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Abstract: Energy consumption data is being used for improving the energy efficiency and minimizing
the cost. However, obtaining energy consumption data has two major challenges: (i) data collection
is very expensive, time-consuming, and (ii) security and privacy concern of the users which can
be revealed from the actual data. In this research, we have addressed these challenges by using
generative adversarial networks for generating energy consumption profile. We have successfully
generated synthetic data which is similar to the real energy consumption data. On the basis of the
recent research conducted on TimeGAN, we have implemented a framework for synthetic energy
consumption data generation that could be useful in research, data analysis and create business
solutions. The framework is implemented using the real-world energy dataset, consisting of energy
consumption data of the year 2020 for the Australian states of Victoria, New South Wales, South
Australia, Queensland and Tasmania. The results of implementation is evaluated using various
performance measures and the results are showcased using visualizations along with Principal
Component Analysis (PCA) and t-distributed stochastic neighbor embedding (TSNE) plots. Overall,
experimental results show that Synthetic data generated using the proposed implementation possess
very similar characteristics to the real dataset with high comparison accuracy.

Keywords: GAN; smart grid; energy; privacy; TimeGAN; energy dataset

1. Introduction

Today’s modernized energy system or simply ‘Smart Grid’ is the result of advanced
sensing, automation and control. Moreover, introduction of distributed renewable energy
resources have brought the generation close to the consumer and introduce the concept of
bi-directional power flows. For effective monitoring and control of the smart grid systems,
sensors and measurement devices have been incorporated throughout the network [1]. At
low voltage customer level, it was not well monitored until the recent years when the use
of smart meters have increased significantly. The data collected from the smart meters
possess high security and privacy constraints as described by authors in [2,3], which is
one of the reasons for having hindrance to carry out wider adoption, implementation and
research for energy industry. Similar to the wider adoption of smart meters, medium and
high-voltage energy grids have utilized Phasor measurement Units (PMUs), Micro-PMUS
and other sensors for improved operation and reliability of the grid. The medium to
high voltage energy grids are facing more challenges than before due to the rise of new
kinds of cyber threats through both information technology (IT) and operation technology
(OT) vulnerabilities [4]. New and emerging kind of cyberattacks, e.g., False Data Injection
Attacks (FDIs) have been observed in the literature [5]. While one type of attacks deal
with the integrity of the information or measurements, the other type of attack targets the
availability of the resources or information. Denial-of-service attack (DoS) is an example
of such kind or attacks. Significant amount of risk is also associated with the privacy
concern of the information being shared. Therefore, privacy attacks have gained significant
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attention [6]. Privacy attacks can reveal the identity and user behavior of the consumers.
If the data is for a large operation center, adversarial parties and competitors can take the
advantage of those information. Hence, it has been identified as an important question—

“How research and investigation can be performed without sharing the actual data which is vulnerable
to security and privacy attacks?”.

A possible solution for this challenge is to generate synthetic energy data which is
indifferentiable from the real one, which could be used for research and investigation
purpose. considering the underlying framework, this could be achievable using generative
adversarial networks [7,8]. Hence, in this research, we focused on generating synthetic
energy data using a Time series variant of Generative Adversarial Networks (GAN), which
has addressed following research problems in our research to generate synthetic data.

• Can we generate synthetic energy data at household level while adhering to security
and privacy policies?

• How can a time variant GAN will be suitable to capture temporal dynamics of Time?
• How can we decide the effectiveness of time series GAN variant that outperforms

other benchmark algorithms?

Generative adversarial Networks (GAN) are the class of machine learning/deep
learning framework which are used to train generative models. As the name suggests the
native function of generative model is to generate an entity from the given input. Initially,
GAN was developed to create an application for image processing and image generation,
which generates fake images as an output from the real images considering random noise
as an input to the model. The goal was to created model which generates fake images which
are indistinguishable from the real image. With the help of novel solution of Generative
adversarial networks, researcher Ian Goodfellow was able to produce fake images and
thereby achieved desired objective [9]. Afterwards, many researchers created different
variants of GAN using that fundamental piece of work. Some of the known variants are
StyleGAN, WGAN, ConditionalGAN, DCGAN, etc. Most of these Generative nets are
implemented on the image datasets. This kind of data shows no dynamic variation with the
time and have simple or linear relationship with other variables. However, there are many
fields of research in which time is valuable factor, in industrial applications such as energy,
robotics, agriculture and medical, researchers required historical dataset which is captured
over certain period of time. For such datasets, GAN model should be able to capture
the dynamics and variation of data with respect to the time, while preserving complex
relationship between the variables at the time of generating the synthetic data. Time
variant of GAN model generally consists of two traditional networks, viz Generator and
discriminator, and occasionally consist of two additional networks known as recovery and
embedder, together called as auto-encoders. This framework setup could be use to capture
temporal dynamics of time series data. Hence, in this work, we focused on implementing
underlying GAN method to study data consumed by electrical energy appliances over the
period of time and generate synthetic data similar to that of real dataset. The idea of using
energy consumption data is greatly influenced from smart grid research done by authors
based on energy data in [2,10]. The aim of this work is to model generative adversarial
network on energy consumption data and generate synthetic data indistinguishable from
the real dataset in terms of data characteristics. This will allow us to create novel method
to avoid any privacy issues associated with the usage of customer data in future research
work that might be conducted in the field of energy.

The organization of this work is as below: Section 2 describes the related work in
the field of energy and Generative Adversarial Networks. Section 3 presents the research
design and methodology along with GAN framework. Section 4 describes the approach
and the technical details of artefact development. It lists out various parameters associated
with GAN framework, along with dataset information. Section 5 provides information on
experimental setup. Next, the results of implementation is discussed in Section 6. Finally,
Section 7 concludes the research and explains how the designed artefact is relevant to
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address real world problems. We have added a table (Table 1) which provides definition
and full form for all the abbreviations.

Table 1. List of Abbreviations.

Abbr Full form Definition

GAN
Generative
Adversarial
Networks

GAN are Machine Learning model consist
of two Neural Networks which competes
each other to increase accuracy of their prediction

PCA
Principal
Component
Analysis

PCA is dimensionality-reduction method used to
reduce the dimensionality of large datasets

TSNE
t-distributed
stochastic neighbor
embedding

It is a statistical method for visualizing high
dimensional data by giving each datapoint
a location in a two or three-dimensional map

PMU
Phasor
measurement
Units

A phasor measurement unit (PMU) is a device used to
estimate the magnitude and phase angle of an electrical
phasor quantity such as voltage or current

OT Operation
Technology

It is hardware and software that detects or causes a
change, through the direct monitoring and/or control
of industrial equipment, assets, processes and events.

FDI False Data
Injection Attacks

FDI compromises sensor readings by
introducing errors into calculations of state variables
and values.

DOS Denial-of-service
attack

It is an attack meant to shut down network,
making it inaccessible to its intended users

AUC
Area
Under
Curve

AUC is the measure of the ability of a classifier to
distinguish between classes and is used as a summary
of the ROC curve

ROC
Receiver
Operating
Characteristic

ROC is a graph showing the performance of a
classification model at all classification thresholds.

AEMO
Aggregated
Price and
Demand data

AEMO is a website that contains monthly
energy consumption data for various states of
Australia

TSTR
Train on
Synthetic
Test on Real

A method in which model is trained on Synthetic
data and accuracy is tested on the real data

2. Literature Review

The concept of generative model has piqued an interest of researches lately. A good
number researchers have developed various novel solutions using Generative adversarial
networks as a base model in various fields. There are multiple variants of Generative
adversarial network model that has been created to address respective issues. The concept
of GAN model, a philosophy behind the GAN framework and possible implementations of
GAN has been explained by Li, Yanchun et al. in [11].

Table 2 shows the related works presented in existing literature.
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Table 2. Relevant Literatures.

Summarized Literatures

Article Title Venue Y.O.P Authors Application Area Algorithm Used Datasets Metrics

Deep generative models to
counter class imbalance: a
model-metric mapping with
proportion calibration
methodology [12]

IEEE 2021

BEHROZ MIRZA,
DANSIH HAROON,
BEHRAJ KHAN, ALI
PADHANI, TAHIR Q.
SYED

class imbalance-
Machine
Learning

GAN, VAM, RBM

Creditcard-fraud detection
dataset Give-mesome-credit
dataset Protein-homo
dataset Skin-no-skin dataset
Anti-moneylaundering-
cases

Precision, Recall,
F1-score, AUC,
G-Mean, Balanced
Accuracy

DuCaGAN: Unified Dual
Capsule Generative
Adversarial Network for
Unsupervised
Image-to-Image
Translation [13]

IEEE 2020

GUIFANG SHAO,
MENG HUANG,
FENGQIANG GAO,
TUNDONG LIU,
LIDUAN LI

computer vision
and image
processing

dual capsule generative
adversarial network

Cityscapes, Sketch2photo,
Day2night, Oil2Chinese,
Summer2Winter,
Ukiyoe2photo,
Vangogh2photo, Surface
defect data, DAGM 2007

semantic
segmentation
evaluation,
FCN-score, four
evaluation criteria,
pixel accuracy, mean
accuracy, frequency
weighted
Intersection-Over-
Union, mean class
Intersection-Over-
Union(ClassIOU)

Dualattn-GAN: Text to
Image Synthesis with Dual
Attentional Generative
Adversarial Network [14]

IEEE 2019

YALI CAI , XIAORU
WANG , ZHIHONG
YU, FU LI, PEIRONG
XU, YUELI LI,
LIXIAN LI

Text to Image
processing

Dual Attentional
Generative Adversarial
Network
(DualAttn-GAN)

CUB, Oxford-102

Inception Score (IS),
Fréchet Inception
Distance (FID),
Human Rank (HR)

Targeted Speech Adversarial
Example Generation with
Generative Adversarial
Network [15]

IEEE 2020

DONGHUA WANG,
LI DONG,
RANGDING WANG,
DIQUN YAN, JIE
WANG

Speech
processing and
generation

Traditional generative
adversarial network
(GAN)

SpeechCmd, GTZAN SNR (db), PESQ
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Table 2. Cont.

Summarized Literatures

Article Title Venue Y.O.P Authors Application Area Algorithm Used Datasets Metrics

A Two-Stage Generative
Adversarial Networks with
Semantic Content
Constraints for Adversarial
Example Generation [16]

IEEE 2020

JIANYI LIU, YU
TIAN, RU ZHANG,
YOUQIANG SUN,
CHAN WANG

Image processing
and generation

Two-stage generative
adversarial networks
(TSGAN)

MNIST, CIFAR-10

Fréchet Inception
Distance (FID),
Structural Similarity
(SSIM)

Attentively Conditioned
Generative Adversarial
Network for Semantic
Segmentation [17]

IEEE 2020

ARIYO
OLUWASANMI,
MUHAMMAD
UMAR AFTAB,
AKEEM SHOKANBI,
JEHOIADA
JACKSON,
BULBULA
KUMEDA,
ZHIQUANG QIN

semantic
segmentation

Attentively
Conditioned
Generative Adversarial
Network (ACGAN)

PASCAL VOC 2012, CamVid

popular mean
Intersection over
Union (mIoU)
technique

FGGAN: Feature-Guiding
Generative Adversarial
Networks for Text
Generation [18]

IEEE 2020

YANG YANG,
XIAODONG DAN,
XUESONG QIU,
ZHIPENG GAO

Text Generation Feature-Guiding

Generative Adversarial
Networks (FGGAN)

COCO
dataset,
Chinese
poetry dataset

bilingual
evaluation
understudy
(BLEU) score

Dual Autoencoders
Generative Adversarial
Network for Imbalanced
Classification Problem [19]

IEEE 2020 Ensen Wu, Hongyan
Cui, Roy E. Welsch Fraud Detection

Dual Autoencoders
Generative Adversarial
Network

credit card transaction
dataset

recall, precision,
F1-score, Area Under
the Curve (AUC),
Area Under
Precision-Recall
Curve (AUPRC)
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Table 2. Cont.

Summarized Literatures

Article Title Venue Y.O.P Authors Application Area Algorithm Used Datasets Metrics

LSTM-CGAN: Towards
Generating Low-Rate DDoS
Adversarial Samples for
Blockchain-Based Wireless
Network Detection
Models [20]

IEEE 2021 ZENGGUANG LIU,
XIAOCHUN YIN

blockchain-based
protection
technologies for
DDOS attacks

LSTM-CGAN

slow-header, slow-body,
hulk and rudy of
iscx-slowdos-2016, Friday
dataset

Error rate, Precision,
recall

Recent Advances of Image
Steganography with
Generative Adversarial
Networks [21]

IEEE 2020

JIA LIU, YAN KE,
ZHUO ZHANG, YU
LEI, JUN LI,
MINQING ZHANG,
XIAOYUAN YANG

Image
Steganography GAN

CIFAR-100, CelebA, BOSS,
Div2k,COCO, MNIST,
food,LFW,
Horse2zebra,Woman2man,
1000 aerial photographs X
and 1000 maps Y

peak signal-to-noise
ratio (PSNR),
Structural similarity
index (SSIM), Error
rate

A GAN-Based Anomaly
Detection Approach for
Imbalanced Industrial Time
Series [22]

IEEE 2019

WENQIAN JIANG,
YANG HONG,
BEITONG ZHOU,
XIN HE, CHENG
CHENG

Anomaly
detection for time
series

GAN

Rolling bearing data from
Case Western Reserve
University (CWRU), rolling
bearing dataset from
Huazhong University of
Science and Technology

area under curve
(AUC) of the receiver
operating,
characteristic (ROC),
confusion matrix

Time Series Anomaly
Detection Based on
GAN [23]

IEEE 2019
Yong Sun, Wenbo Yu,
Yuting Chen,
Aishwarya Kadam

Anomaly
detection for
automobile
industry

GAN Isuzu vehicle data

prediction score-
difference between
predict and real time
measured data
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Table 2. Cont.

Summarized Literatures

Article Title Venue Y.O.P Authors Application Area Algorithm Used Datasets Metrics

A Novel LSTM-GAN
Algorithm for Time Series
Anomaly Detection [24]

IEEE 2019

Guangxuan Zhu,
Hongbo Zhao,
Haoqiang Liu, Hua
Sun

Anomaly
detection in
medical and
healthcare

LSTM-GAN ECG dataset, nyc_taxi
dataset

Precision, Recall,
F1score, Accuracy,
ROC

Anomaly Detection in Time
Series using Generative
Adversarial Networks [25]

IEEE 2020
Fiete Luer, Dominik
Mautz, Christian
Bohm

Anomaly
detection in
medical and
healthcare

Recurrent GAN
(RGAN) MIT-BIH dataset Precision, Recall,

F1score

GAN-based Anomaly
Detection and Localization
of Multivariate Time Series
Data for Power Plant [26]

IEEE 2020
Yeji Choi, Hyunki
Lim, Heeseung Choi,
Ig-Jae Kim

Time series
imaging and
anomaly
detection for
industrial power
plant

GAN Real world smart power
plant dataset

anomaly score
function

Conditional GAN for
Timeseries Generation [27]

Cornell
University-
arXiv

2020 Kaleb Smith,
Anthony O. Smith h

Timeseries
Generation

Time series GAN
(TSGAN)

70 datasets used; some
are-Beetle fly, Bird Chicken,
Coffee, Computers, ECG fide
days Ethanol level, Hand
outliers

Quantitative
evaluation-Fréchet
Inception Score (FID)
Qualitative
evaluation-
classification is used
as the evaluation
criteria

Real-valued (Medical) Time
Series Generation with
Recurrent Conditional
GANS [28]

Cornell
University-
arXiv

2017
Stephanie L. Hyland,
Cristóbal Esteban,
Gunnar Rätsch

Timeseries
Generation

Recurrent Conditional
GANS (RCGAN) Philips eICU database

sample likelihood
and maximum mean
discrepancy Novel
evaluation method-
TSTR—Train on
Synthetic test on Real
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Table 2. Cont.

Summarized Literatures

Article Title Venue Y.O.P Authors Application Area Algorithm Used Datasets Metrics

MTSS-GAN: Multivariate
Time Series Simulation
Generative Adversarial
Networks [29]

SSRN 2020 Derek Snow Timeseries
Generation MTSS-GAN Finance dataset

Variance score, Max
error, Mean absolute
error, Mean squared
error, Mean squared
log error, Median
absolute error, R2
score

Generative Adversarial
Networks Time Series
Models to Forecast Medicine
Daily Sales in Hospital [30]

Research-
Gate 2019

Amir Mahmud
Husein, Muhammad
Arsyal, Sutrisno
Sinaga, Hendra
Syahputa

Timeseries
Forecasting GAN

stock cardrecord data-drug
data,sales data, purchase
data

Mean Absolute Error
(MAE), Root Mean
Square Error (RMSE),
Mean Absolute
Percentage Error
(MAPE)

Time-series Generative
Adversarial Networks [31] NeurIPS 2019

Jinsung Yoon, Daniel
Jarrett, Mihaela van
der Schaar

Timeseries
Generation TimeGAN Sines, Stocks, Energy, Events

Visualization—with
PCA and TSNE, Dis-
criminative score, Pre-
dictive score

Digital Statelessness New
Trends in Disruptive
Technologies Tech Ethics and
Artificial Intelligence [3]

Springer
International
Publishing

2021

Suzin, Jaine Cristina,
Zeferino, Cesar
Albenes, Leithardt,
Valderi Reis
Quietinho

digital citizenship
Human Rights
social
advancement

- - -
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Table 2. Cont.

Summarized Literatures

Article Title Venue Y.O.P Authors Application Area Algorithm Used Datasets Metrics

An Efficient Interface for the
Integration of IoT Devices
with Smart Grids [10]

mdpi 2020

Viel, Felipe, Augusto
Silva, Luis, Leithardt,
Valderi Reis
Quietinho De Paz
Santana, Juan
Francisco Celeste
Ghizoni Teive,
Raimundo Albenes
Zeferino, Cesar

Internet of Things
(IoT), Smart Grids
(SGs)

COIIoT CoAP OSGP ESP32 Series Datasheet
Feasibility, Scalability,
Reliability Payload
and Latency mapping

A Cost Analysis of
Implementing a Blockchain
Architecture in a Smart Grid
Scenario Using
Sidechains [2]

mdpi 2020

Sestrem Ochôa, Iago,
Augusto Silva, Luis,
de Mello, Gabriel,
Garcia, Nuno M, de
Paz Santana, Juan
Francisco, Quietinho
Leithardt, Valderi
Reis

security and
privacy in Smart
Grids (SGs) using
Blockchains

DPOS-consensus
algorithm

SM-Energy consumption
data

Transaction
Processing Time,
Token Cost, Smart
Contract Cost,
Privacy Violation Test

Generative adversarial
networks are special cases of
artificial curiosity (1990) and
also closely related to
predictability minimization
(1991) [32]

Elsevier 2020 Schmidhuber, Jürgen
Predictability
Minimization,
GAN

GAN, unsupervised
Reinforcement
Learning (RL)

Experimental 1-dimensional
data

Convergence for both
GANs and PM
through two-time
scale stochastic
approximation

Learning Factorial Codes by
Predictability
Minimization [33]

Elsevier 1992 Schmidhuber, Jürgen

Predictability
Minimization
unsupervised
learning

Novel Predictability
Minimization
Algorithms

Experimental dataset

binary factorial code,
Learning rate, local
and global maxima
values
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2.1. GAN with Time Series Data

Time series data is highly distinguished from other datasets mainly because of its
dynamic variations and an unknown locality of time series that contributes a substantial
degree of parameter inference on non-stationary signals. Furthermore, imbalanced time
series data classification is present in various industrial fields. Imbalanced time series
classification is referred to a time series dataset with an unequal distribution of classes.
Since, traditional machine learning algorithms aims to attain high classification accuracy
for majority class, these algorithms are struggling to generate acceptable results for class-
imbalanced problem. Prior to implement GAN with time series data, we referred multiple
publications and research articles to understand the philosophy of the Generative Adver-
sarial Networks. The concept of GAN is closely related to predictability minimization
according the researcher J. Schmidhuber, as he explained in his research [32]. Lately re-
searcher have made significant efforts in implementing GAN models to capture those
variations and process time series data. One of such applications of GAN is detecting
an anomaly in time series data, which was proposed by Wenqian Jiang et al. [22] in their
research paper, ‘A GAN-Based Anomaly Detection Approach for Imbalanced Industrial
Time Series’. In their approach, some of the features are extracted from normal samples and
were feed to an encoder-decoder-encoder which are three subnetworks of generator for the
purpose of model training. The apparent loss and latent loss generated as a result of model
training and data generation, together adds up to calculate anomaly scores for anomaly
detection. This approach has proven to be a good solution in finding anomaly in time series
data, since experimental results showed that trained model was able to identity faults by
generating higher anomaly scores without any prior knowledge of abnormal samples. The
dataset used for experimentation was Rolling bearing data from Case Western Reserve
University (CWRU) and Rolling bearing dataset from Huazhong University of Science
and Technology. Rolling bearing data from Case Western Reserve University (CWRU) is a
dedicated anomaly detection dataset which was purposely created by measuring vibration
signal using an accelerometer on a reliance electric motor of 2 hp. While, dataset from
Huazhong University of Science and Technology was built on normal and faulty bearings
from the testing motors by capturing its voltage signals. The metric used of evaluation
is area under curve (AUC) of the receiver operating characteristic (ROC). In addition,
confusion matrix was also constructed for further evaluation. The results of an experiments
proved that the proposed approach of anomaly detection using GAN model was able to
detect and distinguish abnormal samples from normal samples with 100 percent accuracy
on both the datasets.

Similar research work in terms of anomaly detection in time series data was done by
Yong Sun et al. in [23]. They undertook their research in detecting anomaly in vehicles to
predict any component failures, which has been addressed in their research paper, ‘Time
Series Anomaly Detection Based on GAN’. For commercial vehicle providers downtime due
to any vehicle broke down causes huge loss and hence it is on their top priorities to reduce
downtime. One of the main reasons for downtime is unavailability of automobile parts
and technician for failed vehicle. Due to urgency, on time support for repairs costs huge
expenses and overlooking the repair of failure parts may affect the other components as well.
To avoid such scenarios, application has been created and installed based on deep learning
methods to provide predictive warning before the actual failure. However, such solutions
require quality testing before actually deployed into vehicles, hence, GAN based approach
is used to create the testing environment which possess same characteristics as that of
abnormal data. Generator network in GAN aims to generate the normal behaviours data for
vehicle, while discriminator network is used to differentiate between normal and abnormal
data behaviours and classify accordingly. Linear layers were used to build generator
network along with non-linear activation function LeakyReLU. Discriminator network
was built using CNN, furthermore, RMSprop optimizer was used for both generator
and discriminator network. The threshold was set according to the prediction score for
generated expected normal behaviour. This experimental setup was implemented using
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real world Isuzu vehicle data. Further, complete pipeline was validated and advance
warning capabilities was implemented. The evaluation of experiment is done by calculating
prediction score which is the difference between predict and real time measured data.
Overall experimental results presented the effectiveness of GAN model over the traditional
machine learning approach in detecting and predicting anomalies in vehicles.

2.2. GAN Applications in Energy Systems

In [26], authors have introduced localization framework along with transformation
method for time series imaging, otherwise known a distance image. To provide practical
implementation of the novel approach, an experiment is conducted on Real world smart
power plant dataset which was provided by Korean thermoelectric power plant. This
dataset contains total of 691,200 data points, which was collected for over 18 days. In
addition, there are four anomalies present in the dataset. The proposed framework was built
using CycleGAN framework, and generator and discriminator framework was developed
by implementing LSTM-RNN model.

An application based energy data collected from smart grids and smart meters has
been demonstrated in [10] with integration of IoT devices and smart grids. Further, Ref. [2]
research article also depicts the usage of household energy data in an application created
using blockchain mechanism. Also, author’s work on GAN in conjunction with the concept
of predictability minimization in research [32] has greatly contributed in understanding the
philosophy behind Generative Adversarial Networks.Further, the novel concept of general
principle for unsupervised learning based on predictability minimization explained in [33]
has been a great paradigm to understand the GAN and predictability minimization.

Another implementation of GAN in the field of energy is time series generation based
on the TimeGAN framework which was created by Jinsung et al. [31]. Since, traditional
GAN methods fails to capture such correlation while restricting control over network
dynamics, TimeGAN was introduced to overcome these outlier issues. The framework was
evaluated by implementing the model on four datasets including an energy dataset. Finally,
original data and synthetic data is visualized on graphs, in addition PCA and TSNE with
two components was applied for dimensionality reduction. Evaluation results has shown
that proposed framework outperforms the state-of-the-art benchmarks.

3. Research Design & Methodology
3.1. GAN Conceptual Framework

Generative adversarial Networks (GAN) are class of machine learning/deep learning
framework which are used to train generative models.These networks are fascinating
enough due to its past implementations to apply on the critical infrastructure areas like
energy systems, agriculture and other industries. Which is why it is worth studying the
use of GAN on the major scales. Using Generative adversarial networks, we can produce
synthetic data which is indistinguishable from the original data in terms of data attributes
by passing real data sequence and random noise as an input to the framework. Traditional
GAN framework consists of two Neural networks linked to each other, namely, Generator
network and Discriminator network. Both generator and discriminator network are setup
with initial weights to respective layers. Generator Network takes random noise as an
input and generates sequence of data, which is passed onto the Discriminator network.
The Discriminator network accepts two inputs, one is data sequence produce by generator
and other is the sequence of real data. Further, the discriminator network is trained on real
sequence and performs the task to classifies the sequence produce by generator to be the
real one or the fake one. Both the networks have respective loss function associated with it,
which produces the loss or error score at the end of each forward pass through network.
Calculated error score is then back propagated through the entire network and respective
layer weights are updated. After which the same process is repeated again, this entire
forward pass followed by back propagation results in one iteration. In order for GAN to
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learn the data sequence and model the framework to produce synthetic data with similar
characteristics, it has to run through several thousands iterations.

Traditional GAN framework (in Figure 1) is not proven to be effective method, when
working with time series data. Generative model should be able to capture the dynamic
behaviour, sequence and pattern variation of time series data with respect to various
variables. Further its effectiveness is determined by how it manages to maintain those
relationships among the variables across the time while synthetic data generation. Acquired
energy consumption data is recorded for whole 2020 year and have time as one of the
attributes and hence can be classified as time-series data. In order to process energy
data, it is crucial to maintain the relationship between the latent vector in the feature
dimension. Realizing stated condition, researcher yoon and et al. created the TimeGAN in
their research [31] and implemented it on Stock exchange data.

Figure 1. Traditional GAN Framework.

3.2. Proposed Model: Time Variant GAN

As mentioned previously, generative adversarial networks consist of two neural
networks, namely, Generator and Discriminator. However, in addition to generator and
discriminator, two new networks were introduced in the model which are known as
embedding network and recovery network, together these two new networks are called
auto encoders. These auto encoders are integral part of proposed model, since these
networks are responsible to capture the unknown locality of time series data. Finally,
to complete the development of the model,RMSProp optimizer was used which was
configured with learning rate of 0.001, decay of 0.9 and momentum of 0.01 as a part of
network initialization. overall, described neural network configuration embedded on top
of the traditional GAN network integrated with auto encoders develops novel solution
to generate synthetic energy data. The time variant GAN is designed to capture features
of the real data along with the complex dynamics of those features over the time. The
newly introduced embedding network provides reversible mapping between features
and latent representation.Embedding network along with recovery network maintains the
relationship between latent vectors and features in latent space, while the work of generator
and discriminator network remains the same. Similar to the traditional GAN, the generator
and discriminator are associated with respective loss function, also known as unsupervised
loss. In addition to the unsupervised loss, the model is configured with two more loss
functions, known as supervised loss and reconstruction loss, which are associated with
auto encoders. The overall architecture overview of the model is shown in Figure 2.

Four Networks-

• Generator—Generates the data sequence
• Discriminator—Classifies the data sequence as real or fake
• Embedding Network—provides reversible mapping between features and latent

representation
• Recovery—provides mapping between feature and latent space

Three types of Losses-

• Unsupervised Loss—loss function with respect to generator and discriminator net-
work (min-max)

• Supervised Loss—How well generator calculate next time data in latent space
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• Reconstruction Loss—Compares reconstructed data with original, refers to auto encoders

Figure 2. Time variant GAN Framework [31].

While calculating supervised loss, model captures the conditional distribution within
data with respect to time by supervising original data. Also, this model generates static
and sequential data at the same time and passed onto the embedding networks to provide
assistance in calculating the next time data in latent space. This technique proven to be
more stable training process while training time series data as shown in the evaluation
part of this report, further, it is less sensitive to hyperparameter changes as compared to
other GANs.

Time GAN Training Phases

Time GAN framework training is divided into 3 folds,

• Train Autoencoders (embedder and recovery) with given sequential data for optimum
reconstruction

• Train supervisor using real sequence data to capture behavior of historical data
• Train all 4 networks simultaneously while minimizing Loss functions

Generator take random noise as an input and produces synthetic data as an output.
unlike traditional GAN instead of producing data sequence in feature space, Time GAN
produces it in an embedding space. Random noise passed to generator function is nothing
but the random vector sampled using Gaussian distribution. Overall, Generating function
takes a tuple of static and temporal latent vectors to produce synthetic latent vectors
in an embedding space. The task of reversible mapping between features and latent
representation is carried out in this step and Supervised loss is calculated. In the next
step, Discriminator networks receives static and temporal codes from embedding space
and performs classification, as a result of which, value of unsupervised loss is acquired.
Further, the discriminator network is also associated with another loss value known as
discriminator loss. This loss is calculated based on how well the discriminator network
training is completed with original data. This loss function is then contributes to fine tune
the discriminator network by updating the layer weights to optimum solution, which
helps discriminator network to perform unbiased classification between fake data and
original data. The latent codes from embedding space is forwarded to recovery network
for reconstruction of features in latent space and respective reconstruction loss is produced.
All the three losses are back propagated through entire network and helps to fine tune
the weights that are assigned in different layers, so as to generate more realistic data.
Recurrent networks and bi-directional recurrent networks are used for generator and
discriminator, respectively. At generator network, technique known as gradient ascent
is used to find global maxima, while, on the contrary, gradient descent is used at the
discriminator function to reach the global minima. In other words, generator network tries
to minimize the adversarial loss, while discriminator function tries to maximize it in their
min-max game. This process is carried out in loop for several number of iterations, until
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the model learns the dynamic energy consumption pattern and produces synthetic data
possessing similar characteristics as that of real data. The flow of training process is shown
in Figure 3.

Algorithm:
1. Start Auto encoder training on real data

• Step 1: Embedder <- Real data sequence vector as an input
• Step 2: Supervised Loss <- Loss calculated from Embedder network
• Step 3: Recovery <- Data sequence vector from Embedder in latent space
• Step 4: Reconstruction Loss <- Loss calculated from Recovery network
• Step 5: Embedder <- Supervised Loss from step 2 & Reconstruction Loss from step 4;

to update layer weights
• Step 6: Embedder <- Next data sequence vector
• Step 7: Repeat Step 1 to Step 6 for several iterations

2. Train Discriminator and generator

• Step 8: Generator <- Random noise vector as an input(fake data)
• Step 9: Generator Loss <- Loss calculated on generated sequence
• Step 10: Generator <- Generator Loss, to update layer weights
• Step 11: Discriminator <- Output from Generator network and original data sequence
• Step 12: Discriminator Loss <- Loss calculated based on discriminator training on

original data
• Step 13: Discriminator <- Discriminator Loss; to update layer weights
• Step 14: Supervised Loss <- Loss calculated at discriminator based on how well it

categorized fake data from real data
• Step 15: Generator <- Supervised Loss, to update layer weights again
• Step 16: Repeat step 8 to Step 15 for several iterations

3. Train Auto encoders, Generator and Discriminator Simultaneously

• Step 17: Repeat all the steps for several Iterations

Figure 3. Time variant GAN training process.

4. Artefact Development Approach

The proposed artefact is to be implemented on the energy consumption dataset to
produce the synthetic energy data. However, as described in Section 3, Time GAN frame-
work is complex and could result in overfitting or underfitting depending on the number
of data points and other characteristics and network parameters. Hence, before actual
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implementation, it is crucial to understand the dataset and neural network parameters
associated with the model. Further, it is important to understand system requirements and
tools necessary to perform complex computation smoothly.

4.1. Dataset Information

Energy consumption dataset is acquired from the “AEMO—Aggregated Price and
Demand data” website (https://aemo.com.au/en/energy-systems/electricity/national-e
lectricity-market-nem/data-nem/aggregated-data, accessed on 11 April 2021). Website
contains monthly energy consumption data for various states of Australia. For this project,
energy data is collected for whole 2020 year for the states Victoria, New South Wales, South
Australia, Queensland and Tasmania, as described in Table 3.

Table 3. Dataset Attributes.

Field No. Attribute Description

1 TOTALDEMAND_VIC Energy power consumption in Victoria

2 TOTALDEMAND_NSW Energy power consumption in New South Wales

3 TOTALDEMAND_QLD Energy power consumption in Queensland

4 TOTALDEMAND_SA Energy power consumption in South Australia

5 TOTALDEMAND_TAS Energy power consumption in Tasmania

Each attribute provides value of energy power consumption for respective states in
Australia. Further, Figure 4 provides an overview of the energy data.The data is collected
for every 30 min interval from 1 January 2020 00:00 to 1 January 2021 00:00 with total data
points equals to 17,568. It has been observed that data follows the similar trend when
observed for single day. Overall, the demand for New South Wales is highest throughout the
year followed by Queensland. The state of Victoria comes in third place, while the energy
demands are lower in South Australia in comparison to Victoria. The least energy demand
is recorded for Tasmania. The distribution and trend in energy demand is showcased in
Figure 5, in which the data for seven consecutive days is compared for all the five states.
Similar trend is observed for rest of the datapoints.

4.2. System and Tool Requirements

The dataset holding energy consumption data is stored is csv format and used as an
input to GAN model for model training purpose. We have used python programming
language and Google Collaboratory to execute and implement Time GAN framework. GPU
environment has been setup to improve processing and reduce execution time. Table 4
describes the technological requirements that has been setup for this project.

Table 4. System and technological requirements.

System/Technological Requirement Version

Tensorflow 1.15.0
pandas 0.25.1
numpy 1.17.2

Scikit-learn 0.21.3
tqdm 4.36.1

matplotlib 3.1.1
argparse 1.1

https://aemo.com.au/en/energy-systems/electricity/national-electricity-market-nem/data-nem/aggregated-data
https://aemo.com.au/en/energy-systems/electricity/national-electricity-market-nem/data-nem/aggregated-data
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Figure 4. AEMO data- Energy Consumption Data.

Figure 5. Energy Demand comparison for 7 consecutive days.

4.3. Neural Network Parameters and Prerequisites

The energy consumption data is pre-processed before passed down for model training
as an input to Time GAN. The dataset is arranged in chronological order of the time by
flipping over, so that energy consumption data is arranged from latest to oldest date.
Further, the data is normalized to the values between 0 and 1 using ‘Min-Max scaler’. In
the next step, the data cut into smaller payloads as per the provided sequence length and
afterwards it is arranged in the random permutations. Once all of the stated steps of data
processing is completed, energy data is ready to passed on to the model for training. In
addition the data, network parameters are also configured and forwarded for execution
to achieve optimal model training. These parameters includes, sequence length, module,
number of hidden dimensions, number of layers in neural network, training batch size and
number of iterations. Depending upon the system processor the execution time for the
model training will differ, however, in this case, it has been recorded as 3 h on average.

5. Experiments and Evaluation
5.1. Experimental Setup

The system and tools are configured as mentioned in the Section 4.2 to setup an
environment for time GAN implementation. In order to write a python code, necessary
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python libraries are imported. Also the energy consumption data is pre-processed with the
sequence length of 24, as stated in Section 5.1. Further, The parameter are configured with
the default values as mentioned in Table 5.

Table 5. Parameter configuration.

Parameters Values

Module GRU

Number of Hidden Dimensions 24

Number of layers 3

Number of Iterations 10,000

Execution code for all the four neural networks is defined using respective python
libraries and functions. Further, ‘Sigmoid’ and ‘tanH’ activation functions are used for
respective layers in the neural networks, while, ‘ReLu’ activation function is setup to train
the whole GAN network simultaneously. Optimizers such as ‘Adam’, ‘RMSProp’ and
‘GradientDecentOptimizer’ were used in different scenarios in opposed to the proposed
model. Hyper-parameters were setup with learning rate, decay rate and momentum to
improve the results Time variant GAN model. To achieve the optimal results, stated
hyper-parameters were tuned in different scenarios as mentioned in the Table 5. Along
with the proposed model, six scenarios were executed by with different combination of
hyper-parameters and their results are compared against the proposed model by set of
standards mentioned in Section 5.2 model evaluation. Table 6 provides brief information
on all of the six experiments as well as details of the proposed model.

Table 6. Experimental setup.

Scenarios Optimizer Learning
Rate

Batch
Normalization Momentum Decay

Rate
Batch
Size

1 Adam 0.001 Yes Default 0.0 128

2 Adam 0.0001 Yes Default 0.0 128

3 Adam Default Yes Default 0.0 128

4 RMSProp 0.001 Yes 0.0 0.9 64

5 RMSProp 0.0001 Yes 0.01 0.9 64

6
Gradient
Descent
Optimizer

0.01 Yes 0.0 0.0 64

Proposed
Model RMSProp 0.001 Yes 0.01 0.9 64

5.2. Model Evaluation

We compared the results of all the experiments with proposed model of Time variant
GAN. The performance of the model has been measured using various evaluation metrics
used in quantitative analysis as described in Section 5.2.1. Also, to better understand
results visualization techniques are used. The results are showcased using PCA and TSNE
graphs with two component dimensionality reduction. Further, quality of generated data
is evaluated using train-on-synthetic and test-on-real(TSTR) methodology. Finally, the
statistics on generated and real data has been compared which depicts the comparison of
characteristics of original data against generated data using mean, SD, minimum value,
maximum value and interquartile range ranges.
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5.2.1. Quantitative Evaluation

Quantitative evaluation of the model is carried out using eight quantitative metrics.
These are discriminative score, predictive score Accuracy, precision, recall, f1-score, cohens
kappa and ROC AUC. All metrics are calculated based on TSTR method, 2-layer LSTM
time series classification model is used to trained on synthetic sequence of data, in order to
differentiate the real data sequences from the fake ones. Each of the original data point was
labeled while the synthetic data point left unlabeled and RNN classifier is used to trained
so as to distinguish between them. Finally, respective error value is calculated and reported
as discriminative score. Further, values of accuracy, precision, recall, f1-score, cohens kappa,
ROC AUC is calculated based on the performance of RNN classifier. On the other hand, to
verify whether the proposed time variant GAN model was able to capture the temporal
dynamics and conditional distribution over time, We calculated predictive score. Again,
two layer LSTM sequence predicting model was trained using synthetic data and used to
predict the temporal vectors in the next step based on the previous step. Performance of
prediction was measured using mean absolute error (MAE) and reported as a predictive
score of the model. In order for describing model to be a better one, both discriminative
score and predictive score should be close to 0.

5.2.2. Visualization and Graphs

Finally, the original data points and synthetic data points for energy consumption
data are plotted on two-dimensional space using PCA and TSNE graphs by performing
dimensionality reduction with two components. Both PCA and TSNE graphs were plotted
for all experiments and results are compared in Section 6.

5.2.3. Other Evaluation Methods

The quality of generated data is evaluated based on three factors.

1. How well generated samples are distributed across the real data?
2. Are generated samples are indistinguishable from the real data?
3. How effectively Generated samples can be used for predictive purposes, likewise

real data?

Further, qualitative analysis is done using train-on-synthetic, test-on-real (TSTR)
method. In this method, model is trained on synthetic data and its accuracy is calculated
by performing tests on real data. We have used, two Layer LSTM model for the training
purpose using synthetic energy consumption data, while testing accuracy is calculated
using original energy consumption data.

Furthermore, statistics measures such as mean, SD and interquartile range ranges were
calculated for the subset of original data and synthetic data, and reported for comparison
purposes, since it provides a strong platform in comparing the quality of the synthetic data.

6. Results & Discussion

Overall, in order to evaluate the results for all the experiments, the accuracy of
synthetic data with respect to real data is presented based on similarity index. Further,
train on synthetic data and test on real data method is used to calculate predictive score,
which adds up to effectiveness of model. Finally, the results are visualized using graphs
along with PCA and TSNE with two components.

6.1. Interpretation of Results

The results of the experimental evaluation is showcased in ‘Table 7: Experimental
Results’. This table contains the value for following metrics, Discriminator score, Predictive
score, Accuracy, precision, recall, f1-score, cohens kappa and ROC AUC. Discriminator
score and Predictive score depicts the MAE values with respect to original data sequence
and generated data sequence, while other measures showcases similarity index between
respective data sequence.
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After the training of Time GAN model, the synthetic data was generated, which is
evaluated using stated quantitative metrics. In order to perform quantitative analysis,
at first the vector sequences in original data is labeled as 1, while the vector sequence of
synthetic data is labeled as 0. Further, two layer LSTM model was trained using these vector
sequences from original as well as synthetic data and then classifier was used to classifies
them for the inline vector sequences and error rate was calculated. Now, specifically for
the Time GAN model, if the generated data is equivalent to the original data, then the
discrimination accuracy for the model should be low. In other words, if the model is able to
generate the data fairly indistinguishable from the original data then value of the stated
metrics should be less and close to 0, instead of being close to 1. Hence, lower is the values
of all the metrics better is the Time GAN model.

6.2. Performance Comparison

As mentioned previously, in order to for the described model to be better, both
discriminative score and predictive score should be close to 0. Comparison of experimental
results of proposed model in terms of qualitative and quantitative metrics with other
scenarios is presented in Table 7.

Table 7. Experimental Results.

Metric Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6 Proposed
Model

Discriminative
Score 0.1132 0.4757 0.1420 0.06833 0.4234 0.4281 0.06830

Predictive
Score 0.0774 0.1509 0.0779 0.0756 0.1077 0.0962 0.0744

Accuracy 0.6132 0.9757 0.6420 0.5674 0.9234 0.9281 0.5679

Precision 0.6120 0.9698 0.7156 0.5736 0.9558 0.9698 0.5742

Recall 0.6241 0.9838 0.50 0.5871 0.8853 0.8805 0.5879

F1-Score 0.6169 0.9764 0.5784 0.5630 0.9172 0.9190 0.5710

Cohens Kappa 0.2264 0.9513 0.2841 0.1349 0.8467 0.8562 0.1419

ROC AUC 0.6132 0.9757 0.6420 0.5674 0.9234 0.9281 0.5679

The values of all the metrics are recorded in Table 7 for all the scenarios. It can be seen
that the proposed model with RMSProp Optimizer is showing better performance than
other experimental setup, since the discriminative score and predictive score are close to
zero, which are 0.06830 and 0.0744, respectively. While, for Adam optimizer with learning
rate 0.0001, the scores are 0.1132 and 0.0774 respectively. Similarly, for experiment two, it is
recorded as 0.4757 and 0.1509 for Adam optimizer with default learning rate. Higher value
of scores are recorded for scenarios 3, 5 and 6. However, we wanted discriminator score and
predictive score to be less, since both the scores are measured in terms of error. On the other
hand, fairly similar values are observed for scenario four in which RMSProp optimizer
is used with learning rate of 0.001. However, they are still higher than proposed model.
Overall, the best optimal values for the metrics are recorded for the proposed solution,
hence is outperforms the other models.

6.3. Statistical Comparison

This section compares the statistics on subset of original data and generated data.
Comparison includes measures such as mean value, min value, max value and likewise
other standards. The Table 8 below compares the value of mean, standard deviation, min,
max and interquartile range for scenario 1, 2 and 3 with the values of proposed model.
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These calculated values are in normalized form, since our data is standardized using
mixmaxscaler at the very beginning. Clearly, it can be seen that the values of original data
and generated data for proposed model are more equivalent to each other as compared
to other three scenarios. Similarly, in Table 9, we can notice that proposed model is more
statistically significant in comparison to the scenarios 4, 5 and 6. This statistical comparison
created more robust platform of quality measure of generated synthetic energy data.

Table 8. Statistical Comparison-1.

Stats.
Proposed Model Scenario 1 Scenario 2 Scenario 3

Original
Data

Gen.
Data

Original
Data

Gen.
Data

Original
Data

Gen.
Data

Original
Data

Gen.
Data

Mean 0.362978 0.359314 0.359118 0.355124 0.35583 0.355342 0.361946 0.353440

SD 0.111542 0.108068 0.109126 0.109730 0.113077 0.054967 0.109730 0.122870

Min. Value 0.134070 0.182969 0.101644 0.165619 0.111529 0.254187 0.125420 0.168357

1st Qrt. 0.276838 0.271355 0.279866 0.266496 0.274366 0.309881 0.280233 0.248086

2nd Qrt. 0.346545 0.345724 0.340903 0.337643 0.341806 0.348337 0.346453 0.331955

3rd Qrt. 0.430993 0.431906 0.420648 0.432830 0.431954 0.401626 0.425976 0.447839

Max. Value 0.813172 0.661300 0.809106 0.616924 0.813463 0.466671 0.813463 0.691709

Table 9. Statistical Comparison-2.

Stats.
Proposed Model Scenario 4 Scenario 5 Scenario 6

Original
Data

Gen.
Data

Original
Data

Gen.
Data

Original
Data

Gen.
Data

Original
Data

Gen.
Data

Mean 0.362978 0.359314 0.362978 0.359314 0.367889 0.381462 0.361748 0.350681

Stand 0.111542 0.108068 0.111452 0.108062 0.114434 0.091080 0.110466 0.134773

Min. Value 0.134070 0.182969 0.134070 0.182929 0.111529 0.209530 0.132197 0.219637

1st Qrt. 0.276838 0.271355 0.276838 0.271350 0.281981 0.300693 0.272285 0.261568

2nd Qrt. 0.346545 0.345724 0.346545 0.345718 0.352150 0.381558 0.341469 0.283405

3rd Qrt. 0.430993 0.431906 0.430993 0.431909 0.439839 0.463155 0.431344 0.436932

Max. Value 0.813172 0.661300 0.813172 0.661318 0.787540 0.548171 0.764711 0.610375

6.4. Visualization

Further, to perform more robust comparison, PCA and TSNE plots are produced
for the proposed model along with all the experiments. From the graphs below, it can be
seen that, in the PCA and TSNE plots for the proposed model in Figure 6, generated data
sequence is following the pattern of original data sequence more closely, as compared to
other models. Also, in Figure 7, scenario 1 no pattern is produced as a result of underfitting.
While, for the rest of the experiments as shown in Figures 8–10, model seems to have
produce compatible synthetic data. However, when considering all the evaluation methods,
proposed model has definitely produced good results and able to generate synthetic energy
data with similar characteristics with the real data.

The code execution, original energy dataset obtained from AEMO website and Syn-
thetic energy dataset generated as a result of this research implementation can be viewed
using following link—Available online: https://github.com/ShashankAsre/TimevariantG
AN-AEMO-dataset (accessed on 1 December 2021).

https://github.com/ShashankAsre/TimevariantGAN-AEMO-dataset
https://github.com/ShashankAsre/TimevariantGAN-AEMO-dataset
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(a) PCA (b) TSNE

Figure 6. Proposed Model—RMSProp (lr = 0.001, momentum = 0.01, decay rate = 0.9).

(a) PCA (b) TSNE

Figure 7. Scenario 1—Adam (lr = 0.001).

(a) PCA (b) TSNE

Figure 8. Scenario 2—Adam (lr = 0.0001).

(a) PCA (b) TSNE

Figure 9. Scenario 3—Adam (lr = default).
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(a) PCA (b) TSNE

Figure 10. Scenario 4—RMSProp (lr = 0.001, decay = 0.9).

7. Conclusions & Future Work

In this research project, we were able introduce the novel time variant GAN solution,
built using RMSProp optimizer on top of the existing framework. We were able to train the
proposed model with energy consumption dataset acquired from AEMO website and were
able to produce the synthetic energy consumption data, possessing similar characteristics
as that of real data. Further, using metrics such as discriminative score, predictive score,
accuracy, precision and other scores, we were able to provide quantitative evaluation
of the model. PCA and TSNE graphs helped in showcasing the similar trends between
the synthetic data and real data, which provided more robust evidence in proving the
effectiveness of the proposed model. We were able to prove that Time variant GAN
model is more effective in learning the dynamic behaviour of time series data and able
to replicate the same behaviour in synthetic data. Overall, Time variant GAN has shown
great improvements over the state-of-art frameworks, by leveraging the contribution of
jointly trained neural networks and respective loss functions, and has shown the significant
contribution in the field of energy.

Future Work

In the future, generated synthetic data could be used to create various solution for
energy optimization and help researcher to develop novel methods to save energy, without
having to worry about the customer privacy issues associated with energy consumption
data. On the implementation level, the model can be improved further by optimizing the
embedding and recovery network, so as to increase its tendency to capture the temporal
behaviour of the data over the time, while effectively performing the reversible mapping
between features and latent representation. Further, model performance can be improved
by hyperparameter tuning, changing batch size, adding extra layers in neural network,
implementing possible optimizers and using dropout values.
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