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Abstract: Large cities’ expanding populations are causing traffic congestion. The maintenance of the
city’s road network necessitates ongoing monitoring, growth, and modernization. An intelligent
vehicle detection solution is necessary to address road traffic concerns with the advancement of
automatic cars. The identification and tracking vehicles on roads and highways are part of intelligent
traffic monitoring while driving. In this paper, we have presented how You Only Look Once (YOLO)
v5 model may be used to identify cars, traffic lights, and pedestrians in various weather situations,
allowing for real-time identification in a typical vehicular environment. In an ordinary or autonomous
environment, object detection may be affected by bad weather conditions. Bad weather may make
driving dangerous in various ways, whether due to freezing roadways or the illusion of low fog. In
this study, we used YOLOv5 model to recognize objects from street-level recordings for rainy and
regular weather scenarios on 11 distinct classes of vehicles (car, truck, bike), pedestrians, and traffic
signals (red, green, yellow). We utilized freely available Roboflow datasets to train the proposed
system. Furthermore, we used real video sequences of road traffic to evaluate the proposed system’s
performance. The study results revealed that the suggested approach could recognize cars, trucks,
and other roadside items in various circumstances with acceptable results.

Keywords: smart cities; intelligent transportation systems; object detection; YOLO

1. Introduction

Many advanced artificial intelligence-based applications, such as smart autonomous or
self-driving vehicles [1], smart surveillance [2], and smart cities [3], have been considered as
the foundation for sustainable smart cities and societies. Object detection plays an essential
role in developing smart cities in normal traffic conditions or autonomous environments. It
can extract helpful and precise traffic information for traffic image analysis and traffic flow
control. This information includes vehicle count, vehicle trajectory, vehicle tracking, vehicle
flow, vehicle classification, traffic density, vehicle velocity, traffic lane changes, and license
plate recognition [4]. Furthermore, the information can help detect other road assets such as
pedestrians, vehicle types, people, traffic lights, earthworks, drainage, safety barriers, signs,
lines, and the soft estate (grassland, trees, and shrubs) using different objects detectors.

Many studies and surveys presented various object recognition techniques in vehicular
environments, out of which the three most common detection approaches are: manual,
semi-automated, or fully automated [5]. The traditional methods for collecting informa-
tion about objects present on roads involve manual and semi-automated surveys. In a
manual approach, a visual inspection of the objects present on the streets/roads is done
either through walking or driving along streets/roads using a slow-moving vehicle. Such
inspection suffers from a subjective judgment of inspectors [6]. It requires a significant
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human intervention which has proven time-consuming, given the extensive length of road
networks and the number of objects. Moreover, inspectors must often be physically present
in the travel lane, exposing themselves to potentially hazardous conditions.

In semi-automated object detection procedures [7,8], the objects on the roads/streets
are collected automatically from a fast-moving vehicle and the collected data is processed
in workstations at the office. This approach improves safety but still is based on the policy,
which is very time-consuming. Fully automated object detection techniques often employ
vehicles equipped with high-resolution digital cameras and sensors [9]. The collected
images/videos are then processed using pretrained recognition software-based models
identifying vehicles and surrounding objects. The data processing may be accomplished
during data collection or later as postprocessing at the office. Specialized vehicles used
for automatic object detection are usually equipped with multiple sensors such as laser
scanners and LiDAR cameras to capture road assets. Vehicle-based traffic detection is
standard as they enable efficient and faster inspection of the objects.

Deep neural networks have considerably improved the performance of smart au-
tonomous or self-driving cars, smart surveillance, and smart city-based applications com-
pared to ordinary traditional machine learning-based approaches. Deep learning, based
on neural networks, is a more advanced kind of machine learning that offers solutions in
many complex application models using traditional statistical methods [10]. For example,
Convolutional Neural Network (CNN) [11] which is a type of a deep neural network is
used for image identification and categorization. These are the algorithms that can recog-
nize street signs, automobiles, people, and various other items. The real benefit of CNN
is that it automatically detects the critical features after the training phase without any
human intervention. Many CNN designs have been created to provide the most remarkable
accuracy with increased processing speed.

The most popular and widely used CNN techniques are R-CNN (Region-based Con-
volutional Neural Networks) [12], Fast-RCNN [13], and Faster-RCNN [14]. However, the
computational load was still too large for processing images on devices with limited com-
putation, power, and space [15]. Therefore, the You Only Look Once (YOLO) model was
developed to further improve the computation speed in classifying an object and determin-
ing its location in the image. It is based on a convolutional network framework to directly
detect multiple objects within the image. It combines predictions from numerous feature
maps with different resolutions to handle objects of various sizes [16]. YOLO kept on
providing better performance in terms of processing time and accuracy due to the develop-
ment of various new algorithms such as YOLOv3 and YOLOv5. The application of YOLO
in the autonomous vehicle industry for object detection, localization, and classification in
images and videos is presented in [17].

Object detection in a normal or autonomous environment may be affected by bad
weather conditions such as hue or if it is too snowy or rainy [18]. In such cases, clear object
recognition is complex, and therefore leads to the wrong judgment of vehicles or other
objects on the road. In this case, various prediction-based previously trained models and
algorithms are used to provide the proper assessment. To address the above challenges, the
presented work intends to utilize the deep learning-based YOLOv5 algorithm for detecting
and classifying vehicles on video from surveillance cameras and further processed using a
deep learning algorithm in two different scenarios (with rain and without rain). We selected
YOLOv5 since it is a well-known object detector that provides fast processing (improved
computation speed) and is easy to train [19].

The localized road asset datasets were collected from different routes in Laval, Quebec
City, Canada using four surveillance cameras installed on the vehicle’s windshield for the
required comprehensive analysis. The newly collected datasets were labeled for 11 dif-
ferent classes (‘biker’, ‘car’, ‘pedestrian’, ‘trafficLight’, ‘trafficLight-Green’, ‘trafficLight-
GreenLeft’, ‘trafficLight-Red’, ‘trafficLight-RedLeft’, ‘trafficLight-Yellow’, ‘trafficLight-
YellowLeft’, ‘truck’). After that, the study involves training and evaluating YOLOv5
based deep neural network model considering two scenarios based on different combina-
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tions of the test and train datasets for detecting and classifying road assets. Finally, the
performance of the prepared model is evaluated for two different weather conditions (with
rain and without rain).

Overall, the contributions of this work can be listed as follows: Discussion on the
various deep learning-based object detection techniques for vehicles and other road assets is
presented in Section 2. Section 3 offers materials and methods, which include the proposed
scheme, data sets applied for training and testing throughout experimentation. A detailed
investigation of results and system performance is presented in Section 4. Section 5 provides
the conclusion of the work with possible future guidelines

2. Related Work

A review of recent work has shown that image and video detection of vehicles can be
enhanced using various machine learning algorithms. Cognitive Vehicles (CV) differ from
Smart Vehicles (SV). They do not rely solely on sensor data and instead rigidly follow the
patterns and functions that have already been preprogrammed externally. As a result, a new
Global Navigation Satellite Systems (GNSS) free approach for vehicle self-localization has
been developed [20]. Promising results are achieved when the system location estimations
are compared to the GPS-reported locations. Authors in [21] developed a human detection
system for intelligent surveillance in smart cities and societies based on Gaussian YOLOv3
method. Results showed that training enhances the Gaussian YOLOv3 algorithm’s ability
to detect humans, with an overall detection accuracy of 94%.

In [22], the authors presented a real-time road traffic management approach based on
an upgraded YOLOv3. Using publicly available datasets, a neural network was trained and
implemented the proposed strategy to improve vehicle detection. The evaluation findings
demonstrated that the suggested system performed satisfactorily compared to the previous
way of monitoring vehicle traffic. In addition, the proposed method was less expensive
and had fewer hardware needs.

In [23], the authors presented a case study of YOLOv5 implementation to detect heavy
goods vehicles in the winter, when there is snow, and in polar night situations. Results
stated that a trained algorithm could see the front cabin of a heavy goods vehicle with high
confidence; however, detecting the rear appeared more difficult, especially when the car is
placed far away from the camera.

In [24], the primary learning models for video-based object detection that can be
applied with autonomous vehicles are overviewed and investigated. The authors imple-
mented a machine learning solution—the support vector machine (SVM) algorithm—and
two deep learning solutions—the YOLO and the Single-Shot Multibox Detector (SSD)
methods—in an autonomous vehicle environment. The drawback of the proposed method
was that SVM performs poorly in simulations, and its speed did not match real-time
response. In contrast, the YOLO model and SSD achieve greater accuracy and have a
significant ability to detect objects in real-time when fast driving judgments are required.
CNN-based YOLO provided better processing time and highly precise performance over
time. The application of YOLO in the autonomous vehicle industry for object detection,
localization, and classification in images and videos is presented in [25–27]. Other object
recognition approaches in the vehicular environment under different weather conditions
and traffic monitoring in real-time scenarios are investigated in [28–34].

We summarize the literature survey based on learning-based object detectors in Table 1
with the proposed scheme and their implementation challenges.
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Table 1. Literature survey based on learning-based object detectors.

References Proposed Scheme Techniques Implemented Advantages Implementation
Challenges

[22]

Real-time road traffic
management is done
using an improved

YOLOv3 model.

Its a convolution neural
network-based approach for

the traffic analysis system,
available online datasets are
used to train the proposed
neural network model, real

video sequences of road traffic
are used to test the
performance of the
proposed system.

The trained neural
network improves

vehicle detection, lowers
cost, and has modest

hardware requirements.
Large-scale construction

or installation work is
not required.

Neural network-based
model often produces
detections with false
rates due to incorrect

input ranges
(false positives).

[23]
Transfer learning to

YOLOv5-based
approach is utilized.

The proposed solution detects
heavy goods vehicles at rest
areas during winter to allow

real-time prediction of parking
spot occupancy in snowy

conditions in winter.

Snowy conditions and
the polar night in winter

typically pose some
challenges for image
recognition; thermal

network cameras can be
used to solve the
above problem.

The model faces some
restrictions when

analyzing images from
small-angle cameras to

detect objects that
occur in groups and

have a high number of
overlaps and

cut-offs.Detecting
certain characteristic

features of images can
improve the model.

[24]
YOLOv4 network
model is used to

monitor traffic flow.

YOLOv4 network model is
modified to increase the

convolution times after the
feature layer.

More global and higher
semantic level feature

information. More
accurate than the original

YOLOv4 model.

Increases the network
complexity. The

average detection time
of the proposed model

is slower than the
original model.

[25–27]
Vehicle search is

performed by detecting
registration plates.

Neural networks, a
block-difference method, and
optical recognition techniques

are used to detect
moving objects.

Simplest in terms
ofrecognition algorithms
because of the contrast of
the background and the

characters, and the
limited number

of characters.

This approach does not
allow detectingvehicles

in situations where
there are no license
plates (bicycles) or

when they arelocated in
nonstandard areas
(such as cars with

temporary numbers).

[28–32]

Background
subtraction-based
implementation

combined with blob
analysis, Kalman filter,

Gaussian Mixture
Model (GMM).

Background subtraction:
Vehicle detection is to

segments moving
implemented by subtracting

the dynamic component
(moving objects) from the

static background of the image.

It is efficient for
computation time and
storage, and it is the

simplest and
most popular.

Processing data in
dense traffic conditions
lead to vehicle fusion

due to partial occlusion
in the processed image

data. As a result, the
prediction of an

incorrect bounding box
may occur.

[33]

Offline YOLO-based
training method for

object detection.
Support vector

machine is used to
calculate the Haar
wavelet function.

The offline tracker uses the
detector for object detection in
still images, and then a tracker

based on Kalman filter
associates the objects among

video frames.

Offline YOLO trackers
show more stability and

provide improved
performance. Faster with

Kalman filter than the
other trackers.

YOLO is not qualified
for online tracking,

because in this case it is
very slow during the

training phase.
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Table 1. Cont.

References Proposed Scheme Techniques Implemented Advantages Implementation
Challenges

[34]

An approach based on
multilayer neural

networks is used, and
the network is trained

by a new algorithm:
Minimization of

Inter-class
Interference (MCI).

The proposed algorithm
creates a hidden space (i.e.,

feature space) where the
patterns have a desirable

statistical distribution.

Simplicity and
robustness enable

real-time applications
possible.

The neural architecture,
the linear output layer,

is replaced by the
Mahalanobis kernel to
improve generalization,
and disturbing images
are used; therefore, this

approach is
time-consuming.

3. Materials and Methods

A detailed explanation of the datasets and different experimentation results are pre-
sented in this section. The overall testing results are described in subsections; first, the
performance of the pretrained algorithm is discussed. Secondly, imagery annotation and
model training procedures are described. Finally, testing and validation using simulated
datasets are done, and the algorithm performance is evaluated using different quantita-
tive measures.

3.1. Proposed Scheme

We employed the Python programming language, the OpenCV image processing
package, and the Google Colab cloud service in the suggested architecture. Python was
chosen as the development programming language. A video stream processing method
for recognizing objects and a tracking algorithm make up the internal subsystem. The
YOLO neural network model, proven to be one of the most versatile and well-known object
detection models, is used to process the data.

The advanced version of the YOLOv5 algorithm was used, which sends each batch of
training data through the data loader while also improving the data. Scaling, color space
correction, and mosaic enhancement are three types of data improvements that the data
loader can execute.

This model uses the SxS grid system to separate all input images. Object detection
is the responsibility of each grid. The boundary boxes for the detected object are now
predicted by those Grid cells. These five key attributes are defined for each box: x and y for
coordinates, w and h for object width and height, and a confidence score for the likelihood
that the box contains the object. Additionally, YOLOv5 is faster when compared to YOLOv3,
termed as more accurate. Another reason for using YOLOv5 for object detection is its fast
processing time compared to YOLOv3.

In this paper, we provide a case study that shows how YOLOv5 can be used to
recognize items on streets and highways, as well as object detection using YOLOv5 from
Street-level Videos on 11 distinct classes: pedestrians, vehicles (car, truck, bike), and traffic
signals (red, green, yellow). The workings of YOLOv5 with training and validation datasets
and a tailored YOLOv5 model for the abovementioned class are shown in Figure 1.

3.2. Imagery Annotation and Model Training

The presented model was trained within the Google Colab cloud platform, with a
powerful GPU tool that requires no configuration. We used a Roboflow self-driving car data
set [35] built on YOLOv5 and employed pretrained COCO weights. The dataset was down-
loaded to Colab using the Roboflow generated URL as a zip folder. The overall annotated
dataset was then split into a training set with 959 images, a validation set with 239 images,
and a testing set with 302 images. Each image of Roboblow data was tagged with different
classes. In this study, we trained our model for 11 different annotated classes (‘biker’, ‘car’,
‘pedestrian’, ‘trafficLight’, ‘trafficLight-Green’, ‘trafficLight-GreenLeft’, ‘trafficLight-Red’,
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‘trafficLight-RedLeft’, ‘trafficLight-Yellow’, ‘trafficLight-YellowLeft’, ‘truck’). It takes about
60 min to train the model.
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Figure 1. Object detection workflow using YOLOv5 model.

3.3. Testing and Validation Using Simulated Datasets

We tested and validated our model for two different scenarios: with rain and with-
out rain (Figure 2). We prepared a simulated video of rain (Video S1) and without rain
(Video S2) scenarios (Added videos in supplementary data). Then, we trained the YOLOv5
model using abovementioned Roboflow custom images with the help of custom data for
100 epochs. It took 18 min and 12 sec to complete 100 epochs. In the last step, both the simu-
lated videos were validated using the best weights recorded during training of the YOLOv5
model. The main advantage of the YOLOv5 architecture is that objects are localized and
classified in a single pass through the network. This allows for very quick frame-by-frame
processing, making it possible to process video in real-time [35]. For detecting objects, three
metrics named precision, recall, and mean AP (mAP) were used. Precision is calculated
as the number of correctly marked objects divided by the total number of marked objects
(error of commission). In contrast, recall is the number of correctly marked objects divided
by the total number of objects present (error of omission) [36].
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scenarios considered in this experiment.

4. Performance and Evaluation

It is clear from Figure 2a,b that the model can successfully detect all the specified classes
with a high prediction value. The accuracy curves for precision and recall with confidence
value and F1 score are plotted in Figure 3 (Supplementary data Videos S3 and S4).
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Figure 3. Plots of the precision, recall, mAP (0.5) parameters along with class object loss for train-
ing epochs.

The graphs in Figure 4 show the improvement in our model by displaying different
performance metrics for both the training and validation sets. Figure 3 depicts classification
loss. In this model, we used early stopping to select the best weights. The presented model
shows improved precision, recall, and mAP until reaching a peak at 17, 93, and 99 epochs,
respectively. The validation data’s classification loss also showed a rapid decline after
epoch 18. The loss function demonstrates how well a particular predictor performs in
identifying the input data elements in a dataset. The lower the loss, the better the classifier
models the relationship between input data and output targets. It displays how effectively
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the algorithm predicts the proper class of a given item in the situation of classification loss.
Table 2 shows the results of those metrics for all classes, obtained on the first dataset with
model YOLOv5s.
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Table 2 shows the results for each of the 11 classes and the entire validation set. The
number of known targets to be detected is shown in the third column. The detector’s
accuracy and recall are shown in the fourth and fifth columns. Finally, the sixth column
displays the mean average accuracy for the given intersection over the union. As the tables
demonstrate, YOLOv5s performs similarly to the broader network. As a result, it is enough
for the number of data and complexity of the problem, and larger models are not merited.

We see the most significant potential for improving performance in adjusting physical
data collection and enhancing data annotation. For most applications, changes to the
physical data collection cannot be influenced. However, as this is a pilot project running on
only two different scenarios (rain and without rain), there is the possibility of changing the
physical setup for data collection if more weather conditions are added.

This paper presents evidence that real-time camera videos captured while driving
may be used as a test case for future studies. By incorporating a machine learning YOLOv5
model to detect real-time objects while driving on the road, we have essentially elimi-
nated the bottleneck of image-by-image interpretation. We also showed that the proposed
model performed better in precision and recall. Finally, our results showed that the pre-
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sented approach can be used to investigate or identify different objects in developing and
developed countries.

Table 2. Performance of the model YOLOv5s for custom Roboflow data.

Class Images Labels Precision Recall mAP (0.5)

all 239 1520 0.474 0.337 0.258
biker 239 27 0.438 0.0741 0.0811
car 239 1066 0.528 0.726 0.723

pedestrian 239 156 0.22 0.308 0.186
trafficLight 239 41 0.308 0.415 0.297

trafficLight-Green 239 42 0.133 0.476 0.0956
trafficLight-GreenLeft 239 4 1 0 0.00756

trafficLight-Red 239 91 0.378 0.714 0.468
trafficLight-RedLeft 239 24 0.2 0.0833 0.128
trafficLight-Yellow 239 12 1 0 0.0169

truck 239 57 0.532 0.578 0.573

5. Conclusions

The tremendous expansion of urban infrastructure required a significant increase in
the requirement for better road traffic management. In the literature, several strategies
have been offered and discussed. This study provides a real-time road traffic management
system based on an upgraded YOLOv5 model. We trained our model and implemented the
proposed strategy to enhance vehicle recognition in rainy and regular weather conditions
by utilizing an open dataset accessible at Roboflows. Rain and snow are challenging
conditions for self-driving cars and often human drivers to deal with. Snow and rain
impact the sensors and algorithms that control an autonomous vehicle.

In the same way that a skilled human driver can travel the same route in all weather,
present autonomous cars are unable to generalize their experience in the same manner. We
anticipate that self-driving cars will require more data to do this. The experimental findings
showed that the YOLOv5 algorithm has an overall accuracy of 72.3% for car identification
and 57.3% for truck identification for mAP (0.5). In the near future, this study can be
applied in autonomous vehicle environments for various road assets detection in different
weather conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics11040563/s1, Video S1: With rain scenario video,
Video S2: Without rain scenario video, Video S3: Without rain scenario object detection video and
Video S4: With rain scenario object detection video.

Author Contributions: Conceptualization, T.S., B.D., N.D., B.K. and A.C.; methodology, T.S.; soft-
ware, T.S.; validation, T.S., B.D., N.D. and B.K.; formal analysis, T.S. and A.C.; investigation, T.S.,
B.D., N.D., B.K. and A.C.; resources, T.S., B.D., N.D. and B.K.; data curation, T.S., B.D., N.D. and B.K.;
writing—original draft preparation, T.S.; writing—review and editing, T.S., A.C. and P.F. visualization,
T.S., B.D., N.D. and B.K.; supervision, A.C. and P.F.; project administration, B.D. and N.D.; funding
acquisition, B.D., N.D., A.C. and P.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by MITACS, grant number UBR 326853.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Due to the nature of this research, participants of this study did not
agree for their data to be shared publicly, so supporting data is not available.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/electronics11040563/s1
https://www.mdpi.com/article/10.3390/electronics11040563/s1


Electronics 2022, 11, 563 10 of 11

References
1. Bansal, P.; Kockelman, K.M. Are we ready to embrace connected and self-driving vehicles? A case study of Texans. Transportation

2018, 45, 641–675. [CrossRef]
2. Krishnaveni, P.; Sutha, J. Novel deep learning framework for broadcasting abnormal events obtained from surveillance applica-

tions. J. Ambient Intell. Humaniz. Comput. 2020, 1–15. [CrossRef]
3. Ahad, M.A.; Paiva, S.; Tripathi, G.; Feroz, N. Enabling technologies and sustainable smart cities. Sustain. Cities Soc. 2020, 61,

102301. [CrossRef]
4. Chehri, H.; Chehri, A.; Saadane, R. Traffic signs detection and recognition system in snowy environment using deep learning. In

Proceedings of the Third International Conference on Smart City Applications; Springer: Cham, Switzerland, 2020; pp. 503–513.
5. Peppa, M.V.; Bell, D.; Komar, T.; Xiao, W. Urban traffic flow analysis based on deep learning car detection from CCTV image

series. In Proceedings of the SPRS TC IV Mid-Term Symposium “3D Spatial Information Science–The Engine of Change”; Newcastle
University: Newcastle upon Tyne, UK, 2018.

6. Bahlmann, C.; Zhu, Y.; Ramesh, V.; Pellkofer, M.; Koehler, T. A system for traffic sign detection, tracking, and recognition using
color, shape, and motion information. In Proceedings of the IEEE Proceedings Intelligent Vehicles Symposium, Las Vegas, NV,
USA, 6–8 June 2005; pp. 255–260.

7. Pawełczyk, M.Ł.; Wojtyra, M. Real world object detection dataset for quadcopter unmanned aerial vehicle detection. IEEE Access
2020, 8, 174394–174409. [CrossRef]

8. Yahiaoui, M.; Rashed, H.; Mariotti, L.; Sistu, G.; Clancy, I.; Yahiaoui, L.; Kumar, V.R.; Yogamani, S. Fisheyemodnet: Moving object
detection on surround-view cameras for autonomous driving. arXiv 2019, arXiv:1908.11789.

9. Hu, L.; Ni, Q. IoT-driven automated object detection algorithm for urban surveillance systems in smart cities. IEEE Internet Things
J. 2017, 5, 747–754. [CrossRef]

10. Bau, D.; Zhu, J.-Y.; Strobelt, H.; Lapedriza, A.; Zhou, B.; Torralba, A. Understanding the role of individual units in a deep neural
network. Proc. Natl. Acad. Sci. USA 2020, 117, 30071–30078. [CrossRef] [PubMed]

11. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.

12. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June 1996; pp. 580–587.

13. Ren, S.; He, K.; Girshick, R.; Zhang, X.; Sun, J. Object Detection Networks on Convolutional Feature Maps. IEEE Trans. Pattern
Anal. Mach. Intell. 2017, 39, 1476–1481. [CrossRef]

14. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June 1996; pp. 770–778.

16. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June 1996; pp. 779–788.

17. Gala, G.; Chavan, G.; Desai, N. Image Processing Based Driving Assistant System. Iconic Res. Eng. J. 2020, 3, 171–174.
18. Chehri, A.; Sharma, T.; Debaque, B.; Duclos, N.; Fortier, P. Transport Systems for Smarter Cities, a Practical Case Applied to Traffic

Management in the City of Montreal. In Sustainability in Energy and Buildings; Springer: Singapore, 2021; pp. 255–266.
19. Delforouzi, A.; Pamarthi, B.; Grzegorzek, M. Training-based methods for comparison of object detection methods for visual object

tracking. Sensors 2018, 18, 3994. [CrossRef] [PubMed]
20. Hayouni, A.; Debaque, B.; Duclos-Hindié, N.; Florea, M. Towards Cognitive Vehicles: GNSS-free Localization using Visual An-

chors. In Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa,
6–9 July 2020; pp. 1–8.

21. Ahmed, I.; Jeon, G.; Chehri, A.; Hassan, M.M. Adapting Gaussian YOLOv3 with transfer learning for overhead view human
detection in smart cities and societies. Sustain. Cities Soc. 2021, 70, 102908. [CrossRef]

22. Al-qaness, M.A.A.; Abbasi, A.A.; Fan, H.; Ibrahim, R.A.; Alsamhi, S.H.; Hawbani, A. An improved YOLO-based road traffic
monitoring system. Computing 2021, 103, 211–230. [CrossRef]

23. Kasper-Eulaers, M.; Hahn, N.; Berger, S.; Sebulonsen, T.; Myrland, Ø.; Kummervold, P.E. Detecting Heavy Goods Vehicles in Rest
Areas in Winter Conditions Using YOLOv5. Algorithms 2021, 14, 114. [CrossRef]

24. Yang, Y.; Cai, L.; Wei, H.; Qian, T.; Gao, Z. Research on Traffic Flow Detection Based on Yolo V4. In Proceedings of the 2021 16th
International Conference on Computer Science & Education (ICCSE), Lancaster, UK, 17–21 August 2021; pp. 475–480.

25. Lee, H.-J.; Chen, S.-Y.; Wang, S.-Z. Extraction and recognition of license plates of motorcycles and vehicles on highways. In
Proceedings of the Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 August 2004;
IEEE: Piscataway, NJ, USA, 2004; Volume 4, pp. 356–359.

26. De Oliveira, M.B.W.; Neto, A.D.A. Optimization of traffic lights timing based on multiple neural networks. In Proceedings of the
2013 IEEE 25th International Conference on Tools with Artificial Intelligence, Herndon, VA, USA, 4–6 November 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 825–832.

27. Comelli, P.; Ferragina, P.; Granieri, M.N.; Stabile, F. Optical recognition of motor vehicle license plates. IEEE Trans. Veh. Technol.
1995, 44, 790–799. [CrossRef]

http://doi.org/10.1007/s11116-016-9745-z
http://doi.org/10.1007/s12652-019-01668-6
http://doi.org/10.1016/j.scs.2020.102301
http://doi.org/10.1109/ACCESS.2020.3026192
http://doi.org/10.1109/JIOT.2017.2705560
http://doi.org/10.1073/pnas.1907375117
http://www.ncbi.nlm.nih.gov/pubmed/32873639
http://doi.org/10.1109/TPAMI.2016.2601099
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.3390/s18113994
http://www.ncbi.nlm.nih.gov/pubmed/30453520
http://doi.org/10.1016/j.scs.2021.102908
http://doi.org/10.1007/s00607-020-00869-8
http://doi.org/10.3390/a14040114
http://doi.org/10.1109/25.467963


Electronics 2022, 11, 563 11 of 11

28. Dharamadhat, T.; Thanasoontornlerk, K.; Kanongchaiyos, P. Tracking object in video pictures based on background subtraction
and image matching. In Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, Washington, DC,
USA, 22–25 February 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1255–1260.

29. Cancela, B.; Ortega, M.; Penedo, M.G.; Fernández, A. Solving multiple-target tracking using adaptive filters. In Proceedings of the
International Conference Image Analysis and Recognition; Springer: Berlin/Heidelberg, Germany, 2011; pp. 416–425.

30. Sekar, G.; Deepika, M. Complex background subtraction using kalman filter. Int. J. Eng. Res. Appl. 2015, 5, 15–20.
31. Rabiu, H. Vehicle detection and classification for cluttered urban intersection. Int. J. Comput. Sci. Eng. Appl. 2013, 3, 37. [CrossRef]
32. Wang, K.; Liang, Y.; Xing, X.; Zhang, R. Target detection algorithm based on gaussian mixture background subtraction model. In

Proceedings of the 2015 Chinese Intelligent Automation Conference; Springer: Berlin/Heidelberg, Germany, 2015; pp. 439–447.
33. Sun, Z.; Bebis, G.; Miller, R. Monocular precrash vehicle detection: Features and classifiers. IEEE Trans. Image Process. 2006, 15,

2019–2034. [PubMed]
34. Junior, O.L.; Nunes, U. Improving the generalization properties of neural networks: An application to vehicle detection. In

Proceedings of the 2008 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, China, 12–15 October
2008; IEEE: Piscataway, NJ, USA, 2008; pp. 310–315.

35. Roboflow How to Train YOLOv5 on Custom Objects. Available online: https://public.roboflow.com/object-detection/self-
driving-car (accessed on 5 April 2020).

36. Fang, Y.; Guo, X.; Chen, K.; Zhou, Z.; Ye, Q. Accurate and Automated Detection of Surface Knots on Sawn Timbers Using
YOLO-V5 Model. BioResources 2021, 16, 5390–5406. [CrossRef]

http://doi.org/10.5121/ijcsea.2013.3103
http://www.ncbi.nlm.nih.gov/pubmed/16830921
https://public.roboflow.com/object-detection/self-driving-car
https://public.roboflow.com/object-detection/self-driving-car
http://doi.org/10.15376/biores.16.3.5390-5406

	Introduction 
	Related Work 
	Materials and Methods 
	Proposed Scheme 
	Imagery Annotation and Model Training 
	Testing and Validation Using Simulated Datasets 

	Performance and Evaluation 
	Conclusions 
	References

