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Abstract: In recent years, the electrical and/or electronic architecture of vehicles has been significantly
evolving. The new generation of cars demands a considerable amount of computational power due
to a large number of safety-critical applications and driver-assisted functionalities. Consequently, a
high-performance computing unit is required to provide the demanded power and process these
applications while, in this case, vehicle architecture moves toward a centralized architecture. Simulta-
neously, appropriate software architecture has to be defined to fulfill the needs of the main computing
unit and functional safety requirements. However, the process of configuring and integrating critical
applications into a vehicle central computer while meeting safety requirements and optimization
objectives is a time-consuming, complicated, and error-prone process. In this paper, we firstly present
the evolution of the vehicle architecture, past, present, and future, and its current bottlenecks and
future key technologies. Then, challenges of software configuration and mapping for automotive
systems are discussed. Accordingly, mapping techniques and optimization objectives for mapping
tasks to multi-core processors using design space exploration method are studied. Moreover, the cur-
rent technologies and frameworks regarding the vehicle architecture synthesis, model analysis with
regard to software integration and configuration, and solving the mapping problem for automotive
embedded systems are expressed. Finally, we propose four research questions as future works for
this field of study.

Keywords: E/E architecture; automotive software configuration; task mapping; multi-core proces-
sors; functional safety; architecture synthesis; design space exploration; optimization

1. Introduction

The complexity and types of required applications in today’s cars have been growing
substantially, particularly as a result of advanced driver-assistance systems (ADAS) and
automated driving features. Furthermore, meeting all non-safety and safety requirements
in compliance with automotive standards (i.e., ISO 26262, and safety of the intended
functionality (SOTIF)) during the design and configuration of automotive software ar-
chitecture, increases complexity [1,2]. Accordingly, vehicle electrical and/or electronic
(E/E) architecture has been evolving recently concerning the aforementioned complex-
ity, which stems from the new applications and features integrated into the car, and the
limitations of the traditional E/E architectures. The car E/E architecture started with
distributed/decentralized architectures, where a considerable number of electronic control
units (ECUs) are interconnected, and each of them has specific vehicular functionality.
Then, it moves to domain-centralized, where centralized domain controllers are used, and
centralized/zonal, where vehicle architecture makes use of zone controller architectures [3].

Considering ADAS and self-driving applications, using domain-specific ECUs results
in an increase in the number of ECUs, substantial growth in the wiring harness, communi-
cation bandwidth, cost, software variants, and software complexity. Therefore, multi-core
ECUs can be considered as a solution in order to reduce the number of ECUs, the cost, the
wiring harness, and the complication and variations of the software. In addition, multi-core
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technology has rapidly been extending in different areas of embedded systems to deliver
an appropriate performance for artificial intelligence (AI)-based applications and systems
by giving scalable computing power [4].

Furthermore, the design of automotive E/E architecture using ADAS functionalities
and algorithms, comprising all their safety and non-safety-critical requirements, is an
elaborate and time-consuming task that requires domain-specific knowledge [5]. More-
over, manual integration and configuration of the software architecture for an automotive
high-performance central computer, while satisfying all safety essentials, is a challenging
and error-prone task due to the high number of requirements and properties related to
hardware, applications, operating system (OS), middleware, hypervisor, etc. Such con-
figurations can be optimized as well by determining various optimization goals such as
power consumption, resource utilization, reliability, temperature, and others. Therefore,
approaches/tools, in order to automate the software configuration process during the
design-time while taking all requirements and properties into account, can cope with
growing complexity and facilitate and improve the design process focused on modeling
and mapping of software components on the automotive high-performance computing
unit (HPCU).

This paper summarizes the evolution of the car E/E architectures describing the
main three E/E architecture types, the current main issues, and the key technologies
for the future; in addition, the high-level software architecture of the automotive HPCU
is illustrated. It goes through the current challenges for E/E architecture concentrated
on software integration, configuration, the multi-core ECUs. Moreover, it provides an
overview regarding task mapping approaches for multi-core computing units. In this
study, furthermore, the available approaches and tools for automotive software integration,
configuration, and E/E architecture synthesis, focused on mapping problems and modeling
of the software components comprising design space exploration(DSE) approaches and
optimization goals, are presented. As a result of this technology analysis, four research
questions are depicted as future works in this research area. The analysis result can
be useful for other researchers and E/E system architects in the industry in order to
assist in automating and facilitating the configuration process of the software components,
particularly applications for the automotive HPCUs.

This study is outlined as follows: Section 2 discusses the basic concepts about E/E
architecture, its main key challenges, and technologies. Section 3 describes the challenges
and technologies related to mapping in multi-core architecture and software integration
and configuration. Section 4 describes further research areas, and finally, Section 5 expresses
the conclusion of this work.

2. Basic Concepts

Almost all aspects of E/E system development, including technical approaches, speci-
fied requirements, decision making about design structure, and developments methods,
are affected by vehicle E/E architecture. Vehicle architecture can be seen from various
perspectives. The physical vision illustrates the positioning and the connection of the used
elements in the car such as ECUs, sensors, actuators, gateways, power supply, and switches.
Moreover, it includes communication networks, wiring harness placement, and power
distribution setup. In addition, the automotive software plays a pivotal role in the vehicle
E/E architecture as the autonomous level of cars has been improving in the last decade.

Another perspective of E/E architecture is logical vision so that the focus is the
interaction and interconnection among various components and elements integrated into
the car. Based on this point of view, the E/E architecture can be interpreted to be about
data exchange, signal flows, and communication and interface protocols.

The level of driving automation has been improving in recent years, and a lot of com-
panies have spent a huge amount of effort as well as cost to move towards an autonomous
vehicle. This has enabled vehicles to provide not only non-critical functionalities and
features, e.g., gaming using vehicle infotainment system, but also giving ADAS functional-
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ities to drivers to have safe and more comfortable driving experiences. Accordingly, the
automotive E/E architecture has advanced significantly, from various sensors and actuators
to more powerful computing units to process a huge amount of data coming from the
sensors for critical and non-critical functionalities [6].

With increasing number of functionalities and features, the vehicle E/E architecture
has been altering during the last years. The car ECU starts as function-specific, where each
ECU handles each function. Domain-specific ECU represents the next level of controllers
where a computer controls a set of functions related to a specific area or domain. Functional
domains that require a domain ECU are typically compute-intensive and connect to a
large number of input/output (I/O) devices. Each domain ECU connects to multiple
function-specific control units. A zonal ECU provides and distributes data and power;
in other words, the vehicle battery power is diffused over the car architecture, e.g., for
running various sensors and actuators, using zonal controllers. Similarly, the data are
spread over vehicle’s network and transferred from sensors to other actuators/sensors and
controllers using zonal ECUs. In addition, this type of ECU supports any feature available
in the specific vehicle zone, and it acts as a gateway, switch, and as a smart junction box.
Moreover, it supports any kind of interface for sensors, actuators, and displays.

The central HPCU is a multi-core ECU which comprises a multi-system on chips (SoCs)
(each includes several cores), graphics processing unit (GPU), random access memory
(RAM), and deep learning accelerators to process high computational power-demand
applications such as various object detection applications used for ADAS functionalities [7].
The central computing unit is a fully scalable and upgradeable platform that connects
to Edge and Cloud back-end and uses cloud computing for processing intensive vehicle
functionalities. Furthermore, it can function as the zonal gateway. In other words, this ECU
functions as the master and the core functionality of the vehicle.

Figure 1 shows the progress of E/E architectures. It starts from distributed E/E
architecture, which consists of function-specific ECUs and a central gateway which are
connected via controller area network (CAN) bus. Utilizing the central gateway provides
stronger collaboration among ECUs, the ability to handle more complex functions, e.g.,
adaptive cruise control, and the potential of cross-functional connection. The next evolution
represents domain centralized E/E architectures which utilize domain-specific ECUs [8].
As Figure 1 shows, function-specific control units bind to domain-specific ECUs using a
CAN bus and Ethernet connection. Moreover, the central gateway ECU is used in this
type of architecture [9]. This architecture is capable of handling more complex functions;
furthermore, the architecture cost can be optimized using the consolidation of the functions.
For instance, one domain-specific ECU is assigned for the parking assistance system
which includes two function-specific controllers related to vision processing and actuator
commands, e.g., for the brake and steering wheel.

Domain centralized architecture, using domain controllers and central gateway, has
grown over time and become extremely elaborate, including the car wiring harness. Fur-
thermore, the autonomous driving feature significantly increases the complexity of the
architecture due to the increase in the number of sensors and actuators, growth of data
processing capabilities and required bandwidth, and high demand for intelligent power
distribution [10]. The future E/E architecture, which is a zonal architecture, can deal with
the existed complexity in the last two architectures using the central HPCU [3]. The zonal
architecture blends future vehicle functions and technologies with savings in weight and
cost. As Figure 1 presents, the zonal architecture comprises a HPCU, zonal ECUs, and
function-specific ECUs. The central HPCU acts as the master to process all data coming
from different vehicle zones and consequently operate the car. In addition, the HPCU
functions as a central gateway to pass the data from one zone to another [11]. The ECUs
and HPCU are interconnected via the Ethernet connection for transmitting the data over
the vehicle’s network due to its speed and high bandwidth for data transmission [8].
More importantly, the zonal architecture supports the virtual domain in such a way that
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the embedded functions can be transferred into the cloud as well as providing software
download/update via update over the air (OTA) service for HPCU [12].

Distributed E/E Architecture Domain Centralized E/E Architecture
Zonal E/E Architecture with

High-Performance Computing Unit 

Automotive ECUs (function-specific)

Optional ECUs e.g., central gateway 

Domain-specific ECUs   

Central high-performance computing unit

Zonal ECUs  

CAN BUS connection

Automotive Ethernet connection

Figure 1. The figure presents the evolution of vehicle E/E architecture. Distributed E/E architecture
was used until 2019, while domain-centralized architecture is today’s vehicle architecture. The zonal
architecture shows the future car E/E architecture.

2.1. The Main Bottlenecks of Current E/E Architecture

Current E/E architectures are capable of dealing with many requirements; however,
their capability cannot be sufficient to handle the requirements for self-driving/future
vehicles. With the increasing number of functionalities, applications, sensors, and actuators,
as well as the necessity of meeting safety demands based on the functional safety standards,
the future ECUs require more capability than current ones in terms of computational
power, communication interfaces, and software integration and architecture. Moreover,
the required communication bandwidth for autonomous cars is another bottleneck for
today’s E/E architecture. Although current communication networks (e.g., CAN) have
been handling in-vehicle communication for the last decade, neither its communication
distance nor its communication rate can be compared with Ethernet, which supports a
variety of communication protocols and includes system interoperability, compatibility, and
strong ability to share resources [13]. In addition, low latency, safe persistency, safe data
transmission, and high security in network play a pivotal role in future vehicles. Moreover,
external communication, for instance, software download/update or vehicle-to-vehicle
(V2V) communication causes the need for higher data traffic and higher data protection [14].
Therefore, communication protocols such as automotive Ethernet will be required to tackle
the above-mentioned requirements [15].

Another bottleneck for today’s architecture is the implementation of new technology
into existing E/E architectures. Consequently, the autonomous car’s E/E architecture must
be designed and developed in such a way that it supports extensibility and feasibility for
launching new technologies without changing the architecture backbone [16,17]. Therefore,
having powerful computing units, using communication protocols capable of transfer-
ring a high volume of data at a fast speed while satisfying automotive safety regulations,
and developing the approaches to facilitate the new feature integration into existing ve-
hicle architecture are the most prominent features to overcome the current issues of the
E/E architecture.

2.2. The Main Technologies for Future’s E/E Architecture

The new functionalities used in self-driving cars require advanced technologies to
meet the requirements of the features in future cars. Having zonal ECUs (functioning as
advanced gateways as well) with higher computing power, using central computing units
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as the core of the vehicle’s functionality, applying new in-vehicle communication networks,
and defining new software architecture for the vehicle are the major key technologies that
can be considered for automated driving cars.

To fulfill the demand for in-vehicle network bandwidth, automotive Ethernet can be
used to provide higher bandwidth, higher security, and better fulfillment of the safety
requirements based on ISO 26262. In addition, providing low latency in the communication
network by using new message routing mechanisms plays a significant role in accelerating
the progress of the in-car network for autonomous vehicles. For instance, time-sensitive
networking (TSN) standards can be utilized in the automotive network to ensure cer-
tain safety-related communication requirements and tasks including guaranteed packet
transport with bounded latency, low packet delay variation, low packet loss, etc. [15,18].

One of the most important key technologies for moving towards centralized E/E
architecture is utilizing multi-core processors, comprising AI accelerator, as the master
of computing units. With the increasing number of AI applications, specifically ADAS
applications using deep learning and machine learning algorithms that require high com-
putational power including vision part, there will be a need to utilize central HPCU in
the vehicle’s E/E architecture to process and compute these applications. Furthermore,
the main software architecture of the whole vehicle is defined in the HPCU, where vari-
ous software domains can be integrated such as perception, mapping, planning, ADAS
applications, and infotainment; moreover, utilizing such a centralized architecture with
advanced software-defined vehicle (SDV) architecture provides the opportunity for original
equipment manufactures (OEMs) to integrate and update advanced software as they are
developed by analogy with a smartphone [19,20].

As mentioned before, the new software-defined architecture is an inseparable part
of the future E/E architecture [19]. Hardware virtualization technology should be taken
into consideration to provide integration of safety and non-safety-critical software domains
into the HPCU in such a way that does not violate the safety requirements and utilize the
hardware resources as optimized as possible. This technology can be approached by using
a hypervisor. A hypervisor is software that creates and executes virtual machines (VMs)
so that the virtualized hardware resources will be shared among several instances using
various types of OS [21]. There are two types of hypervisors:

• Type 1: also called Bare Metal or Native hypervisor, as it is installed and runs directly
on top of the host’s hardware without using any host OS. This type of hypervisor has
direct control over and access to hardware resources. For example, a type-1 hypervisor
can assign a specific core to a partition (an execution environment managed by the
hypervisor which uses the virtualized services) in such a way that other partitions
cannot access that core.

• Type 2: also known as Hosted hypervisor. It runs as an application in the host OS and
uses the hardware resources for its VMs by coordinating calls through the host’s OS.
The host OS does not have any knowledge about this type of hypervisor and it treats
it as any other normal process [22].

Figure 2 shows a high-level defined software architecture for the car, which is inte-
grated into a central HPCU. Different partitions are configured to isolate various application
domains, i.e., merging mixed-critical applications, and make use of the hardware resources
as efficiently as possible using a type-1 hypervisor so that each partition can approach the
HPCU resources directly, including cores, RAM, GPU, cache, network buses, universal
serial bus (USB), etc. As Figure 2 describes, each partition has its OS and application
domain, e.g., perception, which is placed on top of the OS. As mentioned before, each
partition can use HPCU resources directly which achieves freedom from interference (FFI)
based on ISO 26262 [2]. In other words, in the type-1 hypervisor, the resources among the
partitions cannot be either shared or accessed by another partition (see yellow dash lines
in Figure 2). However, some resources may not follow the FFI requirement depending on
which hypervisor, from a variety of open-source and commercial hypervisors developed
by different companies, and hardware are going to be utilized.
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High-Performance Central Computer

Hypervisor

OS

Perception OSC

OS

Mapping & 
Planning

OSC

OS

ADAS OSC

OS

Infotainment
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Figure 2. The software architecture integrated into the vehicle’s HPCU using a type-1 hypervisor
which consists of four mixed-critical partitions. The yellow dash lines show the hard separations
between partitions starting from the hardware level.

Furthermore, the inter-process communication (IPC) feature can be used to activate
communication between two partitions using type-1 hypervisor [23]. For example, if
one process in a safety-critical partition (e.g., perception) intends to interact with another
process in another safety-critical partition (e.g., ADAS) to transfer messages, it can be
accomplished by IPC (see Figure 2).

3. Technologies and Challenges

In the last years, with the increasing levels of vehicle automation (e.g., ADAS) the
need for computational power in vehicle ECUs has grown significantly. Current cars are
equipped with 70 to 100 ECUs to manage the software system [24]. The number of ECUs
could be reduced considerably by merging various mixed-critical applications into one
multi-core ECU. Figure 3 depicts the configuration procedures in design and run-time
which are required to be performed by a system architect to find a mapping solution for
deploying mixed-critical software components to the HPCU considering their properties
and configuration parameters, safety-critical/non-critical requirements of the applications,
and optimization objectives. In addition, the system architect must verify the fulfillment of
the requirements after solution deployment in run-time due to the unpredictable behavior
of OS, middleware, and applications (see Figure 3) [25].

However, designing such configurations and mappings turns out extremely compli-
cated and challenging [26,27]. Moreover, depending on the mapping problem, finding the
configuration may become a non-deterministic polynomial-time (NP)-hard problem ([28–30])
due to the huge number of safety-critical/non-critical application and user requirements
(e.g., reliability [31], timing, latency, worst-case execution time, central processing unit
(CPU) utilization, bandwidth, memory usage, power consumption, FFI, automotive safety
integrity (ASIL) level [32], redundancy, etc.), the extensive design space of possible task
mappings, and non-deterministic/dynamic workload. Furthermore, with the increase in
numbers of applications and components, including their requirements and properties,
discovering the configuration and mapping solution becomes more and more complex for
the system architect, and the need to have a new update in the configuration might lead to
unknown risks and become costly (see Figure 3) [7].
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Figure 3. The manual procedures have to be executed by a system integrator to map automotive
software components to an automotive HPCU.

As explained in Sections 2.1 and 4, current and future E/E architectures encounter
various challenges and bottlenecks including software integration and configuration for
the HPCU. Hence, this paper focuses mainly on software integration and configuration for
automotive embedded systems. It firstly expresses the existing approaches and methods for
dynamic and static task mappings in multi-core processors considering various optimiza-
tion goals. Secondly, it discusses the current design-time technologies and approaches for
software integration, including model analysis, E/E architecture synthesis, configuration,
model checking, and mapping.

3.1. Task Mapping in Multi-Core Computing Units

As discussed before, in this section the current mapping approaches and methods and
studied optimization objectives for task mapping in multi-core platforms are illustrated.

3.1.1. Introduction to Task Mapping

Allocation of the tasks in the multi-core can be performed in design-time or run-time.
There is no application running during design-time task allocation as opposed to run-time
mapping, where the tasks can be assigned to different cores, while the system is running.
When the application requirements are fairly deterministic, design-time mapping is pre-
ferred, whereas the run-time assignment should be used when the application requirements
are changing in dynamic scenarios and there is a need for reassignment.

Multi-core architecture can consist of two types, homogeneous and heterogeneous,
based on the application circumstances and user requirements. In homogeneous multi-core
architecture, all the cores are identical (i.e., the cores have similar computing capacity and
instruction set architecture (ISA)). However, heterogeneous architecture is a combination of
various cores which are particularly designed, e.g., cores that provide high performance
and low power consumption [33]. Various types of processing units can be integrated
on a single chip by utilizing heterogeneous architecture, which ensures lower energy
consumption and better flexibility [34]. Additionally, automotive applications increase the
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demand for heterogeneous architecture due to different contexts and needs. In terms of task
mapping complexity, a homogeneous processor requires less work than a heterogeneous
one as it has identical cores. Furthermore, homogeneous multi-cores do not need task
analysis based on core properties for task execution in contrast to heterogeneous multi-core
architecture.

3.1.2. Mapping Techniques

Static or design-time mapping utilizes all system information (e.g., hardware and
application properties) to find the optimal solution. In addition, this type of mapping is
appropriate when there is a set of predefined requirements for the applications as well as the
hardware. In other words, the mapping problem, including changing application/hardware
requirements, cannot be solved dynamically with design-time methodology. Solutions
with higher quality can be acquired in the design-time mapping problem rather than the
run-time mapping problem due to less limitation of the computational power.

Design-Time Mapping: There are several design-time mapping algorithms such as
graph-theoretic algorithms, mathematical programming algorithms, and heuristic-based
algorithms. In graph-theoretic algorithms, the application is partitioned into separate tasks
(can be allocated to the cores for execution) to use the fundamental parallelism [33,35].
This approach includes various theory methods including Levelized Weight Timing [36],
Shortest tree [37], Max-Min [38], hyper-graph [35], A∗ [36], and Kahn Process networks [39].

Another design-time approach to solve the mapping problem is mathematical pro-
gramming, where the requirements are transformed into mathematical inequalities. After
that, by utilizing different mathematical programming solutions including mixed inte-
ger linear programming (MILP) [40], Branch and bound [41], constraint programming
(CP) [42], and integer linear programming (ILP) [43], the inequalities are solved. In the
mathematical programming approach, the optimal solution is always guaranteed as long as
the complexity of the mapping problem does not become NP. In the case of the NP problem,
heuristic-based algorithms can be used.

The last design-time approach is heuristic-based algorithms. As mentioned before,
with increasing the problem complexity and proximity to an NP problem (e.g., increasing
the number of cores and complexity of the application requirements), finding the optimal
solution in the desired time by utilizing mathematical programming algorithms is infeasible.
Therefore, heuristic algorithms are presented to discover a solution which may not be the
best of all the solutions to this problem or may approximate the exact solution in a more
faster and efficient fashion. They classify alternatives in search algorithms at each branching
step based on current information to decide which branch to go after. Heuristic algorithms
can be divided into Population-Based and Single Solutions. For example, the greedy
randomized adaptive search procedure (GRASP) [44], simulated annealing (SA) [45], and
Tabu search [38], which utilize iterative search methods, are considered as the Single
solution algorithms. In addition, there are several other heuristic-based algorithms which
are categorized as Population-based including genetic algorithm (GA) [46], ant colony
optimization (ACO) [47], and particle swarm optimization (PSO) [48].

Run-Time Mapping: In this type of mapping, the tasks’ assignments to various cores
are performed when the applications are executing. The required time to find a feasible and
optimal solution plays a critical role in this mapping methodology. According to [33,34],
run-time mapping can be divided into two approaches: On-the-fly mapping and Hybrid
mapping. When task allocation is completely online or performed during application
execution (i.e., without using offline or design-time knowledge) this is interpreted as On-
the-fly mapping. While in Hybrid mapping, the task planner uses the offline/design-time
mapping result to perform task assignments dynamically. This approach takes advantage
of both run-time and design-time techniques. Similar to design-time, there are three
well-known algorithms which can be utilized for run-time mapping such as Greedy [49],
Feedback control theoretic, and Heuristic-based algorithms [33].
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3.1.3. Optimization Parameters in Mapping

To improve the quality of task assignment in multi-core processors, either in static or
dynamic mapping, some key requirements must be considered.

Performance: The design of multi-core processors has been becoming more and more
complex with the increasing number of applications as well as their requirements. Various
design-time and run-time approaches have been developed to optimize the performance
of mapping (i.e., reducing task execution time during task allocation [43] or increasing
CPU utilization). The performance of a multi-core system can be assessed by measuring
execution time, latency, response time, and throughput as the evaluation metrics [30].

Power Consumption: As electric vehicles are becoming more popular and most of
autonomous cars will be electric-based, saving electric power has a significant impact
on providing an optimized E/E system for the vehicle. As a result, reducing energy
consumption during application mapping in multi-core computational units plays a pivotal
role in mapping optimization [50]. Based on [51], minimizing cache miss results in energy
reduction in a system by 76 percent.

Reliability: Another important parameter that must be considered as an optimization
goal in multi-core computing units is reliability. ISO 26262 has introduced different ASILs
to ensure the reliability of the system [2]. System reliability can be evaluated using the
mean time to failure (MTTF), mean time between failures (MTBF), and mean time to repair
(MTTR) as failure metrics [52]. For example, system reliability is improved in [53] utilizing
the SA approach. This paper calculates the MTTF by using the temperature variation of
cores. Based on this definition, task allocation to the cores is performed in such a way that
MTTF is minimized.

There are several works regarding the static mapping problem comprising various
optimization objectives that have utilized the ILP method. For instance, [40,43,54,55] have
studied the design-time mapping problem in homogeneous multi-core architecture using
the ILP method while optimizing their solutions considering performance, energy consump-
tion, and temperature as the optimization parameters. Authors in [56] utilized the same
method to solve mapping for a heterogeneous architecture, including different optimiza-
tion goals such as execution time, reliability, and temperature. Furthermore, [45,53,57,58]
studied the mapping problem of homogeneous architecture in design-time using heuristic-
based approaches including SA, ACO, and GA while optimizing the final solution based
on response time, reliability, and energy consumption.

Several pieces of research have been completed to assign tasks to multi-core processors
dynamically. Ref. [59–61] worked on the heterogeneous architecture to perform run-time
mapping using the ILP method. They also optimized their solution, considering perfor-
mance and power consumption as the optimization goals. While [62] utilized the heuristic
method (i.e., Age Balancer Heuristics) to execute dynamic mapping on heterogeneous
architecture while aiming to minimize computation energy and improve reliability.

Therefore, with an increase in demand for higher efficiency of mapping in terms of
the aforementioned optimization parameters, new challenges have appeared in multi-core
processors. These challenges can include thermal management in integrated circuits (ICs),
machine learning approaches to perform efficient mapping, and quality of service (QoS) in
multi-core architecture [33,34].

3.2. Technologies for Software Integration and Configuration in Design Process

As mentioned before, software integration and configuration for future vehicles will
be considered a challenge using manual integration. In this section, existing technologies
for software integration, focused on model analysis, model checking and validation based
on requirements, and mapping problem, in the embedded systems are explained in detail.
Moreover, each technology is analyzed based on problem attributes and various design
metrics, DSE approaches, optimization algorithms, and safety-related and optimization
attributes.
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OSATE (Open Source AADL Tool Environment): This is a powerful open-source tool
that creates AADL (architecture analysis and design language) models using a syntax-aware
text editor and synchronized graphical editor (see Figure 4). OSATE is an Eclipse-based
tool and comprises modeling elements for aerospace and the automotive systems using
AADL language [63,64].

b

a

Figure 4. The AADL text editor (a) to synchronized graphical editor (b) in OSATE framework.

AADL is a modeling language that supports early and repeated analyses of a system’s
architecture concerning performance-critical properties through an extendable notation, a
tool framework, and precisely specified semantics. The language utilizes formal modeling
concepts for the description and analysis of application system architectures in terms
of distinct components and their interactions. It includes abstractions of software (e.g.,
process and thread), computational hardware (e.g., processor, bus, device, and memory),
and system components for determining and analyzing automotive, aerospace, and real-
time embedded systems, and investigating the performance capabilities of the designed
system, for instance, data-flow analysis (i.e., collecting information about the set of values
computed at different points in the designed model/system). It also provides mapping of
software components (e.g., a process) into computational hardware elements, for example,
a processor. AADL is especially effective for model-based analysis and specification of
complex real-time embedded systems [65].

By using the OSATE tool, the user can model a system (e.g., an ADAS system) includ-
ing the hardware and software down to the application-level (see Figure 4). For instance,
the threads used for each application can be modeled, including their properties such
as period, compute execution time, million instruction per second (MIPS) budget, and
reference processor. The OSATE checks the model created by the user in terms of syntax
issues regarding the AADL text and violations in properties definition for each specified
component. Moreover, various model analyses can be performed using this framework
comprising a flow latency check including end-to-end flow latency computation, schedul-
ing analysis (such as scheduling bound threads, i.e., processor utilization report, binding
and scheduling threads, i.e., thread binding report, and rate monotonic priority assign-
ment), budget analysis (comprising analyzing bus load, power requirements, resource
allocations, computer resource budgets, and calculating the total weight), and safety analy-
sis comprising fault tree analysis (FTA), functional hazard assessment (FHA), fault impact
analysis, failure mode effect analysis (FMEA), and checking unhandled faults. In addition,
various semantic checks or functional integration analyses can be performed using this
framework such as checking binding constraints, connection binding consistency, port
connection consistency, etc. Furthermore, this tool has different code generation capabilities
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utilizing various plugins, e.g., Ocarina, and is capable of importing models from MATLAB
and Simulink into the OSATE [66–68].

However, OSATE does not use or cover any DSE approaches, e.g., solving mapping
problems for multi-core automotive computing units and, consequently, it supports no
optimization [64]. In addition, it covers a limited number of safety attributes, as illustrated
before.

ArcheOpterix: As mentioned before, finding an acceptable architecture design is a
challenging task for software and system architects, considering quality and functional re-
quirements in the architecture design phase. ArcheOpterix is an open-source Eclipse-based
tool that contributes to simplifying the task using evaluation techniques, a DSE approach,
and optimization heuristics for AADL specifications. The framework supports modeling
of software components and communication among software components, ECUs, buses,
and services. Moreover, the tool can optimize the deployment of software components to
ECUs considering design constraints and optimization objectives, including redundancy
allocation and cost [69]. This tool can specify the uncertain information relevant to system
parameters and, therefore, search for the most optimal and robust candidate architecture. In
addition, a list of the most appropriate optimization algorithms, comprising multi-objective
genetic algorithm (MOGA), non-dominated sorting genetic algorithm (NSGA-II), pareto
ant colony algorithm (P-ACO), simulated annealing (SA), Hill Climbing, bayesian heuristic
for component deployment optimization (BHCDO), Random Search Algorithm, and Brute-
Force Algorithms, can be provided by ArcheOpterix so that the user can choose the most
suitable one [70].

Figure 5 shows the high-level architecture of the ArcheOpterix framework. As shown,
it consists of various modules, of which the most important parts are explained in the
following [70].

OSATE

AADL Model Parser

Architecture Analysis Module

Architecture Constraint 
Validation Interface

Architecture Quality 
Evaluation Interface

Constraint Evaluators Attribute Evaluators

AADL Model Generator

Architecture Optimization Interface

Optimization Algorithms

Near Optimal Solutions

Initial Architecture

AADL Model AADL Model

Evaluate Attributes

AADL Model

Figure 5. The architecture of ArcheOpterix framework.

• AADL Model Parser: This interprets and extracts system descriptions from an AADL
specification coming from the OSATE tool. The module can access AADL elements
such as components, services, buses, etc. The extracted parameters are sent to the
Architecture Analysis Module, as an input, which supports the two interfaces for
analyzing the model comprising Architecture Constraints Validation and Architecture
Quality Evaluation Interface (see Figure 5).

• Architecture Constraints Validation Interface: As displayed in Figure 5, it provides
a plug-in point for Constraint Evaluator modules that check a given architecture for
constraint satisfaction.
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• Architecture Quality Evaluation Interface: In this part, various quality evaluation
functions can be taken into account. In ArcheOpterix, the Attribute Evaluator module
performs quality evaluation functions, which can be extended for evaluated features.
Current integrated features in ArcheOpterix are Service Reliability, Data Transmission
Reliability, and Communication Overhead.

• Architecture Optimization Interface: This provides an opportunity to add new opti-
mization algorithms to the framework. The current tool comprises Exact Algorithms,
Genetic Algorithms, and Ant Colony Optimization [70].

However, this tool has several limitations in the context of mapping, architecture
synthesis, and software integration for automotive platforms. First of all, the framework
is outdated and is not well-documented for use. It does not support mapping analysis
and solving the mapping problem for multi-core architecture, and there is no focus on
multi-core computing platforms for automotive applications. In addition, the safety-related
attributes regarding ISO 26262 are not covered in this tool except for reliability, and the
framework itself supports no model checking and model analysis. Additionally, the covered
optimization objectives by ArcheOpterix are restricted, including cost, communication
overhead, and data transmission reliability; furthermore, the tool has a limited number of
architectural elements.

PerOpteryx: This is another open-source framework for feature configuration and
clustering during the design stage in the software domain. Authors in [71] claimed that
this approach can contribute to finding optimal solutions for software architecture based
on predefined requirements and constraints while applying multi-objective evolutionary
optimization to software architectures modeled with the Palladio Component Model. In
such a case, software architects can select the most suitable architecture for their situation.
This approach provides software architecture solutions based on different quality attributes
such as performance, cost, and reliability using the DSE method.

PerOpteryx automatically creates architecture candidates based on several degrees of
freedom of component-based software architectures and afterward evaluates and optimizes
these architecture candidates according to the specified requirements. This approach was
validated by applying two different architecture models comprising a business reporting
system and an industrial control system.

However, this framework has no support for mapping analysis or DSE approach
for task mapping i.e., finding a mapping solution for assigning, e.g., processes into cores
integrated into automotive high-performance computing units, as meeting all safety and
non-safety requirements. Further, it has limited elements which can be used in the software
architecture, and there is no model checking or analysis integrated into this approach.
More importantly, automotive safety parameters have not been defined in this open-source
framework, and PerOpteryx is outdated and suffers from a lack of proper documentation.

MechatronicUML: As far as modern technical systems are elaborate, including re-
configurable mechatronic systems where most control and reconfiguration functional-
ity is identified in the software, several requirements have to be satisfied to apply the
model-driven development approach to these types of systems. Therefore, an open-source
framework, based on the Eclipse framework, to model software/hardware components,
define constraints, and verify the defined models, comprising the constraints using a model
checker, namely UPPAAL, for the embedded systems is presented in [72,73]. This tool
is a model-based approach and tries to bring model-based design formal analysis to the
mechatronic domain. This tool supports the DSE approach to find the solution based on
predefined constraints in the model; moreover, it provides software reconfiguration in
such a way that this function allows the user to design a system so that the system adapts
automatically at runtime according to the changing environment. This framework has the
capability of C code generation, and the designed models can be simulated using MATLAB
Simulink, Modelica, or the Functional Mock-up Interface (FMI) [68,74,75].
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Nonetheless, this tool has limitations based on our criteria for mapping and software
integration in the automotive domain. Firstly, mapping analysis and DSE related to map-
ping problem in computing units are not covered by this framework, and MechatronicUML
supports no optimization. Furthermore, no safety-related attributes were considered in this
tool for modeling, analysis, and solving, and this approach does not focus on multi-core
or high-performance computing unit modeling and analysis. In addition, this tool is not
updated and has no active community or proper documentation.

App4MC: As mentioned before, the automotive industry increasingly utilizes multi-
and many-core systems to deal with ADAS and self-driving functionalities due to a con-
siderable number of applications that require high computational power for processing.
APP4MC is an open-source Eclipse platform that concentrates on performance simulation
regarding mostly scheduling and timing analysis in multi-core platforms using a model-
based development approach (see Figure 6) [76,77]. The hardware and software elements
can be modeled, including different properties such as the processor type, connection type
among various specified modules, OS schedulers, and task properties such as execution
time and deadline. In addition, different timing constraints with respect to the tasks, OS
schedulers, and mapping constraints (i.e., assigning tasks and schedulers to a specific core)
can be defined, visualized, checked, and finally validated using this tool.

AMALTHEA System 
Model

(including Optimization)

SW Applications

HW Platform 

Constraints
Period T1 = 10 ms

Deadline D1 = 9 ms Costs
T1 takes 20 μs on Core 0
T2 takes 60 μs on Core 1

Decisions
Run T1 on Core 0
Run T2 on Core 1

Performance Simulation 
(Focus on timing, scheduling)

Figure 6. The APP4MC architecture.

Moreover, the definition of the hardware and software model and constraints and the
whole model can be simulated (i.e., using different graphs e.g., Gantt chart and tables to
present the result) while considering different optimization goals comprising load balanc-
ing, energy consumption, and memory mapping. Figure 7 shows an example of a modeled
automotive system in APP4MC including tasks, hardware, OS, Stimuli, constraints, and
mapping. For instance, in the mapping part, schedulers can be assigned to the cores and
tasks (see Figure 7a). In Figure 7b the hardware model, including a processor (compris-
ing four cores), integrated GPU (iGPU), shared modules such as cache and memory, and
communication among these components, is visualized using the AAP4MC visualization
feature.
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a b

Figure 7. An automotive HW and SW system model including timing and mapping constraints (a),
and visulization of the HW model (b) in APP4MC framework.

However, this framework does not contribute to automating the mapping of various
tasks to various HW elements, for instance, core, including the safety and non-safety
requirements (i.e., DSE for mapping problem). APP4MC only analyzes and simulates the
task mapping but not solving. Furthermore, it is limited in the covered safety attributes
and optimization goals, and there are a considerable number of E/E architecture elements
which are not considered by AAP4MC.

Autofocus3: Another open-source and Eclipse-based tool uses a model-based devel-
opment approach to synthesize E/E architectures. This framework supports architecture
modeling from requirements to code generation for embedded systems. Additionally, the
tool can simulate the designed model including its defined constraints and check and vali-
date the model. It utilizes domain-specific modeling language to formalize an exploration
problem and is capable of calculating end-to-end latency and schedule synthesis using
the DSE method; moreover, optimization algorithms, such as binary search, have been
integrated into this tool to apply the defined optimization objectives, including timing and
communication load, to the explored solution [78,79].

Autofocus3 does not cover the solving approach for the mapping problem in the
multi-core platforms considering functional and non-functional requirements to automate
mapping configuration and there is no mapping analysis for these platforms. In addition,
it supports a limited number of safety attributes, only ASIL level, and optimization goals
for E/E architecture synthesis.

Clafer: An approach that combines structural modeling with behavioral formalism
to contribute to the mapping of feature configurations to component configurations or
model templates. Calfer allows capturing feature models (variability), component models,
and discrete control models (automata) in a single unified syntax and semantics. The
language part is built on top of first-order logic with quantifiers over basic entities (for
modeling structures) combined with linear temporal logic (for modeling behavior). This
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approach provides DSE for feature modeling considering timing as a problem attribute,
and it supports model analysis. Furthermore, it covers multi-objective optimization for the
discovered solution comprising mass, end-to-end latency, and cost [80].

However, Clafer supports no model checking, mapping analysis, or DSE for mapping
problems in the embedded systems. The architectural elements are limited; moreover, there
are no safety-related attributes covered by Clafer for model analysis. This approach has
not given any considerations to the modeling and analysis of multi-core computing units.
Furthermore, this approach is not well-documented and is outdated.

AAOL Framework: This model-based approach is a constraint-based E/E architecture
optimization framework utilizing a domain-specific language. The supporting tool uses
the DSE method to find the optimal solution for deployment problem considering design
constraints, e.g., memory capacity and applying multi-objective optimization mechanism,
and the applied goals are cost and weight [81].

However, this tool has several limitations. It is limited in architectural elements
regarding software and hardware level, e.g., it does not define any software application
parameter. It covers no DSE for mapping problem in multi-core computing units, and
it supports no model analysis and checking. In addition, it only takes ASIL level as a
safety-related parameter into account for architecture synthesis, and it only covers a few
optimization objectives. This tool is also outdated and not well documented.

Assist: Aviation electronics (avionics) are sophisticated and distributed systems
aboard an airplane. The complexity of these systems is continuously growing as an
increasing number of functionalities are realized in software. Using multi-core processors
allows multiple functions in one hardware while meeting all safety requirements, which
results in performance improvement of the system which can be a significant breakthrough
in the aviation industry. A model-based approach was introduced in [82], namely Assist,
to solve and optimize mapping problems (i.e., deployment of a safety-critical application
on the avionics hardware) for distributed systems in the aviation domain. It uses the DSE
mechanism to find optimal mapping solutions while considering optimizations objectives,
including resource usage, weight, and cost. In addition, this Eclipse-based tool can create a
periodic schedule for real-time tasks and ensure a deterministic timing behavior [83].

This framework, however, has some limitations. The specified architectural elements
are extremely limited in terms of hardware and software level, and also its focus is on the
aviation domain rather than automotive and E/E architecture. Moreover, it only supports
redundancy as a safety-relevant attributes based on ISO 26262 for mapping problem.
Additionally, Assist does not support model checking and model analysis, and the number
of defined optimization goals is limited.

Deepcompass Framework: Designing embedded systems for multiprocessor plat-
forms requires early prediction and the balancing of multiple system quality attributes.
The authors of [84] present a DSE framework for component-based software systems that
allows an architect to gain insight into a space of possible design alternatives with further
evaluation and comparison of these alternatives. This framework supports the design of
multiple alternatives for software and hardware architectures, and it is capable of perform-
ing model analysis, mapping analysis, and model validation. Furthermore, it uses the DSE
approach for finding the suitable SW/HW architecture alternatives while taking multiple
optimization goals into account, comprising cost, throughput, and resource utilization.

Nonetheless, it covers no automotive-related elements and multi-core computing units
attributes. In addition, there is no DSE for the mapping problem, and it does not include
any safety-related attributes. The specified optimization goals are also extremely limited.
This open-source tool is outdated and is not well documented.

SCALL: This is a prototype tool that uses an allocation method to provide deployment
solutions for system architects in the design phase using DSE [85]. In addition, it supports
multi-objective DSE, including heterogeneous component allocation, bandwidth, and
communication cost, by utilizing heuristics and AHP approaches to support systems
architects in complex allocation decisions in early design stages.
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However, this approach does not consider model analysis, model checking, or map-
ping analysis. There is no coverage regarding DSE for mapping problem in multi-core
computing units and no safety-relevant constraints and requirements, and the automotive
architectural elements have not been defined in this framework. Moreover, it does no
optimization and is an outdated tool.

AQOSA: The authors in [86] introduce AQOSA (Automated Quality-driven Optimiza-
tion of Software Architecture) toolkit to facilitate the design of software architecture in
advanced component-based software development. It integrates modeling technologies,
performance analysis techniques, and advanced evolutionary multi-objective optimization
algorithms to improve non-functional properties of systems in an automated manner. It
enables the modeling of software components and the mapping of feature configurations to
component configurations or model templates. Additionally, it supports the DSE method,
including multi-objective optimization (such as data flow latency, processor usage, and
architecture cost), and the architect can easily design the initial architecture in OSATE [64]
utilizing AADL language [65] and then import it into AQOSA framework. For software
architecture modeling, AQOSA integrates ROBOCOP [87] (Robust Open Component-Based
Software Architecture for Configurable Devices Project) modeling language (see Figure 8).

ROBOCOP AADL

Evolutionary Optimizer

Topology and/or Mapping 
Transformation 

Quality Properties 
(i.e. Power 

consumption, 
Resources Load, 

Missing Deadlines, 
etc.)

Evaluator

Model Design Tool

Transformer

Abstractor
Performance Analysis Results

Initial Architectures

Alternative Architectures

Figure 8. The working scheme of the AQOSA toolkit.

AQOSA itself involves a few architectural elements; moreover, it does not examine
mapping analysis and DSE for mapping problems, nor does it pay attention to the multi-
core platforms as well. Furthermore, this tool provides no model checking functionality and
comprises restricted optimization targets. This framework has no proper documentation
and is outdated.

SQuAT-Vis: This is a tool that can be plugged into software architecture optimization
approaches and allows architects to investigate results [88] to have an optimal software
architecture satisfying quality-attribute requirements. This tool uses the DSE approach,
including the optimization to explore the optimal design solution for the software clustering
problem.

However, this framework does not include mapping problem as a DSE problem,
model checking, or mapping analysis for multi-core processing units. In addition, it has
limited optimization goals comprising response time and CPU utilization, and it supports
no safety-related attributes such as exploration parameters during software clustering.
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Several other research approaches have been illustrated about software integration and
architecture synthesis related to the automotive domain in recent years. For example, the
author in [89], proposed optimized reconfiguration of the industrial automation systems.
The author used the DSE approach to compute optimal architectural configurations of
control applications through specifying constraints and optimization goals. Similarly, a
framework was presented in [27] to provide architecture modeling for automotive systems.
The authors claimed that their framework facilitates system integration while utilizing
optimization approaches. In addition, it considers validation for different design metrics
including reliability and timing.

In the following tables, the studied problem, the DSE type, optimization algorithms
and attributes, and safety-relevant attributes regarding each of the aforementioned open-
source technologies are presented.

Table 1 presents the problem type (e.g., mapping, deployment, model checking, model
analysis, etc.) that each technology tried to solve. In addition, it goes through problem
attributes or DSE items such as resource usage, scheduling, task response time and, finally,
it illustrates which DSE method was utilized in each of them. As explained before, there
are various optimization attributes for designing automotive-related embedded systems,
of which the most important ones are considered in Table 2. Table 2 presents the coverage
result of the optimization parameters by the various approaches discussed above as well
as expressing the used optimization algorithms, e.g., genetic algorithm. In addition, as
satisfying safety requirements during automotive software configuration is extremely
critical, Table 2 also covers the safety-related attributes considered by each approach,
including ASIL level, reliability, FFI, redundancy, etc. Reliability, as mentioned before,
is an optimization parameter and a safety-relevant element in the embedded system,
calculated based on failure rate, to ensure the system reliability [50]. Cost is interpreted
as the design expenses in such a way that the number of used components in the system
can be decreased. Latency and execution time are parameters that improve the system
performance, e.g., reducing task latency during task allocation. Energy consumption, as
explained in Section 3.1.3, is another major optimization parameter in embedded systems.
To utilize the CPU, and memory of the system in an optimized way, CPU utilization and
memory usage are studied, and these two parameters contribute to the improvement of the
system performance.

Table 1. Problem’s type, problem’s attributes, and DSE type of the above-mentioned open-source
frameworks.

E/E Configurator Problem Problem Attributes Design Space Exploration

ArcheOpterix Deployment and Mapping Memory Consumption and
Response time

Multi-Objective Optimization
and Constraints Satisfaction

PerOpteryx

Software Clustering
including

Component/Resource
Selection,

Allocation, and Feature
Configuration

Response time Multi-Objective Optimization

MechatronicUML

Model Checking, Deployment,
Formal Analysis of the

Requirements,
and the Design

Allocation Specification
Language Constraints Satisfaction
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Table 1. Cont.

E/E Configurator Problem Problem Attributes Design Space Exploration

APP4MC

Mapping,
Resource Management,

Performance
Simulation, and Validation

Task Response Time,
Scheduling, and

Partitioning focused on
Timing

Multi-Objective Optimization
and Constraints Satisfaction

Autofocus3 Model Checking and
Deployment

Schedule Synthesis and
Latency

Optimization
and Constraints Satisfaction

Clafer Model Analysis and Feature
Modelling Timing Multi-Objective Optimization

and Constraints Satisfaction

OSATE Model Analysis and Model
Checking

Scheduling Analysis,
End-to-End

Latency, Safety Analysis,
Computer

Budget Analysis, and Weight
Analysis

Constraints Satisfaction
excluding DSE method

AAOL Deployment and Mapping
Memory Usage, CPU Time,
Network Bandwidth, and

ASIL Level

Multi-Objective Optimization
and Constraints Satisfaction

ASSIST Deployment and Mapping Redundancy, Scheduling, and
Managing Shared Resources

Multi-Objective Optimization
and Constraints Satisfaction

Deepcompass Framework
Model Analysis, Model

Validation,
and Mapping

Task Completion Latency and
Missing Deadline in

Scheduling

Multi-Objective Optimization
and Constraints Satisfaction

SCALL Software Component
Allocation

Heterogeneous Components
Allocation,

Bandwidth, and
Communication Cost

Constraints Satisfaction

AQOSA Software Clustering and
Mapping

Task Latencies, Processor
Utilization, and

Architecture Cost

Multi-Objective Optimization
and Constraints Satisfaction

SQUAT Software Clustering Response Time Multi-Objective Optimization
and Constraints Satisfaction

Table 2. The used optimization algorithms, and the covered optimization and safety-relevant at-
tributes in the above-explained open-source frameworks.

E/E Configurator Optimization Algorithms Safety-Related Attributes Optimization Attributes

ArcheOpterix

Genetic Algorithm (GA),
ParetoAnt Colony Algorithm

(P-ACO),
Simulated Annealing (SA),

Ayesian Heuristic for
Component

Deployment optimization
(BHCDO),

Random Search Algorithm,
and Brute-Force Algorithms

Reliability
Cost, data transmission

reliability
and communication overhead

PerOpteryx Genetic Algorithm (GA) Reliability Performance, Reliability,
and Monetary Cost
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Table 2. Cont.

E/E Configurator Optimization Algorithms Safety-Related Attributes Optimization Attributes

MechatronicUML Not Applicable
(N.A.) N.A. N.A.

APP4MC Genetic Algorithm (GA) Safety parallelization
and Traceability

Load Balancing, Energy
Consumption,

Memory Mapping, and
Inter-Core Communication

Autofocus3 Meta Search, e.g., Binary
Search Safety Integrity Level Timing and Communication

Load

Clafer

Guided Improvement
Algorithm (GIA)

Using Alloy, Z3 SMT, and
Choco 3 CSP Solvers

N.A. Mass, End-to-End Latency,
and Cost

OSATE N.A. FTA, FMEA, and
FHA N.A.

AAOL Evolutionary Algorithms ASIL Level Cost, Weight

ASSIST Heuristic approach
e.g., Simulated Annealing Redundancy Resource Usage, Weight,

Power

Deepcompass Framework Pareto approach N.A. Cost, Throughput, and
Resource Utilization

SCALL Genetic
Algorithm (GA) N.A. N.A.

AQOSA

Nondominated Sorting
Genetic Algorithm,

Strength Pareto Evolutionary,
and S-metric Selection

N.A.
Data Flow Latency,
Architecture Cost,

and Processor Usage

SQUAT Genetic Algorithm (GA) N.A. Response Time and
CPU Utilization

Furthermore, there are several commercial tools, developed by various companies,
which contribute to E/E architecture design and automotive software integration and
configuration [90]. The most relevant are explained in the following.

PreeVision: A commercial tool for model-based development of distributed, embed-
ded systems in the automotive industry. It offers comprehensive functions for classic and
service-oriented architecture construction and all aspects of an E/E system, including
requirements engineering, AUTOSAR, software and communication design, and wiring
harness evolution [91]. The integrated and model-based approach helps complex tasks
to remain straightforward and controllable. It also supports the tried-and-tested sys-
tem engineering principles of abstraction, decomposition, and reuse, and can serve as
the engineering backbone. It enables parallel work on a shared database from multiple
locations [92]. It supports the design of E/E architecture platforms used for different
vehicles [93]; moreover, it provides design and evaluation of components, signal routing,
model consistency checks, and functional safety analysis.

MotionWise: By using this commercial platform users can integrate, test, validate,
and schedule any number of components and applications, helping them to reduce de-
velopment, testing, and validation complexity and to ensure that essential safety and
mission-criticality requirements can be met in both single or multi-SoC environments for
automotive-related platforms. This tool abstracts the hardware and OS, creating a unified
management environment out of heterogeneous elements [94].

Volcano Vehicle Systems Architect (VSA): This is a commercial Eclipse-based plat-
form enabling generation of design environment for E/E systems [95,96]. It supports
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SW architecture design, including defined SW components and compositions and HW
architecture design, i.e., defining ECUs, networks, sensors, and actuators. VSA covers the
full AUTOSAR metamodel and its formats, and it has the capability of automatic code
generation [91]. It includes mapping analysis (connecting software components with ECUs
and system signals), topology and communication design, and model validation. Moreover,
it supports the bi-directional exchange of AUTOSAR XML files for software components
and compositions with MATLAB and Simulink [68].

ASCET-DEVELOPER: This is a commercial model-based software targeting the auto-
motive domain which is built on an Eclipse platform [97]. It assists system architects in
creating high-performance, safe and secure embedded software with low overheads. As it
has safety certifications such as ISO26262 ASIL-D, it will be appropriate for safety-critical
software development [2]. The model analysis, including graphical and textual specifica-
tions and model validation, is supported by this commercial framework. Furthermore,
it supports automatic C code generation from a designed model and provides unit test
capability; moreover, toolchain integration can be supported in such a way that providing
different interfaces and a standardized file exchange format makes it easy to integrate the
tool into a development process and toolchain.

Autosar Builder: Another commercial tool for the design, configuration, and simula-
tion of E/E systems following Autosar standards [98,99], it is built on the Eclipse platform
with the Autosar development environment (Artop). Autosar Builder framework supports
the development, verification, and validation of E/E components and the corresponding
embedded software in the automotive field, and also system descriptions on the application
level. In addition, it includes graphic visualizations and diagrams to make it easier to
develop complex architectures. It also provides the possibility of simple integration with
third-party tools.

SymTA/S: This is a commercial framework for analyzing the performance and opti-
mizing the real-time embedded systems supporting heterogeneous architectures. SymTA/S
is utilized for budgeting, scheduling verification, and optimization for processors, ECUs,
communication buses, and networks. Timing and scheduling analysis of distributed em-
bedded architectures is supported by this tool such as calculation of worst-case execution
time (WCET). It enables unique end-to-end timing analysis and visualization; furthermore,
it can plan and optimize the designed system by defining multi optimization objectives
and its integration concepts and determine its reliability and safety while using DSE
approach [100,101].

ChronSIM/ChronVAL: This is a tool for timing analysis of automotive systems. This
commercial framework makes use of formal verification methods to analyze the real-
time capability of safety-critical embedded systems. In addition, end-to-end analysis of
distributed functions can be performed using the DSE approach. It provides graphical
validation and simulation of the systems’ timing requirements; it also supports multi-
objective optimization such as resource utilization and response time objectives [102,103].

Although the above-described commercial frameworks support various features re-
garding E/E architecture synthesis, they have some limitations too. None of these platforms
include mapping analysis (except VSA and ASCET-DEVELOPER), solving the mapping
problem utilizing the DSE method for multi-core computing units, and considering the
safety-relevant attributes based on ISO 26262. Additionally, model checking capability is not
covered in the above-mentioned frameworks except for the PreeVision, VSA, and ASCET-
DEVELOPER. Only three of them provide optimization for their synthesis results, such as
ASCET-DEVELOPER, SymTA/S, and ChronSIM/ChronVAL, although they comprise a
limited number of objectives. None of the platforms consider a wide range of architectural
elements in terms of hardware and software level in E/E architecture configuration.

4. Future Research Areas

There is a demand to simplify the integration process for automotive OEMs and third-
party developers. In other words, simplifying the offline software integration process by
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semi-automating and automating the integration of the safety-critical applications in next-
generation automotive central compute platforms. As illustrated in Section 3, designing the
configurations and mappings for the HPCUs, while fulfilling all safety requirements and
considering optimization goals, is a challenging and time-consuming task. Furthermore, as
the number of applications and their requirements increase, exploring a mapping solution
becomes NP.

Current manual and offline integration processes are not ready for the needs of next-
generation automotive HPCUs. As studied in this paper, there are various frameworks
and approaches which contribute to semi-automate the integration and mapping process
for embedded systems and HPCUs. However, none of these studies or platforms fully
automate the integration and mapping process for multi-core computing units. In addition,
there are a significant number of safety requirements based on automotive safety standards
which have not been discussed in the previously mentioned studies. Moreover, as illus-
trated in Figure 3, deploying the mapping solution on an HPCU plays a critical role in
evaluating the performance of the solution in run-time in terms of predefined optimization
objectives in design-time and study the run-time behavior of the OS and applications to
improve the mapping outcome created by the design-time framework. More importantly,
verifying all constraints and requirements, which are defined in the design-time approach,
after solution deployment on the HW in the run-time is another major criterion to ensure
the functionality of the created configuration solution in the running phase.

After the DSE method is utilized to find the optimal mapping solution, there is a
probability that the user receives an infeasible solution as the output of the solver due to
conflicts in the constraints system. Therefore, proposing an approach to provide a capability
to identify the source of the violation in the constraints system of the whole system model
is extremely important for determining the feasibility of the solution. Otherwise, when
the number of constraints increases, finding the violated constraints will be extremely
challenging and time-consuming without any clues from which constraint equation they
stem. None of the above-discussed frameworks or studies support this capability. Thus,
we state the following research questions for the E/E architecture synthesis and the auto-
motive software integration for HPCUs focused on the mapping based on the above-noted
explanation.

• How to facilitate and automate the assignment of HPCU resources to safety-critical
applications while verifying the satisfaction of the specified safety requirements in the
design phase to compute a verified and optimized mapping configuration considering
the predetermined optimization objectives?

• How to verify the fulfillment of the specified requirements (particularly safety-critical
ones) after deployment of the derived configuration to the HPCU at run-time?

• How to evaluate the performance of the calculated mapping configuration at run-time
focused on the specified optimization goals in design-time?

• How to discover the source of the conflict among defined constraints in our system
while using the DSE approach to find the optimal solution in case of an infeasible
solution?

5. Conclusions

In this paper, we first presented the evolution of car E/E architecture during the last
few years and illustrated the current bottlenecks of E/E architecture as well as the major
technologies for the future of vehicle architecture comprising software architecture of the
high-performance computing unit (HPCU). Moreover, we expressed the challenges and
technologies related to automotive software integration and deployment to the HPCU,
including task mapping, software frameworks, and approaches for software configuration
in the design process.

The current approaches and techniques for static and dynamic task mapping in multi-
core processors using the design space exploration (DSE) method were discussed. In
addition, the current optimization parameters in task mapping to boost the quality of the
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task assignment were identified. We went through the current existing technologies and
approaches, dividing them into open-source and commercial, relevant to modeling, model
analysis and checking, and solving the mapping problem, including the optimization
goals for vehicle E/E architecture and multi-core processors. We depicted the strengths
and limitations of each framework while we compared the open-source technologies by
providing two tables covering various attributes such as the problem attribute, DSE method,
safety-related attributes, optimization parameters, etc., which have been covered by each.
Finally, we proposed our research questions as future research areas based on our analysis
and study focused on the mapping of the software elements to automotive HPCUs which
can be utilized by other researchers. There are several other topics, such as description
languages and verification platforms for the synthesis of the E/E systems, which are
relevant to the content of this paper; however, they are out of the scope of this paper.
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