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Abstract: A two-layer artificial fish swarm evacuation model based on heterogeneous pheromones
is presented in this paper. Firstly, the movements of evacuees are simulated by the behaviors of an
artificial fish swarm, including preying, swarming, and following. Then, the positive feedback mech-
anism of heterogeneous pheromones is introduced to improve evacuation performance. Based on the
interaction and communication mechanisms of biological groups of social networks in nature, the
perceptual and cooperative model among individuals and between individuals and the environment
is established. An optimization scheme based on fish swarms and heterogeneous pheromones is
proposed. The simulation and experimental results show that the two-layer evacuation model can
optimize the spatial-temporal distribution of people and can finally achieve better evacuation plans.
The proposed model and algorithm can provide effective guidance for emergency safety responses
and robot cooperative control in intelligent robot systems.

Keywords: evacuation; artificial fish swarm scheme; heterogeneous pheromone; intelligent robot
system; social networks

1. Introduction

Recently, the impact of various emergencies on public safety is increasing, which poses
a serious threat to the environment required for citizens to engage in various activities.
The simulation of pedestrian emergency evacuation involves multiple disciplines, and its
research findings can be applied to various fields, such as building, science engineering,
safety science, disaster prevention, highway and railway transportation, robot control, and
urban planning [1–3]. Evacuation dynamics simulaed through computers is one of key
research directions in evacuation study, which has important theoretical and practical value.

In emergency evacuation, it is difficult to study evacuation processes and rules due to
complex and dynamic processes which involve numerous, non-deterministic, unknowable,
fuzzy factors [4,5]. Scholars have proposed simulation models for evacuation problems,
and some of them have entered the market and have been put into practical use. The
research on these models supplements theories of structural design and exit signs as well as
emergency planning in public places [6,7]. In recent years, researchers have been inspired
by the existence of some biological groups in nature, such as the flight formation of geese,
the aggregation of fish swarms, the synchronization of a firefly’s flash, etc. Based on the
analysis of the phenomena of these biological groups, it can be seen that, without central-
ized control and global information interaction, these groups complete the aggregation
and synchronization of all individuals only through their own local cooperation and their
interactions with surrounding individuals. This phenomenon shows the consistency of
biological groups. Many works study the cooperative mechanisms in groups by simulating
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the phenomenon of biological clustering and synchronization. This characteristic in bio-
logical groups in nature can be extended to intelligent robot systems, which make robot
systems have the intelligence of a biological population.

Fish swarms [8,9] are utilized to model an evacuation crowd. Evacuees are regarded
as artificial fish individuals. The evacuation behaviors of people are simulated by fish
behaviors. Although a fish swarm can be used to simulate an evacuation, the evacuation
plan cannot be optimized. Inspired by the positive feedback strategy of an ant colony, a
two-layer artificial fish swarm evacuation model based on heterogeneous pheromones
is presented in this paper. An evacuation crowd is simulated by a fish swarm to obtain
simulation results in the inner level, and the simulation results are optimized by hetero-
geneous pheromones in the outer level. This optimization scheme based on fish swarms
and heterogeneous pheromones can improve the interaction and movements of a crowd.
Furthermore, the objective system and the evacuation plan can be optimized in a fine level.

This paper is organized as follows: Section 2 discusses related research on evacuation;
Section 3 presents a two-layer evacuation optimization model based on fish swarms and
heterogeneous pheromones; Section 4 proposes an artificial fish swarm algorithm based
on the pheromone (AFSAP) algorithm; Section 5 compares the results of the experiments
and simulations by different approaches; and Section 6 concludes the paper and discusses
potential directions in future research.

2. Related Work

Currently, swarm intelligence and optimization algorithms have been widely con-
cerned in various applications due to their efficient optimization performance [10–12].
They are successfully used in intelligent transportation, machine learning, process con-
trol, economic forecasting, and engineering optimization [13–15]. In evacuation modeling,
optimization models of emergency evacuations based on swarm intelligence is also an
important research field. At present, the research of evacuation simulations and opti-
mization using swarm intelligence optimization theory has been attracting widespread
attention [16–18].

Ant colony optimization (ACO) [19] is one of the swarm intelligent optimization algo-
rithms which were first applied to the field of emergency evacuation. The characteristics of
an ant colony, such as positive feedback mechanisms, conformity, and self-organization, can
reflect the perceptions and interactions of evacuation individuals to the environment. For
example, Ref. [20] proposed a hybrid path dynamic planning algorithm based on Dijkstra
and ACO. The ant colony optimization algorithm is used to further optimize each node to
obtain the optimal path. This method can dynamically plan the evacuation path according
to the fire point, timely adjust the evacuation direction, and save the algorithm running
time; however, the movements and behaviors of evacuees were not studied. Particle swarm
optimization (PSO) is also used to optimize evacuation problems. Ref. [21] presented a
model based on swarm intelligence, social forces, and multi-agents to study the roles of
different behaviors. They found that the self-organizing of crowds, small groups, and
information sharing can greatly improve survival rates of civilians. However, many other
behaviors and movements involved in the evacuation process were not considered in
their model. In recent years, some scholars have used new or extended swarm intelli-
gence optimization algorithms to optimize the evacuation problem, which achieved good
results [22,23]. For example, Ref. [24] proposed an optimization model to optimize exit
locations and improve evacuation efficiency. Compared with other optimization methods,
the artificial bee colony optimization algorithm needs fewer control parameters. Ref. [25]
presented a social force model for obstacle avoidance to study the influence of two different
kinds of pedestrians. Ant colony optimization algorithm was proposed to navigate pedes-
trians who considered individual preferences. The impacts of behaviors were analyzed,
but the evacuation process involved congestion and other behaviors was not optimized by
this model. Ref. [26] studied a traffic evacuation optimization problem for tsunamis. Their
method built a hierarchical structure to provide guidance for vehicle route selection. Differ-
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ent evacuation objectives were set at different stages. The optimal solution was obtained
by using dictionary minimax optimization techniques. Evacuation safety and efficiency
were optimized by their approach, but the model was established from a macroscopic view
without considering microscopic features. An optimization model constrained by space
and design was proposed in [27]. The authors of this study proposed an algorithm to obtain
the best combination of evacuation exit positions in order to optimize evacuation routes and
accelerate the evacuation process. The approach mainly aimed to generate evacuation door
locations using an optimization algorithm. Evacuation dynamics, as well as interactions
between evacuees, were not studied. Hafeez et al. proposed a hybrid approach combining
feature engineering and a firefly optimization algorithm with a support vector regression
(SVR) model [28]. A modified firefly optimization algorithm was used to optimize the
SVR’s parameters. Their research provided a way of parameter optimization for complex
systems [29]. Ullah et al. studied the optimization of smart grids integrated with renewable
energy sources [30]. They optimized operation costs and carbon emissions by using a
multi-objective genetic algorithm. This multi-objective optimization scheme also plays a
significant role in evacuation systems and poses new challenges to the evacuation problem.

The analyses and discussions of existing studies show that the main challenges of
evacuation research include the simulation of evacuation behaviors and the interactions of
a crowd. From the view of optimization, evacuation problems often involve many complex
factors, especially for large-scale evacuations, which increase the difficulty of research on
evacuation optimization. In this research, the evacuation problem is solved by using a fish
swarm scheme based on heterogeneous pheromones. The searching process of fish swarms
is similar to the evacuation process. The behaviors of fish swarms are considered to model
the actions of evacuees. Heterogeneous pheromones which can bring positive feedback are
introduced to achieve optimal results. Four kinds of optimization algorithms are tested and
compared to analyzeanalyze the performances of the proposed method. The simulation
and experimental results show that the presented approach is effective for solving massive
evacuation problems. The cooperative ability of individuals in complex systems can be
simulated, and the evacuation plan including routes as well as congestion can be improved
by the optimization scheme based on heterogeneous pheromones.

3. Two-Layer Evacuation Optimization Model
3.1. Construction of the Evacuation Network

The structure of large public places can be complex, and people can be highly concen-
trated. Thus, the formulation of evacuation networks is very important for such common
places [31,32]. In an evacuation network, each subspace is regarded as a network node, and
each subspace has certain attributes, including central coordinates, area, and maximum
capacity. Figure 1 shows the construction process of an evacuation network. The evacuation
scenario has seven subspaces and one exit, as shown in Figure 1a. Figure 1b is obtained
according to the connection and separation relationships among subspaces and exits. In
Figure 1c, the coordinates of the center points of each subspace is abstracted and marked as
a node, and the connecting line between two connectable subspaces is regarded as an edge.
The final evacuation network is shown in Figure 1d.

3.2. Mathematical Model

A two-layer artificial fish swarm evacuation model based on heterogeneous pheromones
is presented to simulate and optimize the evacuation problem. The artificial fish swarm
algorithm (AFSA) has its own advantages over other optimization algorithms, including
the strong ability to jump out of local extremum and global optimization. The swarm
advantage is more obvious and more effective with a large number of fish. Thus, it is
suitable for large-scale evacuation problems.
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Figure 1. Evacuation network abstraction. (a) Evacuation scenario. (b) Subspaces and their connec-
tions. (c) Center point of subspaces and their adjacen edges. (d) Final evacuation network.

Each artificial fish is represented as an intelligent individual, which can reflect envi-
ronmental perception, behavioral selection, and other capabilities of the individual.

Fi = (ID, Step, Visual) is defined as an artificial fish, where ID, Step, and Visual are
the node ID, the visual step, and the node set of the visual field of an artificial fish Fi,
respectively. Visual refers to the perception range of each artificial fish. It contains a set of
nodes which directly connect to the current node. The exit nodes in the scene are considered
to be the location of a food source for the fish swarm. The evacuation process of a crowd
towards exits can be similar to the searching process of a fish swarm. During the process,
preying, swarming, and following behaviors are performed.

Since the evacuation network in our model is represented as a discrete graph, the
visual field should be discrete. A discrete visual field refers to a set of nodes which can be
perceived by artificial fish. It is determined by a parameter defined as Step. The discrete
field of vision of artificial fish is shown in Figure 2. Assuming that the current artificial
fish is at node Ni, its visual field is different according to the value of Step. As shown in
Figure 2, Step = 1 indicates that the artificial fish can perceive the nodes directly connected
with its current node. Step = 2 means that the visual field the current artificial fish is
wider, and the nodes within two steps connected with the current node are included in the
visual field.

Figure 2. Visual field of artificial fish.
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The model is described below:
Indices:

i—node number;
num_total—the number of evacuees;
k—index for individual;
visual_n—the number of nodes in the visual field;
lenis—the length of edge (i, s);
nums—the number of individuals at node s;
speed—the moving speed of evacuees;
distExits

s —the Euclidean distance between node s and the exit nodes.

Figure 3 shows the selection of an artificial fish at the next moment in the evacuation
process through three basic behaviors. Figure 3 is the diagram of these different behaviors.
In Figure 3a, at this moment, the artificial fish Fk is located at node Ni. Nodes Nr, Ns, and
Nt are connected with Ni in the visual field of Fk. The current number of individuals at each
node is marked inside the node symbol, and the distance between two nodes are labeled
on the corresponding edge.

Figure 3. Behaviors of fish swarms and path selections. (a) Original diagram. (b) Preying. (c) Swarm-
ing. (d) Following.

The three behaviors are described below:

3.2.1. Preying

Preying behavior simulates the pursuit of evacuees towards exits with randomness
and blindness. Preying behavior is one of the most basic behaviors.



Electronics 2022, 11, 649 6 of 17

Pprey
ij is defined as the probability of node i to node j under preying behavior.

Pprey
ij =

1

lenij/
visual_n

∑
s=1

lenis)

(1)

lenij is the length of edge (i, j).
visual_n

∑
s=1

lenis is the total length of edges in the visual

field. Equation (1) shows that an individual will choose the node which is nearest to its
current node. As shown in Figure 3b, the fish Fk is in its current node Ni, and Fk will select
Nr as its next node when it performs preying behavior according to Equation (1).

3.2.2. Swarming

In many situations, most people tend to follow the majority, which is known as the
conformity behavior. The swarming behavior of fish can simulate the conformity behavior
when people escape. When an individual intends to follow the majority, it chooses the
node with the most individuals in its visual field according to the probability calculated by
Equation (2).

Pswarm
ij = numj/

visual_n

∑
s=1

nums (2)

Pswarm
ij is the transition probability of node i to j under swarming behavior. numj is

the number of individuals at node j.
visual_n

∑
s=1

nums means the total number of individuals

in the visual field. As shown in Figure 3c, Fk, who is performing swarming behavior, will
choose Ns as its next node because Ns has the largest number of individuals in it.

3.2.3. Following Behavior

In the evacuation process, the individuals who have skilled experience are able to
choose the shorter path for rapid evacuation. These people will play the role of leaders,
and some others may follow them. The phenomenon of a small group in the evacuation
process can be simulated by the following behavior of a fish swarm. As shown in Figure 3d,
the fish Fk will choose Nt within its visual field as the next node because Nt is the closest
node to the exit nodes.

P f ollow
ij is defined as the transition probability of node i to j under following behav-

ior. An individual who performs following behavior selects the next node according to
Equation (3).

P f ollow
ij =

1

distExits
j /

visual_n
∑

s=1
distExits

s

(3)

where distExits
j is the Euclidean distance between node j and the exit nodes, and where

visual_n
∑

s=1
distExits

s is the sum of distances from the nodes in visual field to the exit nodes.

The three behaviors are executed in turn to evaluate the fitness values of candidate
nodes in the visual field. Then, the current artificial fish chooses the node with the best
fitness value to move, and it performs the corresponding behavior.

4. Artificial Fish Swarm Algorithm Based on Pheromones

Through a lot of observation and research, bionics researchers found that ants in
the biological world can find the shortest path without any visible prompts. This is due
to the release of pheromones. Ants within a certain range can sense the presence of the
pheromone, which guides their movements towards the direction of higher pheromone
concentrations. The shorter the path is, the greater the number of ants that choose the path
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is and the higher the pheromone concentration is. Ants prefer to choose a position with
the most pheromone. However, the strength of the pheromone will decrease with time.
Finally, the search process of ants forms an optimal path. Inspired by ant foraging, the ant
colony optimization algorithm was first proposed by Italian scholar Dorigo et al. [33] and
applied to many problems [34,35]. The artificial fish swarm algorithm based on pheromones
(AFSAP) was proposed to solve and improve evacuation problem.

4.1. Pheromone Update Strategy

After all the evacuees are evacuated, the set of moving paths constitutes an evacuation
plan. This plan can be considered a feasible solution to the evacuation problem. The
aim of evacuation optimization is to find the optimal solution. Therefore, two layers of
optimization are introduced to obtain the optimal solution. The inner layer is implemented
by repeated iterations of the simulation based on the fish swarm algorithm. The outer layer
uses heterogeneous pheromones to optimize feasible solutions obtained by the inner layer.

Therefore, after the completion of one iteration of the artificial fish swarm algorithm,
which obtains a feasible evacuation plan, all the artificial fish return to their initial positions
and continue to evolve for a designated number of iterations. Pheromones are introduced
to improve solutions in the evolution process.

dsij is defined as the busyness degree of edge (i, j), and it is calculated by Equation (4).

dsij =

T
∑

t=0
pass_numij(t)

m
∑

k=1
tk
ij

(4)

where pass_numij(t) is the number of passing people from node i to j at time t. Additionally,
tk
ij is the time spent on edge (i, j) by evacuee k, and T is the total time required to evacuate

all evacuees.
The pheromone concentration on each edge of the evacuation network is updated by

Equation (5).

τij(t + 1) =
{

(1− ρ)τij(t) + ρ∆τij i f dsij < ds
(1− ρ)τij(t) otherwise

(5)

where ρ(0 ≤ ρ ≤ 1) is the evaporation rate. ds is the average busyness degree of the whole
network. ∆τij is the pheromone increment of edge (i, j). Moreover, ∆τij is calculated by
Equations (6) and (7).

∆τij =
m

∑
k=1

∆τk
ij (6)

∆τk
ij =

Q

(
distExits

i
speed + wait_timek

i + wait_timek
ij)× δ

(7)

where ∆τk
ij is the pheromone released by individual k on (i, j), where distExits

i is the Eu-
clidean distance from node i to the exit nodes, where speed is the moving speed of the
evacuees, and where wait_timek

i and wait_timek
ij are the time waiting at node i and on edge

(i, j) of the individual k, respectively. δ is the congestion degree.
The amount of pheromone released by individual k is inversely proportional to the

time spent on the edge, the waiting time at the node, the blocking time on the edge, and
the congestion degree of the next node. This updating mechanism ensures that individuals
will prefer the node with less traffic load in the next iteration in order to avoid congestion.

4.2. The Influence of Pheromones on Bulletin Board Decision

Each artificial fish executes the behaviors of preying, swarming, and following and
choosing the corresponding node to move towards. The state of the artificial fish and the
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candidate nodes of preying, swarming, and following behaviors are recorded in the bulletin
board. The three behaviors are carried out respectively to choose the corresponding candi-
date node of each behavior as its next position, which is calculated by Equations (1)–(3). In
addition, the three behaviors are evaluated to select the best node as its next hop. In the
bulletin board, Equation (9) is used to evaluate the three behaviors and to record the best
node to move towards.

Tk
bebav is defined as the total time spent by individual k moving from its current node i

to the exits under behavior behav, which depends on three parts. The first part means the
ideal evacuation time of individual k from its current node i to the exits, the second part is
the time waiting at node i, and the third part is the time waiting on edge (i, j).

Tk
behav =

distExits
i

speed
+ wait_timek

i + wait_timek
ij, k performs behav, behav = {prey, swarm, f ollow} (8)

min Fitness =
Tbehav

total
τij

(9)

where behav = {prey, swarm, f ollow}, indicating the behavior taken by the individual, and
where τij is the pheromone concentration on edge (i, j).

Equation (9) shows that the fitness value depends on several factors, including evac-
uation time, blocking time, congestion degree, and pheromones on the candidate edges.
The edge with a higher pheromone concentration and less waiting time is more likely to
be chosen.

4.3. Steps of the AFSAP

The AFSAP algorithm is described in Algorithm 1 below:

Algorithm 1. AFSAP algorithm

Input Network nodes and their corresponding coordinates, capacity, and adjacency matrix.
The parameters of the AFSAP algorithm, including population size num_total, the
maximum number of iterations Gen _max, the visual step Step, the evaporation rate
of the pheromone ρ, the total amount of pheromone Q, the default moving speed of
people speed, and the congestion degree δ.

Step 1
Initialize the artificial fish swarm by first placing M artificial fish randomly on the
nodes of the evacuation network and assigning attributes to each artificial fish.

Step 2 For each iteration iter, repeat Step 3 to Step 12.
Step 3 For each artificial fish i, repeat Step 4 to Step 7.

Step 4

Execute preying, swarming, and following behaviors, and calculate the corresponding
probabilities according to Equations (1)–(3). Choose node j in the visual field as the
next position to move to, and record the selected node of the corresponding behavior
in the bulletin board.

Step 5
Calculate the fitness of the three behaviors of the current artificial fish using Equation
(8) and Equation (9). Update the bulletin board.

Step 6
The artificial fish executes the behavior with the minimum fitness value. Choose the
node with the minimum fitness value as the next node, and enter the edge moving
state at a certain speed.

Step 7 i = i + 1. If i > num_total, then go to step 8, otherwise go to Step 4.
Step 8 If all the individuals have reached the exit nodes, go to Step 9, otherwise, go to Step 3.
Step 9 Record the evacuation routes.
Step 10 Update the pheromones on each edge according to Equation (5).
Step 11 iter = iter + 1.
Step 12 If iter < Gen _max, go to Step 2, otherwise output the results.
Output Evacuation results, including time, routes, and individual distribution.

Figure 4 shows the flowchart of AFSAP.



Electronics 2022, 11, 649 9 of 17

Figure 4. Flowchart of AFSAP algorithm.

5. Experiments and Simulations

The evacuation model was applied to the Wuhan Sports Center Stadium in China. The
stadium can accommodate up to 60,000 people. As shown in Figure 5, there are 42 stands
and 10 exits in the stadium. The stands, bleachers, stairs, exits, and passages are considered
as nodes to construct the evacuation network, and there are 157 nodes in total.
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Figure 5. Evacuation network of study area.

In this paper, the evacuation results of the four approaches, including the ACO
algorithm [36], the HMERP algorithm [37], the HDAFSA algorithm [38], and the AFSAP
algorithm, were implemented and compared. The parameters of the AFSAP algorithm are
listed in Table 1. The experiments were implemented in Matlab 2018b with an Intel(R) Core
(TM) i7-8550U CPU @ 1.80GHz processor. All the experiments were run 20 times, and the
average values were used as the results.

Table 1. Initial values of AFSAP algorithm parameters.

Name Value Description

num_total 5000–40,000 Number of initial people in the stadium
Step 1 Visual step of each individual

Gen _max 100 Maximum number of iterations
ρ 0.7 Evaporation rate
Q 100 Total amount of pheromone

speed 2 m/s Default moving speed of people
δ 0.8 Congestion degree

Table 2 lists the evacuation time of four algorithms. For each method, the minimum,
maximum, and average times of 20 repeated experiments were recorded. Table 2 shows that
ACO takes the longest time to evacuate 25,000 people, whereas AFSAP takes the shortest
time of 354 s. The average evacuation time of AFSAP is shortened by 68.4% (ACO), 56.7%
(HMERP), and 11.5% (HDAFSA).

Table 2. Evacuation time of four algorithms.

Algorithm Minimum Time Average Time (s) Maximum Time (s)

ACO 1096 1120 1354
HMERP 703 818 899

HDAFSA 354 400 410
AFSAP 346 354 358
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Figure 6 shows the efficiency diagrams of the four methods. It is shown that the
evacuation times of the approaches based on AFSA are less than that of the algorithms
based on ACO. The maximum time of the HMERP algorithm is almost 800 s, whereas ACO
takes a longer time of 1100 s. It is indicated that the methods based on AFSA are more
efficient than HMERP and ACO, which means that the artificial fish swarm algorithm is
more suitable for solving massive evacuation problems. Among the four methods, the
AFSAP algorithm, driven by the dual optimization mechanism of positive feedback and by
good global optimization ability, takes the least time to evacuate all the evacuees in less
than 400 s, which is dramatically shortened. Compared with the HDAFSA algorithm, the
AFSAP algorithm is more efficient and faster in the later stage of evacuation.

Figure 6. Evacuation efficiency curves.

Aside from maintaining the same high evacuation efficiency, the distribution of evac-
uees of the AFSAP algorithm was analyzed. Figure 7 shows the distribution of 25,000 per-
sons. The node’s color and size vary according to the current number of persons at the
node. The more people there are, the bigger the node is. Figure 7a–d show the population
distribution at the beginning, 100 s, 200 s, and 300 s, respectively. Figure 7d shows that the
numbers of individuals at 10 exits are relatively evenly distributed, which indicates that the
utilization degree of 10 exits is relatively balanced. The reasonable and balanced utilization
degree of exits is essential for emergency evacuation because congestion at some certain
exits may lead to serious secondary disasters.
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Figure 7. Distribution of people at different times during the evacuation process of 25,000 people.
(a) t = 0 s. (b) t = 100 s. (c) t = 200 s. (d) t = 300 s.

Table 3 shows the number of people leaving from 10 exits by four methods. It is shown
that the numbers of evacuees from 10 exits by AFSA and HDAFSA are uneven. Especially
for AFSA algorithm, few people choose Exit 2 and Exit 6 to evacuate, and the standard
deviation is up to 1689. Although the standard deviation of 10 exits by HDAFSA is about
1100, it is still large. The large values of standard deviations mean that the burdens on
certain exits are heavy. However, the range and standard deviation of the AFSAP algorithm
are minimum among the three approaches due to the positive feedback mechanism of the
pheromone. It is shown that AFSAP can evacuate a large number of evacuees evenly to
every exit, and thus all the exits are fully utilized.

Table 3. Distribution of evacuees from 10 exits.

Exit No. AFSA HDAFSA AFSAP Deviation AFSA HDAFSA AFSAP

1 5953 2309 2438 3453 −191 −62
2 668 1239 3119 −1832 −1261 619
3 2115 2373 2276 −385 −127 −224
4 4047 1285 2053 1547 −1215 −447
5 2023 2247 2112 −477 −253 −388
6 418 1752 1731 −2082 −748 −769
7 2329 1798 2479 −171 −702 −21
8 1288 4187 2844 −1212 1687 344
9 3835 4191 3035 1335 1691 535

10 2323 3572 2913 −177 1072 413
Range 5535 2952 1388 Standard deviation 1689.67 1110.04 466.01

Figure 8 shows the temporal-spatial congestion of the ACO, HMERP, HDAFSA and
AFSAP algorithms. The four methods have quite different distributions of temporal-spatial
congestion. The height of the histogram represents the number of evacuees. When the
number of people at one node becomes larger, the color changes from blue to yellow.
The congestion values shown in Figure 8a,b are much higher than those in Figure 8c,d.
It demonstrates that the congestion condition of the HDAFSA algorithm is less serious
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than that of the ACO and HMERP algorithms. The differences between HDAFSA and
AFSAP are not apparent. However, the marked areas in Figure 8c show that some nodes
are crowded. As shown in Figure 8d, the AFSAP algorithm fully considers the advantages
of AFSA and ACO. It can ensure good congestion control and improve node utilization in
order to further reduce congestion and improve evacuation efficiency.

Figure 8. Temporal-spatial congestion of four approaches. (a) ACO. (b) HMERP. (c) HDAFSA.
(d) AFSAP.

Figures 9 and 10 show 2D and 3D routes for the four algorithms. The color and
thickness of the lines indicate a different passing frequency. As the passing number of
people rises up, the line gradually becomes thicker and redder. Figures 9 and 10 show
that the four approaches differ in path distribution and utilization. The HMERP algorithm
and ACO algorithm are not much different. Some edges are thick and red, indicating
that there are many people passing through or that there may be congestion and repeated
paths. However, the routes obtained by the artificial fish swarm algorithms have obvious
advantages in path planning. Comparing HDAFSA and AFSAP, it is shown that the AFSAP
algorithm can avoid the overload of some paths and exits in Figure 9c as well as the low
utilization of some nodes. Therefore, the AFSAP algorithm can improve the utilization of
road segments and reduce blocking time.

Table 4 lists the experimental results with different total numbers of initial people. It is
shown that the total path length and the maximum time required to evacuate all people
increase greatly with the increase in the number of people. The average path length and
the longest path length of all the people increase slightly as a result of possible congestion
and detours, but the shortest path length and the minimum time remain almost unchanged
because of someone evacuating along his/her shortest path.
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Figure 9. Two-dimensional evacuation routes. (a) ACO. (b) HMERP. (c) HDAFSA. (d) AFSAP.

Figure 10. Three-dimensional evacuation routes. (a) ACO. (b) HMERP. (c) HDAFSA. (d) AFSAP.
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Table 4. Experimental results with different numbers of initial people.

Total
People

Total Path
Length (m)

Average
Path

Length (m)

Shortest
Path

Length (m)

Longest
Path

Length (m)

Minimum
Time (s)

Maximum
Time (s)

5000 246,366.89 49.27 30.78 82.46 15.45 118.01
10,000 496,407.63 49.64 30.78 82.46 15.49 210.12
15,000 744,126.97 49.60 30.78 83.61 15.49 278.55
20,000 1010,276.70 50.51 30.78 82.46 15.48 330.10
25,000 1278,948.58 51.16 30.78 85.12 15.48 357.86
30,000 1555,239.98 51.84 30.78 85.12 15.48 433.54
35,000 1847,099.55 50.77 30.78 85.12 15.48 497.15
40,000 2142,870.49 51.57 30.78 98.52 15.53 569.24

6. Conclusions

A two-layer evacuation optimization model based on the artificial swarm scheme is
presented in this paper to simulate crowd evacuation processes. Inspired by the positive
feedback effect of pheromones in an ACO, heterogeneous pheromones were added between
each iteration obtained by the artificial fish swarm algorithm in order to guide the optimiza-
tion. The evacuation routes of one iteration were influenced by the amount of pheromone
in former iterations. Experiments and simulations of four methods were evaluated and
compared. The results show the efficiency of the AFSAP algorithm. In addition, the AFSAP
algorithm can promote the utilization of exits and avoid congestion. Furthermore, it can
achieve better evacuation efficiency compared with other algorithms. The model based
on the AFSAP algorithm can enhance the cooperative ability of individuals in complex
systems and provide effective support for people to obtain information services in complex
environments. Aside from the stadium scenario used in this paper, the proposed method
can be extended and applied to other large-scale public places, such as marketplaces, public
amusement places, theaters, subway stations, etc.

Further research can focus on the modeling of different groups in an evacuation crowd,
including various social relationship groups and non-social relationship groups. Develop-
ing more effective optimization methods is also a potential direction in future research.
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