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Abstract: The recent COVID-19 pandemic has shown that there is a substantial need for high-precision
reliable diagnostic tests able to detect extremely low virus concentrations nearly instantaneously.
Since conventional methods are fairly limited, there is a need for an alternative method such as THz
spectroscopy with the utilization of THz metamaterials. This paper proposes a method for sensitivity
characterization, which is demonstrated on two chosen multi-band THz metamaterial sensors and
samples of three different subtypes of the influenza A virus. Sensor models have been simulated in
WIPL-D software in order to analyze their sensitivity both graphically and numerically around all
resonant peaks in the presence of virus samples. The sensor with a sandwiched structure is shown
to be more suitable for detecting extremely thin virus layers. The distribution of the electric field
for this sensor suggests a possibility of controlling the two resonant modes independently. The
sensor with cross-shaped patches achieves significantly better Q-factors and refractive sensitivities
for both resonant peaks. The reasoning can be found in the wave–sample interaction enhancement
due to the better electromagnetic field confinement. A high Q-factor of around 400 at the second
resonant frequency makes the sensor with cross-shaped patches a promising candidate for potential
applications in THz sensing.

Keywords: influenza A; metamaterials; sensitivity; sensors; THz spectroscopy

1. Introduction

The current COVID-19 pandemic has placed enormous pressure on medical diagnos-
tics to provide the fastest results possible in order to stop the spread of the virus and provide
the best medical care to infected patients. Besides SARS-CoV-2, which has caused the recent
outbreak, there are many viruses with significant potential to lead to future pandemics.
One of the most concerning groups are respiratory viruses such as avian influenza (AI)
virus whose subtypes were used as samples in this paper, as they tend to spread not only
by contact but also via droplets and aerosols which makes their transmission particularly
difficult to control [1]. Proper surveillance is then essential not only for monitoring seasonal
outbreaks but for detecting unusual events that may indicate novel virus types [2].

All of the above emphasizes the need for high-precision reliable diagnostic tests able to
detect extremely low virus concentrations nearly instantaneously. Conventional methods
such as real-time polymerase chain reaction or loop-mediated isothermal amplification
(molecular approach), chemiluminescence immunoassay, and enzyme-linked immunosor-
bent assay (immuno-based detection) often do not satisfy all mentioned requests as they
have certain limitations reflected in their high time consumption, difficulties during use
and/or poor sensitivity [3]. In order to overcome these deficiencies and increase the general
effectiveness of tests, researchers have been looking for alternative label-free methods for
virus detection [4].

One of the proposed methods that has attracted worldwide interest is THz spec-
troscopy. In the THz range, the excitation of intra and intermolecular vibrations is greater
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than the absorption which marks THz technology as effective in sensing applications [5].
Terahertz range correlates to the vibrational resonances of significant biomolecules such as
proteins, RNA, and DNA [6]. In addition, THz technology is known for its non-ionizing
nature which makes it suitable for label-free sensing. At the same time, THz wavelengths
can be much larger than the size of particles in the sample which results in low spatial
resolution. Therefore, there is a need to maximize the interaction between particles and
generated waves which can be achieved by utilizing THz metamaterials [7]. From a macro-
scopic perspective, metamaterials can be regarded as homogenous materials, but they are in
fact matrices of meta-atoms with electric and magnetic resonances [8]. The electromagnetic
(EM) properties of metamaterials strongly depend on the design of meta-atoms which is
highly customizable in terms of the choice of geometry and materials. As a result, many dif-
ferent THz metamaterials were investigated through computer simulations and laboratory
measurements for various applications [9–11].

Detectors based on THz metamaterials are proven to be capable of the accurate screen-
ing process and detection of biomaterials such as viruses [6]. In terms of the virus particle
size, they cover a wide range of dimensions, from 30 nm for bacteriophage to around
120 nm for SARS-CoV-2. These detectors can be realized as absorbers, reflectors, or anten-
nas. For example, the THz absorber for AI virus detection presented in [12] uses a Jerusalem
cross metamaterial cell based on spoof surface plasmon polaritons resonance mode. Meta-
material reflector could be implemented using graphene H shapes at a semiconductor
substrate as shown in [13] where the detection of AI viruses has been performed by observ-
ing the reflection response. An example of slot antenna realization with silver nano-wires to
improve virus detection is given in [14]. Plasmonic sensors for detecting Zika viruses could
use particles of gold in order to improve sensor quality [15]. A multi-resonance detecting
chip presented in [16] was used to detect the AI virus concentration from the obtained
transmittance. Transmission spectrum has also been observed in [17] for the purpose of
detecting PRD1 and MS2 viruses using THz metamaterial with split-ring resonators.

In general, THz sensing methods are based on (i) measuring the shifts in resonant
frequencies produced by the refractive change of the sensor surrounding caused by the
presence of sample or (ii) measuring the absorption spectrum to identify the peaks that
correspond to the investigated sample. If using the sensing method based on the frequency
shift, a narrower peak and high Q-factor (defined as f resonant/FWHM where FWHM is a full-
width at half-maximum) are needed in order to provide a better resolution for the frequency
shifting. Narrowband THz perfect metamaterial absorbers (PMAs) have become valuable
candidates for such sensing techniques. However, their bandwidths are typically larger
than 10% of the central resonant frequency which results in a relatively low Q-factor [18]. In
order to improve the sensing capabilities of narrowband PMAs by increasing Q-factor, many
different physical mechanisms have been exploited such as reduction of material losses by
eliminating the middle layer of dielectric in typical metal–dielectric–metal structures or
suppressing the absorption and radiation loss by the diffraction grating induced guided
resonance mode [19,20].

In this paper, we propose a novel method for sensitivity analysis that should provide
detailed sensing characterization of the chosen sensor and assist in its practical use. The
main goal of the proposed method is to accompany the complete process of detection, from
choosing the right sensor for the application of interest to the analysis of measurement
data in order to determine the properties of an unknown sample. Therefore, it should
be able to provide a suitable comparison of different sensors, showcase both strengths
and weaknesses of the chosen sensor, facilitate utilization in the laboratory conditions and
finally, help in collecting, organizing, and processing the obtained data.

In order to respond to all of the mentioned requests as well as possible, the proposed
method uses a combined graphical and numerical approach. The graphical part considers
detection curves for different samples and contributes to easier visualization of the sensor
capabilities to estimate the properties of the specific sample. Additionally, it can be utilized
in the laboratory for the rapid assessment of measurement results. On the other hand,
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the numerical part of our method offers numerous possibilities for a detailed character-
ization of both sensor and the obtained results as it complements the graphical part in
terms of precision.

The method was demonstrated on two different PMAs. In Section 2, the properties of
the chosen sensors and virus samples are thoroughly described. In Section 3, the proposed
method for sensitivity analysis will be presented and supported with the results obtained
through 3D EM simulations of the chosen PMAs with and without deposited virus samples.
The conclusions drawn from the analysis will be presented in Section 4.

2. Materials and Methods

Two different dual-band THz PMAs have been chosen for the purpose of demonstra-
tion as they produce more complex frequency responses and therefore require broader
sensitivity analysis compared to the single-band sensors. The first PMA is a conventional
planar metal-dielectric-metal sandwiched structure presented in [21]. The second PMA
is based on a dielectric/metal structure from [20] whose dimensions we have optimized
for the chosen virus samples. We will refer to these two absorbers as SquarePMA and
CrossPMA, respectively.

2.1. Unit Cells Design and Modelling

The unit cells of SquarePMA and CrossPMA are presented in Figure 1a,b, respectively.
The SquarePMA unit cell structure is composed of a ground layer and a resonator both
made of gold with a layer of polyimide of ε = 3.5(1 + j0.0027) in between. The resonator
involves a square frame and four orthogonal triangles. The CrossPMA unit cell consists of
a cross-shaped patch made of GaAs with ε = 12.9 + j0.0774 printed on a copper film. The
dimensions of interest are given in Figure 1.
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The conductivity of both gold and copper varies with the increase in frequency. This
variation can be taken into account by using the Drude model:

σ =
ε0ω

2
p

γ− jω
(1)

whereωp = 2π fp is the plasma frequency and γ is the damping rate. The corresponding
values are 1.32·1016 s−1 and 10.5·1013 s−1 for copper and 1.35·1016 s−1 and 12.8·1013 s−1 for
gold [22].

Additionally, the thickness of the metallic ground layer for both PMAs is over the skin
depth for all operating frequencies which is crucial in order to minimize the dissipation
loss and achieve better confinement in the sensor structure. The ground layer provides
isolation between the substrate and the metamaterial sensor thus eliminating the effect of
electric field decay [23].

The proper modeling of a complete metamaterial sensor structure requires repeating
described unit cells periodically along the x- and y-axes, thus creating the orthogonal
lattices shown in Figure 2.
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The metamaterial structures from Figure 2 have been modeled in WIPL-D software
by using periodic boundary conditions (PBC) along the x- and y-axes. PBC option is only
available in the scatterer operation mode [24]. For these particular structures, we have
chosen the bistatic radar cross-section (RCS) mode as the position of the field generator
is fixed all the time. Port 1 and Port 2 have been placed above and below the structures,
respectively. Port 1 was illuminated by the TEM plane wave propagating along the z-axes.

As a result of WIPL-D simulations, we have obtained frequency-dependent scattering
parameters of the observed sensor structures. With Port 1 being the excited port, two main
parameters of interest are s11 and

s21 which give valuable information about the incident power distribution after the
interaction. The incident power divides into reflected, transmitted, and absorbed power, all
completely described by the obtained scattering parameters. Transmitted power defined
through normalized transmitted power |s21|2 is negligible because of the metallic ground
plane. Reflected power defined through normalized reflected power |s11|2 is not as small
as transmitted power and it varies greatly with the change of frequency. Under these
conditions, absorbed power is defined through the absorption (A) in the simplified form:

A = 1− |s11|2 (2)

According to (2), local minima of |s11| correspond to the local maxima of A. For the
purpose of this analysis, we have chosen to observe the absorption response rather than
the reflection response since the chosen THz metamaterial sensors are designed as PMAs.

2.2. Virus Samples

The main sample selection criterion that we have set in order to thoroughly explore
the sensing capabilities of the chosen sensors is the existence of many subtypes with
relatively similar optical properties. We also wanted to investigate whether these sensors
are appropriate for the relevant medical purpose. For these reasons, we have chosen three
different subtypes of influenza A virus (IAV)—H1N1, H5N2, and H9N2. IAVs are RNA
viruses that represent a major threat to human health as they can cause highly contagious
respiratory illnesses. The potential pandemic risk posed by IAV subtypes is constantly
assessed through regular monitoring and even evaluation tools developed with assistance
from influenza experts. Subtypes that have been used as samples in this paper are currently
mostly marked as subtypes with moderate risk [25].

We have modeled all three virus subtypes as dielectric layers that continuously cover
the top surface of the sensor. The frequency-dependent complex permittivity of samples
has been calculated by squaring the complex refractive index (ñ = n + j k) for each used
frequency. In order to obtain ñ, we have used the Drude–Lorentz model:
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ñ =
√
ε =

√
1.52 −

ω2
p

ω2 −ω2
0 + jωγ

(3)

where ε is the complex permittivity,ωp = 4 · 1012 s−1 is the plasma frequency,
ω0 = 2.8π · 1012 s−1 is the resonant frequency and γ = 4 · 1012 s−1 is the damping

coefficient. Then, we modified ñ for each virus strain according to optical properties
retrieved by THz spectroscopy given in Table 1 [26]. An example of the dependence of the
refractive index on frequency is given for H9N2 in Figure 3.

Table 1. Optical properties of three IAV strains for specific protein concentration.

Strain Name
Protein Concentration

[mg/mL]
Refractive Index: A n + B j k

A B

H1N1 0.54 1 1.4
H5N2 0.2 1 1
H9N2 0.28 1.2 1.4
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The refractive index of the sample depends on the virus concentration as Table 1
suggests. Consequently, two samples of different concentrations of the same virus subtype
can be regarded in a similar manner as two samples of different virus subtypes.

3. Results and Discussion

The results for chosen dual-band THz metamaterial sensors are presented with a focus
on the characterization of their performance in the process of IAV detection.

3.1. Absorption Responses of Sensor

The absorption responses for the SquarePMA and CrossPMA are given in Figure 4.
Figure 4a shows two resonant peaks with high values of absorption of 97.25% and

96.03%. The strong absorption can be contributed to the combination of two effects. The
first one is the impact of the top metallic layer and the second one is the Fabry–Pérot
effect due to the multi-reflection between two metallic layers [27]. FWHM (full-width
at half-maximum) for the absorption peaks are 39 GHz and 59 GHz, respectively. The
corresponding Q-factors are 26.2 and 25.8.
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Figure 4. Absorption response of (a) SquarePMA and (b) CrossPMA with resonant frequencies
in THz.

Figure 4b reveals two distinct resonant peaks with absorptions of 94.26% and 96.06%,
respectively. FWHM of the first absorption peak is 28 GHz with a relatively high Q value
of about 94. The second peak is significantly narrower with an FWHM of 7 GHz which
results in a 4.36 times higher Q-factor of 410. The narrow absorption peak can be attributed
to the combined effect of the surface lattice resonance of the cross-shaped resonator array
and the guided mode in the GaAs cross patch as suggested in [20].

A review of parameters for estimating sensing performance is given for both PMAs
in Table 2.

Table 2. Comparison of sensing performance.

Structure Resonant Frequency
[THz] Q-Factor S [GHz/RIU] FOM [RIU−1]

SquarePMA 1.021 26.2 100 2.56
1.520 25.8 168 2.85

CrossPMA
2.631 94 1900 67.86
2.871 410 1050 150

3.2. Principles of Detection

The differences between the absorption responses of the chosen sensors with and
without a presence of the sample have been observed. The examples given in Figure 5
correspond to three different thicknesses of H9N2 layers.
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Figure 5 shows that as the thickness increases, the resonant peak shifts to the left
towards the lower frequencies. By determining the frequency shift between the original
peak and the peak shifted due to the presence of the sample, virus detection can be
performed and its thickness value can be determined. Figure 5a indicates that the frequency
shifting of the SquarePMA absorption peaks decreases with the increase in virus layer
thickness. On the contrary, the peaks of CrossPMA response experience greater shifts for
thicker layers as shown in Figure 5b.

It should be noted that the frequency shift is not the only possible reference parameter,
as the amplitude of the absorption peaks also varies with the modifications of the sample.
Although the peak amplitude is less noise-resistant and therefore impractical to become
the main reference parameter, it can be used in the manner that will be discussed later in
the paper. A physical mechanism behind the modulation of the PMA resonant frequency
and amplitude involves the redistribution of electric and magnetic fields when the sample
is deposited on the top layer of sensors [23].

3.3. Introducing Quantities of Interest for Sensitivity Analysis

Our starting point in developing this method was the graphical representation of
peak frequency shift in terms of the virus layer thickness. Examples of mentioned graphic
representations are shown in Figure 6. The detection curve given in Figure 6a saturates
for certain virus layer thickness which limits the sample thickness that can be detected
with a relatively small probability of error. The main reason for that is found in an abrupt
expansion of the range of thickness values that correspond to the same frequency shift after
reaching the critical value (dmax) which represents the maximal sample thickness that can
be properly detected.
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Figure 6. Detection curves for H9N2 around the first absorption peak with ∆f res = 1 GHz for
(a) SquarePMA and (b) CrossPMA.

If we name the saturation frequency shift ∆f sat and the resolution of measuring system
∆f res, we can determine dmax using the following formula:

dmax = d(∆ fsat − ∆ fres) (4)

where ∆ fsat − ∆ fres is the corresponding frequency shift that must be brought below
the saturation frequency shift in order to avoid the high error probability. The smallest
frequency step that can be created on this occasion is the resolution step which results in
obtaining the maximum value for dmax. On the other hand, the detection curve shown
in Figure 5b does not reach saturation at all. It has a completely different shape with
two distinct regions for thicknesses below and above 10 µm which corresponds to the
cross-patch height. This distinction suggests the sensor’s different behavior when the
cross-patch is completely submerged by the sample. Consequently, the definition of dmax
must be adapted. In the first region, frequency shifts for both peaks slowly increase
with the increase in layer thickness (Figure 5b). On the other hand, in the second region,
increasing the thickness leads to the complete disappearance of the first peak as shown in
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Figure 7. Therefore, dmax corresponds to the largest thickness for which the peak still has
a measurable absorption. Minimal absorption can vary depending on the measurement
equipment and procedure. For example, half of the absorption peak value when the sensor
is unloaded can be declared for minimal absorption that can be detected.
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The detection is not only limited by the upper bound dmax, but also by the lower bound
dmin. The enlarged portion of Figure 6a is given in Figure 8. The zero value of the frequency
shift corresponds to the case of the sensor without the sample. Therefore, the first non-zero
virus thickness we can properly detect is defined by the smallest possible frequency step
we can make above zero which is the resolution frequency. One more parameter we should
consider when determining dmin is the size of particles in the sample. The smallest thickness
we can theoretically detect is determined by a single layer of particles. Therefore, for dmin,
we take the maximal value between the thickness for ∆f res and 0.1 µm which is the average
size of IAV particles according to [28]:

dmin = max(d(∆ fres), 0.1µm) (5)
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Previously explained dmin and dmax define the sensor thickness bandwidth (TBW):

TBW = dmax − dmin (6)

The sensitivity can be loosely interpreted as a parameter that describes the proximity
of adjacent detectable thicknesses. Graphically, we can understand sensitivity as the slope
of the curve linearization in some relevant parts of the sensor’s TBW. As the curves given
in Figure 6 are non-linear, sensitivity varies throughout the TBW. It should be noted that
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this sensitivity differs from the commonly used sensitivity parameter S that is defined as
∆f /∆n where ∆f is a shift of a resonant frequency per change of the refractive index of the
sensor’s surrounding ∆n. Parameter S also determines the FoM (figure of merit) of the
sensor defined as S/FWHM.

Let us define general sensitivity as the slope of the characteristic that has been lin-
earized in the whole TBW. Although the original curve significantly deviates from this
linearization, this parameter can be a good starting point for comparing both multiple
sensor structures and the sensor behavior around different resonant peaks or with different
samples. General sensitivity can be calculated as:

Gen.Sensitivity =
∆ ftot

dmax − dmin
(7)

where ∆ ftot is the total frequency shift between ∆ f (dmax) and ∆ f (dmin).
In a similar way, we can also separately define the sensitivities for thinner and thicker

layers. A graphical review of all of the introduced parameters essential for further analysis
is given in Figure 9.
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3.4. First Peak of the Absorption Response

The simulation results for all three IAV strains and both PMAs in the first resonant
peak frequency range are given in Figure 10 and Tables 3 and 4.
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Table 3. Numerical representation of sensitivity parameters around the first peak for SquarePMA.

Virus Subtypes H9N2 H1N1 H5N2

Resolution [GHz] 1 10 1 10 1 10

dmin
[µm]

0.1 0.25 0.1 0.5 0.1 0.5
dmax 28.33 22 20 8 15 8

dmax − dmin 28.23 21.75 19.9 7.5 14.9 7.5

Sensitivity
[GHz/nm]

General (×10−3) 2.6744 2.7586 1.9347 2.6667 2.5839 2.6667
d ≤ 1 µm 0.0272 0.0267 0.0172 0.02 0.0172 0.02

d ≥ 15 µm (×10−4) 6.7517 0 2 0 0 0

Table 4. Numerical representation of sensitivity parameters around the first peak for CrossPMA.
Minimal absorption is declared at 50% of the absorption value of the unloaded sensor.

sssVirus Subtypes H9N2 H1N1 H5N2

dmin
[µm]

0.333 0.5 0.5

dmax 14 15 16
dmax − dmin 13.667 14.5 15.5

Sensitivity
[GHz/nm]

General (×10−3) 34.46 26 26.32
d ≤ 1 µm 0.003 0.002 0.002

d ≥ 15 µm (×10−4) 0 0 310

The curves presented in Figure 10a follow similar dependencies for all three virus
strains, but the one that corresponds to H9N2 is the most prominent while the other
two overlap almost completely. Since the values of parameters of interest are not very far
from each other for H1N1 and H5N2, the differentiation by observing only Figure 10a
becomes significantly more difficult. The numerical representation from Table 3 gives more
precise values for these parameters which facilitates their further analysis.

Table 3 indicates that the sensitivities for detecting H1N1 and H5N2 using the chosen
sensor are lower than the sensitivity for H9N2. Sensitivities for the thinner layer are greater
than for thicker layers for all three virus subtypes (the values of 1 µm and 15 µm were
taken as reference for comparison).

The analysis has been conducted for two different resolutions as the achievable res-
olution greatly depends on the used method, equipment, and the presence of noise. For
example, a typical THz time-domain spectroscopy (THz TDS) system has frequency resolu-
tion in the order of 1 GHz [29] which we have taken as a higher resolution in comparison
with ten times lower resolution achieved with ∆ fres of 10 GHz. Results from Table 3 show
that a change in resolution can cause significant variations of estimated sensitivity parame-
ters. For the resolution of 1 GHz, the sensor can detect the lowest possible thickness for
all three strains, unlike the case of 10 GHz resolution. The zeros in Table 3 for 10 GHz
resolution indicate the inability of detecting layers thicker than 15 µm for all three virus
strains. The sensor’s TBW decreases when the resolution step increases. As for the general
sensitivity, it appears that the sensor is generally more sensitive for 10 GHz, but it should
be taken into account that the detection curves for different resolutions do not show the
same level of deviation from the characteristic that has been linearized during the process
of general sensitivity calculation making these values irrelevant for comparison (Figure 11).

Detection curves for CrossPMA have the same shape with two distinct regions below
and above 10 µm for all three viruses (Figure 10b). The relation between detection curves
for H1N1 and H5N2 is similar to the corresponding relation for SquarePMA in terms of
the overlapping for the smaller thicknesses. The detection curve for H9N2 is completely
separated from the other two which reflects significantly higher values for general and
sensitivity for thinner layers (Table 4). TBW is the broadest for H5N2 and the narrowest
for H9N2.
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Figure 11. Detection curves of SquarePMA performance for different resolutions.

For all three virus subtypes, CrossPMA shows over 10 times higher general sensi-
tivity compared to the SquarePMA (Tables 3 and 4). On the other hand, CrossMPA is
not able to detect the smallest theoretical virus layer thickness of 0.1 µm and its sensi-
tivity for thinner layers is significantly smaller compared to the corresponding values
for SquareMPA. Neither of the observed sensors has particularly good performance with
extremely thick layers.

3.5. Second Peak of the Absorption Response

The same analysis has been repeated around the second peak for both PMAs. The
results are presented in their graphical and numerical form in Figure 12 and Tables 5 and 6.
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Table 5. Numerical representation of sensitivity parameters around the second peak for SquarePMA.

Virus Subtypes H9N2 H1N1 H5N2

dmin
[µm]

0.1 0.1 0.1

dmax 21 20 15
dmax − dmin 20.9 19.9 14.9

Sensitivity
[GHz/nm]

General (×10−3) 5.9809 3.628 5.248
d ≤ 1 µm 0.04 0.0236 0.0247

d ≥ 15 µm (×10−4) 11.667 2 0
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Table 6. Numerical representation of sensitivity parameters around the second peak for CrossPMA.
Minimal absorption is declared at 50% of the absorption value of the unloaded sensor.

Virus Subtypes H9N2 H1N1 H5N2

dmin
[µm]

0.5 0.5 0.5
dmax 22 26 28.5

dmax − dmin 21.5 25.5 28

Sensitivity
[GHz/nm]

General (×10−3) 29.67 21.45 21.14
d ≤ 1 µm 0.002 0.002 0.002

d ≥ 15 µm (×10−4) 345.7 239.1 228.1

Comparison between Figure 12a and previously shown Figure 10a suggests that
SquarePMA has similar behavior in terms of the detection curve shape, but with two major
differences. Firstly, the frequency shifting is far more pronounced which causes an increase
in general sensitivity as well as sensitivity for layers thinner than 1 µm (Table 5). Secondly,
the separation between detection curves for H1N1 and H5N2 becomes more distinct for
the thicker layers.

Figure 12b suggests that CrossPMA shows similar behavior in the first and the second
absorption peak range. Table 6 gives a more precise view of the differences between the
two absorption peaks. According to data presented in Table 6, CrossPMA has wider TBW
as well as slightly smaller general sensitivity around the second peak. The relation between
the two sensors remains similar as it was around the first resonant peak except for the
increase in the general sensitivity which is somewhat less pronounced.

3.6. Qualitative Analysis of Sensor Detection

Figure 10 suggests that it is possible to distinguish different virus types by their
response as the corresponding curves do not overlap completely. Let us formalize the
condition for such differentiation. If we define ∆ fqual as the frequency shift between two
curves for the same layer thickness, two samples can be distinguished by their type if
∆ fqual ≥ ∆ fres as it is the smallest frequency step we can recognize. Otherwise, we cannot
detect the frequency shift between curves and therefore we are not able to identify sample
type by using only the frequency shift as a reference parameter.

According to Figures 10 and 12 and the already presented results, we can clearly
identify the H9N2 sample in the whole sensor TBW, but we cannot do the same for the
other two types due to the proximity of their responses caused by the similarity of their
optical properties (Table 1). We hereby propose two possible solutions to this problem:

(1) Decreasing the resolution frequency ∆ fres if possible,
(2) Adding the peak amplitude as another reference parameter.

The reasoning behind (1) is intuitive and can be directly seen from the formalized
condition for qualitative differentiation. Having said that, it is not always feasible to
decrease the resolution frequency since it is fairly limited by the used measurement method,
equipment, and duration of the analysis.

As for the second possible solution, we have been motivated by the well-known
result from the engineering electromagnetics for the reflection of a uniform plane at normal
incidence [30]. We have observed a simplified idealized theoretical model of CrossPMA that
can serve as a proof of concept for differentiating two virus samples that have practically
the same real part of complex permittivity, but different imaginary parts, by analyzing
the amplitude values (Figure 13). Three different regions shown in Figure 13 correspond
to: (1) surrounding air, (2) virus layer of complex permittivity ε2 and thickness d, and
(3) perfect electric conductor (PEC).
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The equivalent reflection coefficient for this simplified model can be calculated as:

Re = R12 +
T12T21R23e−2γ2d

1− R21R23e−2γ2d (8)

where Rij and Tij (i, j ∈ {1, 2, 3}) are complex reflection and transmission coefficients
and γ2 is the propagation constant in the second region. Absorption is then obtained by
A = 1− |Re|2. The value of ε2 has been varied according to data given in Table 7. The
results have shown that a greater value of absorption is achieved for H1N1 compared to
H5N2, with a relative difference between amplitudes of about 30%.

Table 7. Results of estimated error probability for different input parameters.

Input Output

Samples f resonant
[THz] εr (f resonant) A (f resonant) Pin [W] SD Pe

1 µm:
H1N1,
H5N2

2.629

H1N1:
2.176 + j 0.035

H5N2:
2.176 + j 0.025

H1N1: 0.94535
H5N2: 0.94476

0.2 0.05 50%

0.2 0.00001 0%

1.2 0.05 49.4%

1.2 0.0005 27.2%

6 µm:
H1N1,
H5N2

2.576

H1N1:
2.173 + j 0.038

H5N2:
2.173 + j 0.027

H1N1: 0.99192
H5N2: 0.98562 1.2 0.0005 0%

However, the peak amplitude is not often used as a main reference parameter for anal-
ysis since it is very sensitive to the effects of random and systematic errors in spectroscopy
measurements. Any signal measured in the process of THz TDS encounters three different
types of noise: (1) the noise of the emitter, (2) the shot noise in the receiver, and (3) signal
independent noises (for example, thermal noise) [31].

In addition, noise is not the only source of error in the THz TDS measurement as
pointed out in [32]. The cumulative effect of these errors produces variations in the spectral
parameters of the measured signal. This leads to possible errors in decision making in
the detection process. In the noiseless analysis such as simulations conducted in this
paper, a non-zero difference in peak amplitudes is a sufficient condition for differentiating
two samples that induce the same frequency shift with 100% certainty. However, in a
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real measurement process, the mentioned variations of the measured signal define the
signal-to-noise ratio (SNR) which determines the minimum detectable signal change [29].

In order to investigate the performance of the chosen sensor in terms of qualitative
differentiation, we have created an Octave script along with WIPL-D sensor models that
can estimate the effects encountered in the real measurement to some extent. We assume
that the simulation results are the reference. In practical cases, reference results would be
obtained by analyzing the virus samples of known type, concentration, and thickness. The
simulated absorption response represents a relation between the incident power on the
input and the absorbed power on the output. Therefore, in order to obtain the absorbed
power spectrum, we had to multiply the simulated absorption response with the incident
power spectrum.

The incident power spectrum depends on the emitter. For example, the input signal in
THz TDS is generated by an ultrafast optical laser and therefore, its power and duration,
which define its power spectrum, are dependent on the characteristics of the chosen laser
source [33,34]. Additionally, the emitter pulse propagates through many components of
the experimental setup before reaching the sample. This propagation can have a significant
effect on the pulse spectrum. Having all this in mind, in order to simplify the analysis
and make it universal in terms of the chosen procedure and used equipment, we have
modeled the incident power spectrum as proportional to the source power spectrum with
frequency-dependent coefficient k( f ).

The reference absorbed power spectrums of two samples are then created by multiply-
ing their absorption responses with the incident power spectrum of the form k( f )Pin where
Pin is the source power spectrum. It should be noted that since we investigate two peaks that
have maximums for the same value of frequency, we are only interested in the spectral com-
ponent that corresponds to that particular resonant frequency fresonant. Therefore, as an in-
put parameter, we only need k( fresonant)Pin rather than the whole incident power spectrum.

Next, we had to model the error in the frequency domain and superpose it on the
reference spectrums. For the purpose of demonstration, for error samples, we have chosen
Gaussian distribution with zero mean, although the distribution can be chosen completely
arbitrarily depending on the experimental process and represents one of the input parame-
ters of our model (Figure 14).
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For the estimation of error probability, we have used the following formula:

Pe = P(sample1) · P(sample2|sample1 ) + P(sample2) · P(sample1|sample2 ) (9)

where P(sample1) is the probability of occurrence of sample 1 and P(sample2|sample1 ) is
the probability of error in decision making when sample 1 is present. Similar explanations
apply for P(sample2) and P(sample1|sample2 ).
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The probabilities of occurrence alongside with the distribution of error samples define
the optimal decision threshold. If we have no prior knowledge of the sample type, it is
rational to assume that the probabilities of occurrence for both samples are equal to 0.5 or
50%. Since we have also assumed Gaussian sample distribution, the optimal threshold in
our analysis was set right in the middle between two reference amplitudes of the absorbed
power for the frequency fresonant.

In an effort to estimate the error probability, we have carried out a large number of
iterations. In each iteration, we have generated the error samples, picked the sample that
corresponded to

fresonant, added it to the reference absorbed power amplitude of sample 1, checked
if the value of the changed amplitude remained on the same side of the threshold; if not,
we have marked such event as an error in decision making. We have repeated the same
process for sample 2. As a result, we have obtained the probabilities P(sample2|sample1 )
and P(sample1|sample2 ) as the number of registered errors for the case of each of the
samples divided by the number of iterations. Finally, the error probability can be calculated
by using (9).

The results for different combinations of input parameters are shown in Table 7.
Reference absorption amplitudes A( fresonant) and resonant frequency fresonant have been
read from the results of conducted simulations for two different layer thicknesses deposited
on the CrossPMA. The values for Pin have been taken from [33,34] for demonstration
purposes. The standard deviation for Gaussian error sample distribution (SD) has been
varied from 0.00001 to 0.05 to observe its effect on the estimated error probability. The
parameter k( fresonant) has been set to 0.85 and has not been varied in Table 7 since it is
regarded together with Pin within their product. Therefore, its change has the same effect
as the change of Pin.

By observing the values presented in Table 7, we can draw several important conclusions:

1. Since the difference between reference absorption amplitudes for samples is rather
small, if the incident power spectral component for fresonant is relatively low and
simultaneously the standard deviation of the error sample distribution is relatively
high, the estimated error probability is extremely high as it is approaching 50%.
It should be noted that the error probability of 50% can be achieved without any
measurement with a random guess of the sample type.

2. The estimated error probability decreases significantly with a decrease in the standard
deviation of the error sample distribution.

3. If we increase the input power, we can decrease the error probability to some extent,
but not significantly since the values of error samples have the predominant effect on
the error probability.

4. With the increase in virus layer thickness, the difference between the reference ampli-
tudes increases. As a result, there is an improvement in the error probability.

Therefore, the analysis has shown that CrossPMA can differentiate types of two sam-
ples that induce the same frequency shift based solely on the difference of their respective
peak amplitudes, but under certain conditions and with a certain degree of quality.

3.7. Comparison of Sensors

We have investigated the sensing capabilities of two dual-band PMAs in order to
estimate which one is more suitable for the detection of three IAV subtypes: H1N1, H5N2,
and H9N2. CrossPMA has a significantly higher Q-factor for both resonant frequencies
compared to SquarePMA. The very high Q-factor of the second resonant peak makes
CrossPMA a promising candidate for potential applications in THz sensing. Two sensors
have completely different behavior with the increase in sample thickness as shown in
Figures 10 and 12. The general sensitivity calculated for the entire TBW is significantly
higher for CrossPMA. On the other hand, SquarePMA is able to detect the theoretically
thinnest layer of the virus as opposed to CrossPMA. In general, SquarePMA has higher
sensitivity for detecting extremely thin virus layers with thickness below 1 µm.
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In order to better understand the underlying physical mechanism of two PMAs, the
distributions of electric and magnetic fields have been calculated for both sensors at both
resonant frequencies in the presence of a 10 µm thick H9N2 layer. The results are shown in
Figure 15. Figure 15a shows that the electrical field concentrates at the square ring at the
first resonant frequency and at the edges of the triangles at the second resonant frequency
which can be ascribed to the excitation of an electric dipole and quadrupole respectively.
The electric field distribution suggests the possibility of controlling two resonant modes
independently since there is no cross-coupling between the two resonators [21]. On the
contrary, the dual-band absorption of CrossPMA is achieved by integrating two different
modes in a single structure. The electric field distribution is gathered in the central part
of the unit cell for both modes and additionally, in the area between units for the second
mode as shown in Figure 15b. Therefore, the second resonant mode can be attributed to
the inter-cell interaction. Figure 15c,d show the distribution of magnetic field in the cross-
sections of two PMAs. Figure 15d indicates that the EM field energy is dominantly confined
in the volume of the sample deposited on CrossPMA as opposed to the confinement in the
polyimide layer of the SquarePMA shown in Figure 15c. In order to achieve high sensitivity
for refractive sensing, the sample should be placed at the strongest wave–matter interaction
zone [35]. Proper confinement of electromagnetic fields results in significantly enhanced
interaction between the sample and the THz wave by enabling a larger duty cycle of the
interaction zone [36]. Therefore, the difference in the field localization is responsible for
the significantly higher sensitivity of CrossPMA. A difference in sensitivities of the two
resonant modes of SquarePMA is probably induced by the slightly better field confinement
of the second resonant mode (Figure 15c).
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Figure 15. Distribution of electric field for (a) SquarePMA, (b) CrossPMA and magnetic field
for (c) SquarePMA, (d) CrossPMA for sensors loaded with 10 µm thick H9N2 sample at the
resonant frequencies.

A comparison between the observed PMAs and previously reported THz metamaterial-
based devices is given in Table 8. CrossPMA has the highest FOM for both resonant modes.



Electronics 2022, 11, 699 17 of 19

Table 8. Comparison of sensor properties among designs in previous works.

Structure Resonant Frequency
[THz] Q-Factor S [GHz/RIU] FOM [RIU−1]

Graphene H-shaped
reflector [13] 1.7164 9.18 540 2.86

Cross-shaped
absorber [37] 0.637 7.036 152 2.67

Complementary
cross-shaped
absorber [37]

0.792 7.189 163 2.05

Metallic strip
absorber [38]

1.420 7.1 300 1.5

2.990 59.8 2200 34

SquarePMA
1.021 26.2 100 2.56

1.520 25.8 168 2.85

CrossPMA
2.631 94 1900 67.86

2.871 410.1 1050 150

4. Conclusions

In this research, we proposed a novel method for sensitivity characterization of
two dual-band THz perfect metamaterial absorbers for possible IAV detection. The PMA
based on a conventional planar metal-dielectric-metal sandwiched structure has two res-
onant peaks at 1.021 THz and 1.520 THz with corresponding Q-factors of 26.2 and 25.8
and sensitivities of 100 GHz/RIU and 168 GHz/RIU. The dielectric-metal PMA with cross
patches achieves high Q-factors and sensitivities of (i) 94 and 1900 GHz/RIU at 2.631 THz,
and (ii) 410 and 1050 GHz/RIU at 2.871 THz, which makes it a promising candidate for
potential applications in THz sensing. We analyzed the sensors’ behavior in the presence
of IAV samples. The detection curves showed that two PMAs respond differently to the
increase in sample thickness. The PMA with a sandwiched structure has lower general
sensitivity, but higher sensitivity for thinner layers compared to the PMA with cross-shaped
patches. Both sensors have difficulties in qualitatively distinguishing two samples of very
similar optical properties. In order to enhance sensing performance in the case of samples
with approximately equal real parts, but different imaginary parts of complex permittivity,
we have investigated the possibility of amplitude-variation sensing.

The physical origin of the observed PMAs has been investigated by examining the
distribution of electric and magnetic fields at resonant frequencies. The electric field
distribution of the PMA with a sandwiched structure suggests the possibility of controlling
two resonant modes independently. On the other hand, the PMA with cross-shaped patches
shows better confinement of the resonant field in the sample which is crucial for obtaining
high sensitivity for refractive sensing.

Our future research efforts are directed towards fabricating the laboratory prototype
of the presented structures and evaluating their performance experimentally.
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