

22. Loukatos, D.; Petrongonas, E.; Manes, K.; Kyrtopoulos, I.-V.; Dimou, V.; Arvanitis, K.G. A Synergy of Innovative Technologies
towards Implementing an Autonomous DIY Electric Vehicle for Harvester-Assisting Purposes. Machines 2021, 9, 82. [CrossRef]

23. Kulshreshtha, M.; Chandra, S.S.; Randhawa, P.; Tsaramirsis, G.; Khadidos, A.; Khadidos, A.O. OATCR: Outdoor Autonomous
Trash-Collecting Robot Design Using YOLOv4-Tiny. Electronics 2021, 10, 2292. [CrossRef]

24. Takeda, M.; Hirata, Y.; Weng, Y.-H.; Katayama, T.; Mizuta, Y.; Koujina, A. Accountable System Design Architecture for Embodied
AI: A Focus on Physical Human Support Robots. Adv. Robot. 2019, 33, 1248–1263. [CrossRef]

25. Geraldi, R.T.; Reinehr, S.; Malucelli, A. Software Product Line Applied to the Internet of Things: A Systematic Literature Review.
Inf. Softw. Technol. 2020, 124, 106293. [CrossRef]

http://doi.org/10.3390/robotics10010045
http://dx.doi.org/10.1007/978-3-319-75677-6_53
http://dx.doi.org/10.1016/j.arcontrol.2018.10.002
http://dx.doi.org/10.1109/TE.2017.2741446
http://dx.doi.org/10.1109/IBCAST47879.2020.9044588
http://dx.doi.org/10.1109/SBCARS.2016.12
http://dx.doi.org/10.1016/j.robot.2012.10.013
http://dx.doi.org/10.1007/978-3-540-68951-5
http://dx.doi.org/10.1016/j.jss.2016.08.039
http://dx.doi.org/10.4995/riai.2020.13335
http://dx.doi.org/10.23919/SOFTCOM.2018.8555860
http://dx.doi.org/10.1016/j.riai.2016.11.001
http://dx.doi.org/10.1109/MRA.2015.2452201
http://dx.doi.org/10.1109/ACCESS.2019.2918469
http://dx.doi.org/10.1007/978-3-319-55553-9_5
http://dx.doi.org/10.1142/S1793351X18400056
http://dx.doi.org/10.1109/CLOUD.2014.104
http://dx.doi.org/10.1109/IRC.2020.00037
http://dx.doi.org/10.3390/s20061694
http://www.ncbi.nlm.nih.gov/pubmed/32197400
http://dx.doi.org/10.18196/jrc.26134
http://dx.doi.org/10.3390/machines9040082
http://dx.doi.org/10.3390/electronics10182292
http://dx.doi.org/10.1080/01691864.2019.1689168
http://dx.doi.org/10.1016/j.infsof.2020.106293


Electronics 2022, 11, 769 19 of 20

26. Bonfanti, S.; Carissoni, M.; Gargantini, A.; Mashkoor, A. Asm2C++: A Tool for Code Generation from Abstract State Machines
to Arduino. In NASA Formal Methods; Barrett, C., Davies, M., Kahsai, T., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Switzerland, 2017; Volume 10227, pp. 295–301. [CrossRef]

27. Ataide, A.; Barros, J.P.; Brito, I.S.; Gomes, L. Towards Automatic Code Generation for Distributed Cyber-Physical Systems: A First
Prototype for Arduino Boards. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–4. [CrossRef]

28. Yaşar, O. A New Perspective on Computational Thinking. Commun. ACM 2018, 61, 33–39. [CrossRef]
29. Chalmers, C. Robotics and Computational Thinking in Primary School. Int. J. Child-Comput. Interact. 2018, 17, 93–100. [CrossRef]
30. Angeli, C.; Valanides, N. Developing Young Children’s Computational Thinking with Educational Robotics: An Interaction Effect

between Gender and Scaffolding Strategy. Comput. Hum. Behav. 2020, 105, 105954. [CrossRef]
31. Northrop, L.; Clements, P.; Bachmann, F.; Bergey, J.; Chastek, G.; Cohen, S.; Donohoe, P.; Jones, L.; Krut, R.; Little, R.; et al.

A Framework for Software Product Line Practice, Version 5.0. SEI–2007. Available online: https://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=495357 (accessed on 27 December 2021).

32. Czarnecki, K.; Eisenecker, U. Generative Programming: Methods, Tools, and Applications; Addison Wesley: Boston, MA, USA, 2000.
33. Ojeda, M.C.C.; Alegría, J.A.H.; Rodriguez, F.J.Á.; Melenje, P.H.R. A Collaborative Method for a Tangible Software Product Line

Scoping. In Proceedings of the 2018 ICAI Workshops (ICAIW), Bogotá, Colombia, 1–3 November 2018; pp. 1–6. [CrossRef]
34. Runeson, P.; Höst, M. Guidelines for Conducting and Reporting Case Study Research in Software Engineering. Empir. Softw. Eng.

2009, 14, 131–164. [CrossRef]
35. Gou, Y.; Dam, H.K.; Ghose, A. Towards Semantic Merging of Versions of BDI Agent Systems. In PRIMA 2013: Principles and Practice

of Multi-Agent Systems; Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K., Eds.; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 437–444. [CrossRef]

36. Mendonca, M.; Branco, M.; Cowan, D. S.P.L.O.T.: Software Product Lines Online Tools. In Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming Systems Languages and Applications—OOPSLA ’09, Orlando, FL,
USA, 25–29 October 2009; p. 761. [CrossRef]

37. Kastner, C.; Thum, T.; Saake, G.; Feigenspan, J.; Leich, T.; Wielgorz, F.; Apel, S. FeatureIDE: A Tool Framework for Feature-
Oriented Software Development. In Proceedings of the 24th 2009 IEEE 31st International Conference on Software Engineering,
Vancouver, BC, Canada, 16–24 May 2009; pp. 611–614. [CrossRef]

38. Guerra, E.; Aniche, M. Achieving Quality on Software Design through Test-Driven Development. In Software Quality Assurance;
Elsevier: Amsterdam, The Netherlands, 2016; pp. 201–220. [CrossRef]

39. Aho, A.V.; Sethi, R.; Ullman, Y.J.D. Compiladores: Principios, Técnicas y Herramientas; Pearson Educación: London, UK, 1998.
40. Asokan, A.; Vigneshwar, M. Design and Control of an EMG-Based Low-Cost Exoskeleton for Stroke Rehabilitation. In Proceedings

of the 2019 Fifth Indian Control Conference (ICC), New Delhi, India, 9–11 January 2019; pp. 478–483.
41. Solis Pino, A.F.; Vargas-Ordoñez, L.M.; Collazos, C.A. Model for Writing Scientific Articles Remotely Through Collaborative

Tasks. Tecnológicas 2021, 24, e1701. [CrossRef]
42. de Almeida Florencio, F.; Moreno, E.D.; Teixeira Macedo, H.; de Britto Salgueiro, R.J.P.; Barreto do Nascimento, F.; Oliveira

Santos, F.A. Intrusion Detection via MLP Neural Network Using an Arduino Embedded System. In Proceedings of the 2019 Fifth
Indian Control Conference (ICC) 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil,
5–8 November 2018; pp. 190–195. [CrossRef]

43. Barbon, G.; Margolis, M.; Palumbo, F.; Raimondi, F.; Weldin, N. Taking Arduino to the Internet of Things: The ASIP Programming
Model. Comput. Commun. 2016, 89–90, 128–140. [CrossRef]

44. Ádám, N.; Gergely, T.; Hulič, M.; Hurtuk, J.; Madoš, B. Proto-Cluster: A Multi-Device Approach to Parallel Computing.
In Proceedings of the 2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany,
Slovakia, 24–26 January 2019; pp. 176–180. [CrossRef]

45. Krishnan, Y.N.; Bhagwat, C.N.; Utpat, A.P. Fog Computing—Network Based Cloud Computing. In Proceedings of the 2015
2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015;
pp. 250–251. [CrossRef]

46. Northrop, L.M. SEI’s Software Product Line Tenets. IEEE Softw. 2002, 19, 32–40. [CrossRef]
47. Ullah, M.I.; Ruhe, G. Towards Comprehensive Release Planning for Software Product Lines. In Proceedings of the 2006 Interna-

tional Workshop on Software Product Management (IWSPM’06—RE’06 Workshop), Minneapolis, MN, USA, 12 September 2006;
pp. 51–56. [CrossRef]

48. Clements, P.C.; Jones, L.G.; Northrop, L.M.; McGregor, J.D. Project Management in a Software Product Line Organization. IEEE
Softw. 2005, 22, 54–62. [CrossRef]

49. Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart Factory of Industry 4.0: Key Technologies, Application Case, and
Challenges. IEEE Access 2018, 6, 6505–6519. [CrossRef]

50. Votrubec, R.; Koblasa, F. Control System of Vehicle for Smart Factory Model with Principles of Industry 4.0. In Proceedings of the
30th DAAAM International Symposium, Zadar, Croatia, 23–26 October 2019; pp. 261–267.

51. El-Sharkawy, S.; Yamagishi-Eichler, N.; Schmid, K. Metrics for Analyzing Variability and Its Implementation in Software Product
Lines: A Systematic Literature Review. Inf. Softw. Technol. 2019, 106, 1–30. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-57288-8_21
http://dx.doi.org/10.1109/ETFA.2017.8247737
http://dx.doi.org/10.1145/3214354
http://dx.doi.org/10.1016/j.ijcci.2018.06.005
http://dx.doi.org/10.1016/j.chb.2019.03.018
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=495357
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=495357
http://dx.doi.org/10.1109/ICAIW.2018.8554999
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/978-3-642-44927-7_32
http://dx.doi.org/10.1145/1639950.1640002
http://dx.doi.org/10.1109/ICSE.2009.5070568
http://dx.doi.org/10.1016/B978-0-12-802301-3.00009-0
http://dx.doi.org/10.22430/22565337.1701
http://dx.doi.org/10.1109/SBESC.2018.00036
http://dx.doi.org/10.1016/j.comcom.2016.03.016
http://dx.doi.org/10.1109/SAMI.2019.8782772
http://dx.doi.org/10.1109/ECS.2015.7124902
http://dx.doi.org/10.1109/MS.2002.1020285
http://dx.doi.org/10.1109/IWSPM.2006.9
http://dx.doi.org/10.1109/MS.2005.133
http://dx.doi.org/10.1109/ACCESS.2017.2783682
http://dx.doi.org/10.1016/j.infsof.2018.08.015


Electronics 2022, 11, 769 20 of 20

52. Abilio, R.; Vale, G.; Figueiredo, E.; Costa, H. Metrics for Feature-Oriented Programming. In Proceedings of the 2016 IEEE/ACM
7th International Workshop on Emerging Trends in Software Metrics (WETSoM), Austin, TX, USA, 15 May 2016; pp. 36–42.
[CrossRef]

53. Sauro, J.; Lewis, J.R. Standardized Usability Questionnaires. In Quantifying the User Experience; Elsevier: Amsterdam, The
Netherlands, 2016; pp. 185–248. [CrossRef]

http://dx.doi.org/10.1109/WETSoM.2016.014
http://dx.doi.org/10.1016/B978-0-12-802308-2.00008-4

	Introduction
	Related Work
	Software Reuse in Industrial Robots with Controllers
	Arduino Implemented in the Robotics Domain
	Software Engineering on the Arduino Platform 
	Educational Robotic and Arduino

	Materials and Methods
	Domain Engineering 
	Arduino Code Analysis
	Scoping of IRArduino-SPL
	IRArduino-SPL Architecture
	Core Asset Development

	Application Engineering
	Product Development at IRArduino-SPL
	IRArduino-SPL Management


	Case Study, Results and Discussion
	Case Study Execution and Data Collection
	Metric 1: Percentage of Software Reuse
	Metric 2: Lines of Feature Code
	Metric 3: Number of Features
	Usability at IRArduino-SPL

	Conclusions and Further Work
	References

