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Abstract: Incremental graph processing has been developed to reduce unnecessary redundant
calculations in dynamic graphs. In this paper, we propose an incremental dynamic graph-processing
scheme using a cost model to selectively perform incremental processing or static processing. The cost
model calculates the predicted values of the detection cost and processing cost of the recalculation
region based on the past processing history. If there is a benefit of the cost model, incremental query
processing is performed. Otherwise, static query processing is performed because the detection cost
and processing cost increase due to the graph change. The proposed incremental scheme reduces
the amount of computation by processing only the changed region through incremental processing.
Further, it reduces the detection and disk I/O costs of the vertex, which are calculated by reusing
the subgraphs from the previous results. The processing structure of the proposed scheme stores
the data read from the cache and the adjacent vertices and then performs only memory mapping
when processing these graph. It is demonstrated through various performance evaluations that the
proposed scheme outperforms the existing schemes.

Keywords: dynamic graph; incremental processing; cost model; GAS model; cache

1. Introduction

A graph is a data structure for representing the multiple relationships between ob-
jects [1,2]. In recent real applications, dynamic graphs are generated, in which the vertices
and edges constituting the graph are constantly changing [3–5]. These dynamic graphs are
used to analyze changes in real time to create business value [6–8]. For example, the correla-
tions between objects in the Internet of things (IoT) or disaster management are illustrated
using dynamic graphs and analyzed in real time to detect and forecast disasters [9–11]. In
a social network, an interaction change between items or users is modeled as a dynamic
graph, and an event is detected or a recommendation service is provided [12–14].

Various large-scale graphs for processing have been conducted, as large volumes of
dynamic graph are continually generated [15–20]. The distributed graph processing system
was developed to store a large amount of graphs in a distributed manner and analyze the
distributed graphs in parallel [21–24]. PowerGraph is a distributed processing system that
stores subgraphs in a distributed manner across multiple servers and processes the graph
in parallel to overcome the limitations of a single server system [16]. By adopting the vertex-
cut technique and the gather-apply-scatter (GAS) model, data storage, and communications
cost can be significantly reduced. Most of the graphs change continuously and increase
in size gradually. However, most distributed graph processing systems perform static
processing. If all the vertices and edges in a graph are processed each time a subgraph is
changed, the processing cost is high, and real-time processing cannot be guaranteed. In
other words, when a subgraph is changed, the static processing scheme calculates the entire
graph, including the part that has not changed. Because this scheme performs unnecessary,
i.e., redundant processing, it is extremely time consuming.
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Owing to the problem of performing unnecessary, duplicate computations, the static
processing schemes cannot provide real-time analysis results. Hence, an incremental pro-
cessing scheme that processes only the changed part is required. To process continuous
changes in a graph, the incremental processing scheme collects information on changes to
the graph and processes only the part that has changed. Therefore, it solves the problem
of redundant computations, which is the issue exhibited by the existing graph-processing
scheme [25–27]. Because most of the graph analysis tasks have already been completed in
the previous task, this scheme can perform more efficiently than the scheme that processes
the entire graph when a small change has been implemented to the graph. In [28], unneces-
sary, redundant computations were removed utilizing an incremental processing scheme
that calculated only the part that has changed in the graph. However, if many vertices were
connected to the vertex that must be recalculated, numerous vertices must be detected to
perform the recalculation, thus causing an issue of the disk I/O cost being proportional to
the number of connected vertices. In [29], an incremental processing scheme that divides
the unit of computation from the MapReduce [30] into smaller units and recalculates only
the changed part was proposed. However, the unit of computation was divided into units
that were extremely small. Therefore, the complexity was increased and resulted in a
higher processing cost and network overhead. iGraph employed a method that divided the
dynamic graph into several batch units and subsequently processed them [31]. However,
partially redundant calculations occurred because the unchanged part, which was included
in the batch, was recalculated when the graph was changed.

If the subgraph changed by the dynamic graph is large, the detection and processing
costs may increase. If the entire graph is processed statically, only the processing cost
is incurred. However, in the case of incremental processing, the region that must be
recalculated owing to changes in the graph must be detected as well; hence, detection
cost is incurred. Therefore, if the changed region is large, the method that processes the
entire graph at once can outperform the incremental processing scheme that detects and
subsequently processes the processing ratio.

In this paper, we propose an incremental dynamic graph-processing scheme called
iGAS, which modifies the GAS model to perform incremental processing to provide real-
time analysis results. The proposed scheme uses the cost model to selectively perform
incremental processing or static processing based on the degree of change in the graph.
The cost model calculates the predicted values of the detection and processing costs based
on the actual processing history. The incremental processing is performed if it is more
beneficial than static processing. The incremental processing uses the previous results
through a cache strategy. The cache prefetches the read subgraph and adjacent vertices,
and efficiently accelerates the repetitive computations.

This paper is organized as follows. Section 2 explains the related works. Section 3
describes the proposed scheme for incremental dynamic graph processing. Section 4 de-
scribes the results of the performance evaluation. Finally, Section 5 presents the conclusions
of this study and the direction for future studies.

2. Related Works

A series of iterations are performed to process large-scale graphs. Each vertex receives
the message sent from the previous iteration and forwards the message to another vertex.
This type of vertex-based approach can process an extensive graph algorithm efficiently and
accelerate the processing performance in a distributed processing environment. However,
the graph algorithm can occasionally exhibit low memory access locality, and distributed
processing across many servers worsens the locality and increases the chance of failure
during calculation. Pregel proposed a bulk synchronous parallel model for processing
large-scale graphs [15]. Pregel processed a sequence of iterations called superstep. During
each superstep, a vertex can receive messages from the previous superstep in parallel, send
messages to other vertices, and modify its own state and the state of its outgoing edges.
Messages are typically sent along the outgoing edge, but messages can be sent to all known
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vertices by the identifier. The processing terminates when no further vertices change in a
superstep.

The limitations of a single server have been overcome by the development of dis-
tributed processing techniques to address steadily increasing data. However, data in the
real world, such as social networks and the Web, exhibit a power-law graph distribution, in
which several lower-level groups are connected to a single vertex. PowerGraph proposed
the GAS model to solve the computation cost; storage cost incurred when processing graphs
with the power-law distribution [16]. The GAS model divided the graph into subgraphs us-
ing the vertex-cut partitioning method and processed the subgraphs in parallel to effectively
reduce the communication and processing costs. The GAS model utilized the intermediate
message collection method as well as a technique to communicate between servers through
shared memory. The GAS model processes graphs by repeatedly performing three phases:
gather, apply, and scatter.

Graph analysis can produce meaningful results in various fields, such as social net-
working. Even though new, large-scale distributed processing systems have been proposed
to accommodate the growing size of graphs, graph computation must be modified to
accommodate specific graph algorithms or the application program family. It is difficult
to build such systems because each distributed processing system comprises a different
processing engine. GraphX [17] has been built on top of the Apache Spark [32], which
is a widely used large-scale data processing engine for distributed graph processing and
simplifies the implementation and application of algorithms. GraphX divides the vertices
and edges into two tables and creates and partitions the resilient distributed datasets in
each server using the vertex-cut method. Subsequently, GraphX executes the implemented
graph algorithms on each server.

The MapReduce model, which was frequently used previously, has not been designed
to process small changes efficiently. Hence, it does not support the incremental processing of
large data. In [29], an incremental processing scheme that was compatible with the existing
programs and did not require a separate new program was proposed. The scheme improved
the MapReduce model to process small changes in the graph while maintaining the existing
MapReduce model. To apply the incremental processing scheme to the MapReduce model,
the computation unit must be divided into smaller units, and all calculations of the graph
must be traced based on the modified propagation algorithm. Further, calculations are
performed for only the changed part, and the results are propagated to the lower level such
that they can be merged with the existing results for the part that has not changed.

The popularity of social networks has necessitated the real-time graph processing.
However, most of the existing graph systems support the batch-processing method, Hence,
dynamically processed graphs have incurred a high processing cost. iGraph [31] proposed
a method that divided dynamic graph into several batches and subsequently processed
them. When the graph was changed, iGraph employed a strategy to detect the batches that
were affected by the change and recalculated the results that were then merged with the
existing results. If the newly calculated values were less than the threshold value and hence
deemed not affecting the adjacent vertices, the program would end. If the calculated values
were greater than the threshold value, they were then propagated to the adjacent vertices.

Most of the graph algorithms are processed iteratively. However, the existing dis-
tributed processing systems only provided the batch processing method, resulting in the
problem of recalculating the entire data when the graph was changed. In [28], an incre-
mental processing scheme was proposed by dividing the graph by a region affected by
the changes to the graph and a region unaffected by the changes. This scheme processed
each region separately and merged the two results. Further, redundant calculations were
avoided by incrementally processing the processing ratio of the graph and updating the
results based on the changes.

The static graph processing is focused on quickly processing large volumes of data
at once, while the incremental processing scheme is focused on reducing the amount of
computation by calculating only the changed part. The static graph processing [15–17]
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processes the entire graph; therefore, unnecessary, duplicate calculations occur, and real-
time processing cannot be guaranteed [29]. Meanwhile, the incremental processing can
result in a high processing cost and network overhead owing to increased complexity if
the unit of computation is divided into units that are extremely small. In iGraph [31],
partially redundant calculations occur because the unchanged part that is included in
the batch is also recalculated when the graph is changed. Furthermore, if changes affect
multiple batches, high disk I/O, and processing costs are incurred. In the incremental
processing technique proposed by [28], if the vertex that must be recalculated involves
many connections, and the connected vertices must be detected again. Therefore, the
detection and disk I/O costs proportional to the number of connected vertices are incurred.
The incremental processing must be adopted to provide real-time analysis results and to
avoid the problem of performing redundant computations in static processing. To solve the
issue of partially redundant computations inherent in the existing incremental processing
techniques, an efficient incremental processing scheme that reduces the detection and disk
I/O costs, as well as a cache strategy, are required. Furthermore, an efficient, differentiated
graph-processing technique is required based on graph changes.

3. The Proposed Incremental Graph-Processing Scheme
3.1. Overall Procedure

When a graph is changed, it may be more efficient to calculate only the changed part
rather than computing the entire graph. The existing incremental processing schemes
encounter the problem of having to again detect the adjacent vertices connected to the
vertex that is being recalculated. To reduce the processing cost incurred by detecting
the adjacent vertices in addition to the disk I/O cost, we propose a technique to reuse
the previous results as well as a cache strategy to accelerate incremental processing. In
addition, because the processing costs to detect and process the graph in the processing ratio
increase according to the changes, a cost model that selectively performs static processing
or incremental processing is proposed. If incremental processing is more beneficial than
static processing, the cost model detects the region affected by the changes in the graph
and performs incremental processing in the affected region to generate results.

Figure 1 shows the overall procedure of the proposed scheme. The proposed scheme
selectively performs both static processing and incremental processing based on the cost
model when graph is changed. To determine a query-processing method, first, query
processing statistics are calculated based on past query-processing history. When the
graph is changed, the recalculation cost is predicted using query-processing statistics. The
processing method decision calculates a cost model using the recalculation cost prediction.
If there is a benefit in the cost model, the proposed scheme, known as incremental gather-
apply-scatter (iGAS), is performed to incrementally process the region affected by graph
changes. If incremental processing is not beneficial, then GAS processes the entire data
statically. When iGAS is performed, the cache strategy is used. Therefore, subgraphs that
are read once and the calculated results are stored. The subgraphs from adjacent vertices
are prefetched to enhance the efficiency of incremental processing and reduce the disk
I/O cost.

3.2. Recalculation Cost Prediction

The proposed scheme uses a cost model to selectively perform static processing and
incremental processing. In order to select a query-processing method, the cost model must
predict the cost of static processing and incremental processing costs according to graph
changes. Because static processing reads and processes the entire graph, it is affected by the
size of the graph and the cost of processing vertices. On the other hand, the incremental
processing determines the recalculation area according to the graph change, and requires a
processing cost for the recalculation area. The recalculation cost prediction calculates the
statistical values, such as the average number of vertices that must be recalculated (NRV),
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the statistics of the detection cost (SDC), and the statistics of the processing cost (SPC) that
affect the query-processing cost through past query-processing history.
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NRV, SDC, and SPC are calculated by Equations (1)–(3), where NUi is the number of
change operations contained in i-th graph, NAVi is the number of vertices affected by the
graph change, DCi is the detection cost of the actual processing ratio, and APCi is the actual
processing cost predicted using past statistics. NRV is the average number of vertices that
must be recalculated because they were affected when a single vertex was changed. The
number of affected vertices increases if the vertex is connected to many vertices. Hence, the
number of vertices that must be recalculated increases proportionally. NRV is calculated
by collecting the number of vertices affected by the graph change based on the number of
changes in the dynamic graph and the actual processing history of iGAS SDC refers to
the cost incurred when detecting a single vertex. If the amount of the change is large, the
detection cost increases and the past statistics of the detection cost increases proportionally.
The past statistics of the detection cost is calculated by collecting the number of vertices
affected by the graph change and the detection cost of the actual processing ratio. SPC is
the cost of processing a single vertex, and this value can change fluidly according to the
system load. The past statistics of the processing cost is calculated by collecting the number
of vertices affected by the graph change and the actual processing cost.

NRV =
∑n

i=1
NAVi
NUi

n
(1)

SDC =
∑n

i=1
DCi

NAVi

n
(2)

SPC =
∑n

i=1
APCi
NAVi

n
(3)
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3.3. Cost Model

In dynamic graphs, there are query types that must continuously provide query
results whenever the vertices and edges in the graph change. For example, a continuous
query that executes the same query during a specific time re-executes the query processing
whenever a graph change occurs to change the query result. In an application that does
not significantly affect the query result due to partial addition or deletion of vertices and
edges, if only the changed part is processed through incremental processing, the number
of disk I/O, and the overall processing time can be reduced. However, as incremental
processing includes the cost of detecting the recalculation region and the cost of query
processing for the recalculation region, it may be effective to statically process the entire
graph if there are many subgraphs affected by the graph change. The cost model selectively
performs either the incremental processing scheme or static processing scheme based on
the query-processing cost according to graph changes to improve the processing efficiency.

The incremental processing cost (CIP) is determined by the detection cost (DC) for the
recalculation region and the processing cost (PC) for the recalculation region, as shown in
Equation (4). DC is calculated by Equation (5), where NRV and SDC are the average num-
ber of vertices that must be recalculated and the statistics of the detection cost determined
in recalculation cost prediction, and NU is the number of changes. PC is calculated by
NRV, SPC, and NU as shown in Equation (6), where SPC is the statistics of the processing
cost. In the incremental processing cost, the detection cost and processing cost increase
because the number of vertices affected by graph change increases when NRV and NU are
large. In addition, as the SDC and SPC increase, it takes a lot of time to determine the
recalculation region. As a result, the processing time increases.

CIP = DC + PC (4)

DC = NRV·SDC·NU (5)

PC = NRV·SPC·NU (6)

The static processing cost (CSP) is determined by the number of vertices (NG) and
SPC, as shown Equation (7). As the static processing cost processes the entire graph, the
processing cost increases as the number of vertices included in the entire graph increase.

CSP = NG·SPC (7)

The cost model (CM) is the difference between the predicted cost of static processing
and that of incremental processing, and it is expressed by Equation (8). If CM is nega-
tive, it means that it takes a lot of time to determine the recalculation region according
to the graph change, and the number of vertices included in the recalculation region in-
creases, which means that the cost of incremental processing increases compared to static
processing. When CM is negative, it is more effective to process the entire graph rather
than incremental processing. If CM is positive, it is more effective to perform incremental
processing because the cost of processing the vertices included in the entire graph is higher
than determining and processing the recalculation area according to graph changes. The
incremental processing performs better than static processing when the number of vertices
affected by the change is reduced.

CM = CSP− CIP (8)

3.4. Incremental Processing

If the result of the cost model demonstrates that the incremental processing scheme is
not beneficial because the graph has changed significantly, static processing is performed
using the existing GAS. If the amount of change in the graph is small and the incremental
processing technique is deemed to be beneficial, then the cost model performs incremen-
tal processing utilizing iGAS. This paper proposes an iGAS model that was derived by
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modifying the GAS model to perform incremental processing such that real-time analysis
results could be obtained. The GAS model was proposed by PowerGraph [16], and it is a
distributed graph processing system. To overcome the limitations of a single server, the
GAS model stores data across multiple servers and performs distributed processing. The
proposed iGAS model processes only the changed part. Therefore, it does not perform
redundant calculations. Further, the cost for redetecting the data is reduced because the
previously generated result data are reused.

PowerGraph processes data using the static processing scheme. Therefore, the entire
region (a) of Figure 2 is calculated. Hence, even the unaffected regions are recalculated.
For the existing incremental processing technique, if vertex v2 is inserted into region (a) of
Figure 2, vertex v1, which is directly affected by vertex v2, and vertices v3~v5, which are
subsequently affected by vertex v1 are included in the processing ratio. However, vertices
v6~v10 must be included in the processing ratio to calculate vertex v1. If many connections
exist for vertex v1 when it is to be calculated, as in region (b), the number of times that data
are redetected and calculated in the existing incremental processing scheme is equivalent
to the number of vertices connected to vertex v1. To improve this problem, the GAS model
is expanded to reuse the previously generated result data to reduce the redetection cost.
Through this enhancement, only the region that is affected by the graph change—region (c)
in this case—is processed and the data processing time is reduced.
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The GAS model is a computational model designed to process graphs and is divided
into three phases: gather, apply, and scatter. Similar to Pregel, the gather phase receives
messages by intermediately gathering information processed by servers in a distributed
environment and collects information from the connected vertices. In the apply phase, the
collected information is computed. Further, the calculated results are shared between the
servers through shared memory. In the scatter phase, the calculated results are propagated
to the neighboring vertices. The GAS model performs these three phases iteratively.

Algorithm 1 shows the existing GAS model. Complex and iterative types of graph
operations, such as those of most data mining and machine-learning algorithms, request
information from neighboring vertices iteratively to compute the value of the target vertex.
Therefore, the GAS model is efficient from the structural aspect of the graph analysis
algorithms. Further, for the complex algorithm that uses adjacent vertices to perform
computations, PowerGraph has generated the analysis results the fastest among the existing
distributed graph-processing systems. Therefore, [33,34] used the GAS model to perform
static processing.
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Algorithm 1. GAS Vertex-Program

Input: center vertex u
foreach neighbor v is empty

au ← sum(au, gather(Du, D(u,v), Dv))
end
Du

new ← apply(Du, au)
foreach neighbor v scatter_nbrs(u)

(D(u,v),4a)← scatter(Du, D(u,v), Dv)
end

The proposed scheme modifies the existing GAS model to support incremental pro-
cessing such that it only recalculates the changed region. Algorithm 2 is the proposed iGAS
model. Among the adjacent vertices, the previous and present values of the vertex being
changed are collected and stored in the cache during the gather phase of the iGAS model.
If the previous value exists in the cache owing to the cache policy, the value is collected
from the cache. If the value does not exist in the cache, it is read from the disk and then
stored in the cache. Once the gather phase has been completed, a new value of the vertex is
calculated using the data of the changed vertex in the apply phase. For the PageRank [35]
algorithm, an inverse function is used to calculate the new value by modifying only the
vertex value of the changed part among the values collected from the remaining adjacent
vertices. In the scatter phase, because the vertex thereof that has been changed is recorded
in the adjacent vertices, the newly calculated value is propagated.

Algorithm 2. iGAS Vertex-Program

Input: center vertex u
foreach neighbor changed vertex cv in gather_nbrs(u)

if (cv, flag == 1) then
cu ← fix(cu, gather(cv.id, cv.old_val, cv.new_val, cv.deg))

end
end
Du

new ← apply(Du, cu)
foreach neighbor v scatter_nbrs(u)

delta = (D(u,v),4a)
if delta is not converged then

Du.flag = 1
delta← scatter(Du)

end
end

GAS iterates the gather, apply, and scatter phases until there are no active vertices
remaining participating in the user-defined query. When the vertex program processing
graphs that are centered around the vertices complete the scatter phase, it becomes inactive
until it is reactivated. One of the methods for improving graph-processing performance is
to reduce the number of vertices participating in the calculation. Therefore, the complexity
is expressed as a computation cost according to the number of vertices participating in
graph processing. When a query that performs k iterations is processed, Equation (9) is the
complexity of GAS (CG), where CGi, CAi, CSi are the average processing costs when each
vertex process the gather, apply, and scatter phases in the i-th iteration. If SV is the set of
vertices and IVi is the set of inactive vertices in the i-th iteration, then n(SV −Mi) is the
number of active vertices when processing the i-th iteration in GAS. IV1 is zero because all
vertices included in SV are activated in the first iteration. Therefore, CG can be expressed
as Equation (10). Finally, CG is Equation (11) because n(SV)·(CG1 + CA1 + CS1) is CSP
by Equation (7). Equation (12) is the complexity of iGAS (CIG), where DC is the detection
cost calculated by Equation (4), RV is the set of vertices included in the recalculation region
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and n(RV − IVi) is the number of active vertices when processing the i-th iteration in iGAS.
IV1 is zero because all vertices included in RV are activated in the first iteration. Therefore,
CIG can be expressed as Equation (13). As n(RV)·(CG1 + CA1 + CS1) is PC calculated
by Equation (6), CIG is expressed as Equation (14). Finally, CIG is Equation (15) because
CIP is DC + PC by Equation (4). iGAS is selected when CSP is greater than CIP. If i ≥ 2,
n(SV − IVi) is greater than (RV − IVi). As a result, the complexity of iGAS is smaller than
that of GAS.

CG =
k
∑

i=1
n(SV − IVi)·(CGi + CAi + CSi) (9)

= n(SV)·(CG1 + CA1 + CS1) +
k
∑

i=2
n(SV − IVi)·(CGi + CAi + CSi) (10)

= CSP +
k
∑

i=2
n(SV − IVi)·(CGi + CAi + CSi) (11)

CIG = DC +
k
∑

i=1
n(RV − IVi)·(CGi + CAi + CSi) (12)

= DC + n(RV)·(CG1 + CA1 + CS1) +
k
∑

i=2
n(RV − IVi)·(CGi + CAi + CSi) (13)

= DC + PC +
k
∑

i=2
n(RV − IVi)·(CGi + CAi + CSi) (14)

= CIP +
k
∑

i=2
n(RV − IVi)·(CGi + CAi + CSi) (15)

If the graph is changed, iGAS detects and calculates the part affected by the graph
change, as shown in Figure 3. Most of the graph algorithms perform many comparison
operations. Therefore, a large overhead will occur in the cost of detecting the processing
ratio if the algorithms are implemented using a linked list or array. Thus, the cost of
detecting the processing ratio should be reduced by implementing the algorithms using a
hash map to access the data.
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Figure 4 shows how the proposed scheme reuses the data from the previous results
iteratively. The proposed scheme only collects the previous result data of the changed vertex
and does not need to collect the entire data that are connected to the vertex. Therefore,
the proposed scheme can reduce the disk I/O cost more than the existing incremental
processing scheme.
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Figure 4. Reuse of previous results in iGAS.

Figure 5 shows the vertices that are collected while iGAS is performed. If the graph
change changes vertex v1, the vertex being calculated—vertex u—gathers the previous
result data and the present result data of the changed vertex v1 among the adjacent vertices,
and the new value of vertex u is calculated in the apply phase. The newly calculated
value of vertex u is propagated to the adjacent vertex v4, and the new value of vertex v4 is
computed by only collecting the value of vertex u. When the dynamic graph is processed
using the proposed incremental processing scheme, the duplicate processing of the data
and the cost of redetecting the connected vertices are reduced, thus in turn enhance the
processing time.
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3.5. Caching

To perform the incremental processing scheme efficiently, the data processing results
must be reused. When data are processed, it is highly likely that the data once used will be
used again. Furthermore, the data locality is high, such that the probability of using the
surrounding data is high as well. Therefore, storing such data in the cache can enhance the
processing performance. In this study, the cache strategy is used when iGAS is performed;
therefore, data once read and the calculated result data are stored, and the data of adjacent
vertices are prefetched. Utilizing the cache strategy improves the efficiency of incremental
processing and reduces the disk I/O cost. If the cache is full, the LRU (least recently used)
technique [36] is used to manage the cache. During the gather phase, if the previous and
current values of the data being changed are not in the cache, they are then stored in the
cache. In the subsequent operations, the cached data are used when the value of this vertex
is read such that the data processing time can be enhanced.

Apart from the once read data, the data of adjacent vertices are stored in the cache
in advance while the iGAS model is processing the vertex. Through this mechanism,
only memory mapping is performed when the graph is processed, and the efficiency is
improved. Figure 6 shows the cache management policy. When the dynamic graph are
entered, the hash key value of the data is created using the hash map. The hash key value
is obtained by computing the hash function using the number of vertices and information
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such as the change status, previous value, present value, and number of out-degree edges.
Subsequently, iGAS is performed and when the vertex matching the hash key value in the
cache is calculated, the data of the adjacent vertex that have changed are collected and
used in the processing. The new results processed by iGAS are stored in the cache, and
subsequently fetched from the cache and reused when the adjacent vertex is calculated.
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4. Performance Evaluation

The performances of the static processing technique that computes the entire graph
and the incremental processing scheme that calculates only the changed part are compared
to demonstrate the superiority of the proposed scheme. The processing times of Pow-
erGraph [16], which is the representative static processing technique, the scheme of [28]
that supports incremental processing, and the proposed technique, are compared in the
performance evaluation. The performance evaluation environment consisted of the Intel®

Core i5 CPU processor, 32GB memory, and 1TB disk. Table 1 shows the characteristics
of the experimental data. In the experiment, Live Journal [37], Twitter [38], and Google
Web [39] provided by the Stanford Large Network Dataset collection [40] were used to
compare the performance of the cost model as well as the processing time.

Table 1. Characteristics of the experimental dataset.

Dataset Vertices Edges

Live Journal 1,070,383 3,372,093
Twitter 81,543 2,419,738

Google Web 875,713 5,105,039

To prove the validity of the cost model, Figure 7 shows the processing times using
the only iGAS and the scheme that utilizes both the iGAS and cost models in comparison
with the static processing scheme. It takes longer to execute iGAS than the static processing
scheme when the processing ratio is over 55%. If most of the graph has to be recalculated
owing to the graph change, the cost to detect the processing ratio is included in iGAS.
Hence, iGAS is not more beneficial than static processing in this case. The performance
evaluation was conducted after the cost model was applied to iGAS such that selective
processing can be performed based on the changes in the graph. If incremental processing
is inefficient based on the cost model, then the static processing scheme is used to process
the entire data without detecting the changed part. Moreover, the processing times were
added up for cases from 5% processing ratio to 100% processing ratio for each scheme
and subsequently compared. When only iGAS was used, the sum of the processing times
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was about 97%. Therefore, it was more time consuming than the static processing scheme.
When the iGAS and cost models were used together, the sum of the processing times was
about 141%. Hence, the results verify that it is more advantageous to utilize the cost model
than to use iGAS only.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 17 
 

Table 1. Characteristics of the experimental dataset. 

Dataset Vertices Edges 
Live Journal 1,070,383 3,372,093 

Twitter  81,543 2,419,738 
Google Web  875,713 5,105,039 

To prove the validity of the cost model, Figure 7 shows the processing times using 
the only iGAS and the scheme that utilizes both the iGAS and cost models in comparison 
with the static processing scheme. It takes longer to execute iGAS than the static pro-
cessing scheme when the processing ratio is over 55%. If most of the graph has to be re-
calculated owing to the graph change, the cost to detect the processing ratio is included in 
iGAS. Hence, iGAS is not more beneficial than static processing in this case. The perfor-
mance evaluation was conducted after the cost model was applied to iGAS such that se-
lective processing can be performed based on the changes in the graph. If incremental 
processing is inefficient based on the cost model, then the static processing scheme is 
used to process the entire data without detecting the changed part. Moreover, the pro-
cessing times were added up for cases from 5% processing ratio to 100% processing ratio 
for each scheme and subsequently compared. When only iGAS was used, the sum of the 
processing times was about 97%. Therefore, it was more time consuming than the static 
processing scheme. When the iGAS and cost models were used together, the sum of the 
processing times was about 141%. Hence, the results verify that it is more advantageous 
to utilize the cost model than to use iGAS only. 

 
Figure 7. Comparison of processing times based on recalculation ratio. 

If a change is performed to a particular vertex that contains many connections, the 
cost for detecting the processing ratio may increase for the proposed cost model. Further, 
an error may occur because the detection cost is computed based on the actual processing 
history of the cost model. To verify whether a correction choice has been selected based 
on the predicted costs of static processing and incremental processing calculated by the 
cost model, a performance evaluation was conducted. Decision-making capability (𝐷𝑀𝐶) 
is used to determine whether the correct selection has been made by using Equation (16), 
where 𝐴𝐶 is the actual incurred cost and 𝑃𝐶 is the predicted cost. 𝐷𝑀𝐶 = 1 − ฬ𝐴𝐶 − 𝑃𝐶𝐴𝐶 ฬ (16)

To determine the decision-making capabilities for the predicted costs of static pro-
cessing and incremental processing, the PageRank algorithm was performed 25 times for 
each data type. Figure 8 shows the decision-making capabilities for the predicted costs of 

Figure 7. Comparison of processing times based on recalculation ratio.

If a change is performed to a particular vertex that contains many connections, the
cost for detecting the processing ratio may increase for the proposed cost model. Further,
an error may occur because the detection cost is computed based on the actual processing
history of the cost model. To verify whether a correction choice has been selected based
on the predicted costs of static processing and incremental processing calculated by the
cost model, a performance evaluation was conducted. Decision-making capability (DMC)
is used to determine whether the correct selection has been made by using Equation (16),
where AC is the actual incurred cost and PC is the predicted cost.

DMC = 1−
∣∣∣∣ AC− PC

AC

∣∣∣∣ (16)

To determine the decision-making capabilities for the predicted costs of static process-
ing and incremental processing, the PageRank algorithm was performed 25 times for each
data type. Figure 8 shows the decision-making capabilities for the predicted costs of static
processing and incremental processing. In Figure 8a, the decision-making capability for
the predicted cost of static processing is 95% on average, which is excellent. However, the
decision-making capability for the predicted cost of incremental processing in Figure 8b
does not exceed 50% between the first and 16th iterations. Between the 17th and 25th
iterations, the average decision-making capability is 75%. The decision-making capability
for the predicted cost of static processing is excellent; therefore, we know that the correct
selection has been made. However, if the decision-making capability is low in the early
iterations as with the predicted cost of incremental processing, then a type-1 error occurs
and could result in the problem of performing static processing when the incremental
processing technique is advantageous. This result occurred because the cost model com-
putes the predicted values based on the actual processing history, and the processing
was performed only a small number of times. Further, the analysis results indicated that
the decision-making capability was significantly reduced when calculating a vertex with
many connections.
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To compare the performances of the existing schemes [16,28], the proposed iGAS
scheme, and the iGAS scheme that incorporated the cost model, the PageRank algorithm
and the single source shortest path (SSSP) algorithm [41] were performed 10 times for each
data set. The results for the 10 iterations were added up. Figure 9 shows the processing
time of the proposed schemes and the existing schemes on three types of data sets. The
performance evaluation was conducted by updating the graph for each iteration. For
cases where the graph was changed, the static processing scheme [16] was inefficient
because the entire data were calculated, thus producing duplicate results. The existing
incremental processing [28] computed only the part affected by the graph change. However,
the incurred detection and disk I/O costs were proportional to the number of connections
of the vertex. Hence, it was verified that the processing time of this technique was longer
than that of the iGAS technique. When compared with the existing incremental processing
scheme for performing the PageRank algorithm, the iGAS scheme was 146% superior in
performance on average, and the scheme that used both the iGAS and cost models was
198% superior in performance on average. When compared with the existing incremental
processing scheme for performing the SSSP algorithm, the iGAS scheme was 161% superior
in performance on average, and the scheme that used both the iGAS and cost models was
226% superior in performance on average. When only the iGAS technique is applied, the
processing cost may exhibit a performance that is similar to that of the static processing cost
if most of the graphs have been changed. However, the performance of this technique may
be worsened because an additional detection cost is incurred in proportion to the amount of
change. By utilizing both incremental processing and the cost model, the proposed scheme
demonstrated excellent performance.
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5. Conclusions

In this paper, we proposed an efficient scheme that processes dynamic graph incremen-
tally by data reuse. When a vertex was connected to many vertices, the proposed scheme
reused the previously generated result data. Hence, the detection and disk I/O costs of
the connected vertices were reduced. Further, the cost model predicted the processing
cost, and either the static processing technique or incremental processing technique was
selectively performed based on the processing ratio. When compared with the existing
incremental scheme, the performance evaluation results verified that the processing time
improved by 212% on average for the proposed scheme. For future studies, a method to
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improve the decision-making capability of a particular vertex that has many connections
will be investigated.
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