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Abstract: In medical and health sciences, the detection of cell injury plays an important role in
diagnosis, personal treatment and disease prevention. Despite recent advancements in tools and
methods for image classification, it is challenging to classify cell images with higher precision and
accuracy. Cell classification based on computer vision offers significant benefits in biomedicine
and healthcare. There have been studies reported where cell classification techniques have been
complemented by Artificial Intelligence-based classifiers such as Convolutional Neural Networks.
These classifiers suffer from the drawback of the scale of computational resources required for
training and hence do not offer real-time classification capabilities for an embedded system platform.
Field Programmable Gate Arrays (FPGAs) offer the flexibility of hardware reconfiguration and
have emerged as a viable platform for algorithm acceleration. Given that the logic resources and
on-chip memory available on a single device are still limited, hardware/software co-design is
proposed where image pre-processing and network training were performed in software, and trained
architectures were mapped onto an FPGA device (Nexys4DDR) for real-time cell classification. This
paper demonstrates that the embedded hardware-based cell classifier performs with almost 100%
accuracy in detecting different types of damaged kidney cells.

Keywords: artificial neural networks; cell classification; FPGAs; hardware accelerators; human
kidney-damaged cells

1. Introduction

In the digital healthcare revolution, real-time data processing is a requirement for
prompt diagnosis and treatment. However, in existing computer vision-based classification
methods, solutions often have limited performance capabilities and fail to offer an inte-
grated embedded hardware/software paradigm that can produce output in a digital format
with real-time continuous update capabilities. This paper addresses this technological gap
by offering a hardware/software-based co-design that could help overcome some of the
limitations of existing AI-enabled classifiers by extracting kidney cell microscopic images
and testing the classifier in real time on a reconfigurable FPGA device [1–8].

As microscopy imaging technology has improved, there have been several studies
where microscopy image data are being generated in biomedicine [9–14]. Calcium ions
[Ca2+] play a crucial role in several cellular functions where the concentration of Ca2+ ions
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regulates metabolic equilibrium maintained by several complex biological mechanisms that
operate via the autonomic nervous system to offset disrupting changes [15,16]. Furthermore,
Ca2+ is a critical signalling molecule that plays an active role in kidney development and
kidney cellular functions and is an important biomarker in kidney diseases [15]. It has
been demonstrated in recent studies that disruption of Ca2+ signalling can lead to kidney
disease [15,16].

The authors of this paper have conducted a study where the effect of extracellular
[Ca2+] on human proximal cells (HK-2) was observed with varying calcium levels [17]. A
deep neural network-based model was developed to predict injury to HK-2 cells. Mor-
phological changes were detected using light microscopy, and the dataset was collected
as healthy, moderate and highly stressed cells. Data augmentation was performed on the
collected samples and used for training and testing a CNN base classifier. Further details
are reported in [17].

This work was conducted in collaboration with the Department of Biotechnology
at the American University of Ras al Khaimah, UAE, where HK-2 cells were cultured in
varying levels of calcium in retrospect to healthy cells. Light microscopy imaging was used
with an inverted OPTIKA XDS-2 microscope. Normal cells as well as cells cultured with
different calcium concentrations, were observed and classified as healthy, moderate and
highly stressed cells. Figure 1 shows a collection of such cells where plot A shows a healthy
cell, plot B is a moderately stressed one, and plot C shows a highly stressed cell.
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Figure 1. This figure shows the microscopy image (zoomed) of healthy (a), moderate (b) and highly
stressed (c) HK-2 cells. The difference in shape demonstrates the cell condition.

Blood cell classification techniques have been reported in the literature where red
and white blood cells were classified to diagnose conditions such as inflammation and the
response of the immune system [18,19]. Existing methods require experience and expertise
to analyse microscope cell image scans which include costly imaging equipment and input
from medical experts; however, such methods are time-consuming as they include many
stages of processing [20,21]. For example, one typical stage of image processing is feature
extraction and filter-based techniques, such as Gabor wavelets, have been widely used in
the literature [22,23], and this is not a quick process.

As reported in [24], multilayer feed-forward neural networks have been used for
image classification in many instances, but newer deep learning-based convolutional neural
networks are showing great promise for image classification [25]. As reported in [17], a
CNN-based model could successfully be developed for multi-class HK-2 cell classification
where feature extraction techniques could be avoided, thus saving processing time. Recent
studies in CNN-based medical imaging have been reported in [26–28]. CNN models can be
successfully applied in cell image classification, but there are a number of drawbacks, such
as the need for a comparatively much larger dataset for training. Secondly, it takes much
longer to train a CNN on general-purpose computer processors (CPUs); hence, specialised
dedicated hardware, such as GPUs (graphics processor units), is required to speed up the
training process. The CNN model offers an end-to-end solution that does not necessarily
require manual feature extraction. However, mapping such architectures is impractical for
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an embedded hardware platform such as FPGA because of the limited number of logic
available on any single device. To overcome this limitation, it is essential to include manual
feature extraction that facilitates implementing a rather shallow classifier on-chip. In this
paper, a novel method of an enhanced Canny edge detector is proposed for feature selection
and HK-2 cell classification with a rather simpler feed-forward neural network.

Implementing CNN-based architectures on a reconfigurable embedded platform is par-
ticularly challenging due to the enormous number of parameters and operations required
to be implemented on a limited resource device. One of the challenges in implementing real-
time neural classifiers on an FPGA device is the limited number of DSP hardware operators
available. Secondly, the total amount of logic available on any device is still limited.

The main contributions of this paper can be summarised as follows:

(1) Bespoke data collected from cell cultures in the biotechnology lab and cell labelling
for HK-2 kidney cells (healthy, moderate and highly stressed).

(2) Developing an integrated enhanced Canny edge detector to calculate pixel area
for backend neural classifier implementation and retrospective comparison with
histogram-based technique. This technique offers a simpler shallow network that is
easier to implement on both software and reconfigurable hardware platforms with
almost 100% accuracy.

(3) A small number of training samples are required, which is demonstrated as a techno-
logical solution for the real-time classification of HK-2 damaged kidney cells.

2. Materials and Methods
2.1. Cell Preparation and Data Collection

Data was collected from an immortalised proximal tubule epithelial cell line (HK-2)
from an adult human kidney using an inverted OPTIKA XDS-2 microscope (Optika, Pon-
teranica, Italy) with a 10× objective. Under normal conditions, HK2 cells were grown in
serum-supplemented Dulbecco’s Modified Eagle Medium, containing high glucose, 2 mM
L-glutamine, and 1% penicillin-streptomycin at 37 ◦C in a 5% CO2 incubator. The standard
culture medium contains 1.8 mM calcium, as per the company datasheet. The human proxi-
mal kidney (HK-2) cell line was ordered from Applied Biological Materials Inc., Richmond,
BC, Canada.

To induce incremental degrees of cytotoxicity, cells were cultured in media with in-
creasing levels of calcium adjusted using calcium chloride. Cells were plated overnight in
the standard medium before it was replaced with a medium containing elevated levels of
calcium and grown for an additional 18–20 h before imaging. Between 15 and 25 images
with a resolution of 2592 × 1944 pixels were taken across each condition and stored in JPEG
format. The imaged cells were divided into three categories based on our previous cytotox-
icity studies [17]. Cells maintained in the standard medium were labelled as (healthy); cells
at 16 mM calcium were referred to as (moderately stressed), and cells cultured at 32 mM
calcium were labelled as (highly stressed). To extract individual cells from the images in
the dataset, we used Marquee Tool in Photoshop to extract an 88 × 88 pixel crop around
the identified cells. The overall setup for HK-2 cell collection is shown in Figure 2.
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2.2. Image Pre-Processing

Edge detection is an important task for cell classification. Several edge detection algo-
rithms have been reported in the literature, such as Sobel, Roberts, Laplace and LoG [29–33].
The Canny edge detector was selected as it is widely used in computer vision tasks and
performs well [28,29]. One of the objectives of edge detection is to find boundaries that are
distinct within an image. In this case, we intended to localise and later classify cell images as
healthy, moderately stressed or highly stressed. The major requirements for an edge detector
are to minimise detecting wrong edges, improve accuracy by detecting edges as closely as
possible to the real edges in an image and, lastly, be capable of detecting a true edge point.
The overall aim of this study is applied in nature, where a real-life application is investigated,
developed, implemented and prototyped. A retrospective analysis is provided in a wider
context of the literature. Hence, this study investigates a system-level approach that takes
a raw input cell image, pre-processes that image and selects features for simplified neural
network-based classification, and finally exploits the reconfigurability of an FPGA device to
map the software neural network architecture for real-time classification.

As lighting conditions during the biological sample collection in the lab environment
could vary from one sample to another, it was important to adjust the image intensity
values after converting an RGB cell image into a grayscale image. The image adjustment
process improves the contrast of an image by saturating the top and bottom 1% of all pixel
values and mapping them onto new values. Please see Figure 3a, where a healthy cell
sample image was adjusted by enhancing the contrast, and Figure 3b.
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Low-light conditions and short exposure times raise major challenges as they signifi-
cantly degrade image quality. It is predominantly a Gaussian noise which is a common
problem in microscopic imaging. As the Canny algorithm [29] suffers from the drawback of
being vulnerable to noise, it may detect false edges as well as missing the fine details of true
edges in an image. Therefore, once the image is enhanced, it is important to remove noise
and improve the overall quality of the image, as without removing this noise, it would
not be possible to obtain image gradients for edge detection. In the Gaussian smoothing
function, an image is convolved with a Gaussian filter as expressed by Equation (1).

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

The Gaussian filter performs smoothing by changing the image structure. As shown in
Equation (1), the standard deviation σ plays an important role because the image structure
changes according to the value of σ. In equation 1, x and y are the spatial coordinates on the
Gaussian filter and σ is the pre-defined standard deviation. To select the appropriate value,
different sigma values were applied to an input image. For a retrospective comparison,
please see below an input image in correspondence to different sigma values. In this
work, the Gaussian kernel size is set to be 3 × 3 pixels, and the standard deviation in the
x-direction and y-direction is set as 2.

As shown in Figure 4, for a smaller value of sigma, it was possible to detect fine details
and edges, whereas, with a higher value of sigma, it was possible to detect large-scale
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edges. Once the finer edges with the smaller value of sigma were detected, the canny edge
detector was used for further image processing.
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As the gradient intensity changes, it impacts edges and introduces a change in the
maximal intensity along a particular orientation. Therefore, the derivative of the gradient of
every pixel in an image is used to find edges [29,34]. The Canny edge detection method [29]
involves image smoothing through a Gaussian filter before the edge detection, which
helps reduce the false detection of edges. Once the Gaussian filter is applied, the image
gradient (partial derivatives) for each pixel is computed by taking the x and y derivatives
of the Gaussian filter. Once the derivatives of each pixel concerning x and y are calculated,
the magnitude and orientation maps are built. The gradient vector of an image (∇k) is
represented by Equation (2).

∇k =

[
∂k
∂x

,
∂k
∂y

]
(2)

The derivative function is approximated and applied in the horizontal and vertical
directions of the image for x and y. The gradient direction and magnitude of each pixel of
the image are calculated by Equations (3) and (4), respectively.

Direction (θ) = arctan
(

∂k
∂y

/
∂k
∂x

)
(3)

The edge strength is calculated by the gradient magnitude as shown below:

Magnitude =

√(
∂k
∂x

)2
+

(
∂k
∂y

)2
(4)

Further steps include non-maximal suppression, which makes the detected edge
regions thinner. Finally, hysteresis thresholding was used for both high and low thresholds.
Considering the wide range of hysteresis threshold values, it was necessary to manually set
the threshold values to detect certain edges of healthy, moderate and highly stressed cells
that were smoothed by the Gaussian smoothing filter. The threshold values of 0.1 and 0.4
were used, which means that the edge pixels above the upper limit of 0.4 were considered,
and edge pixels below the threshold value of 0.1 were discarded. An overall flowchart of
image pre-processing and edge detection is shown in Figure 5.
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operators.

The Canny edge detection method integrated with image pre-processing/enhancement
yielded good results; however, this method is time-consuming and requires much effort.
As one of the shortcomings of the Canny edge detector is that it does not properly capture
the edges due to the Gaussian smoothing function, a histogram-based method was also
investigated for image pre-processing where the green channel of the cell image was ex-
tracted. The green channel offers the highest local contrast in comparison to the red and
blue channels, and the intensity difference between the cell boundary and background
image is best observed, which appears to be the most appropriate in terms of under-lit and
over-saturated regions (please see Figure 6). The steps involved in this approach included:
converting the RGB cell image into the green channel and locating the cell boundary by
finding the maximum intensity pixels. The segmented image was binarised, and the exact
area was located to create the dataset for backend ANN training, testing and mapping onto
an FPGA device.
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Figure 6. (a) Microscopy zoomed image of a highly stressed HK-2 cell and its corresponding channels;
(b) histogram of the image.

In this paper, a modified Canny’s edge detection method was chosen because modifying
its parameters allowed greater flexibility and made it suitable for this specific application.

2.3. Backend Classification Using Artificial Neural Network (ANN)

The data extracted through the image pre-processing method in the previous section
were used to classify cell images between healthy and moderately stressed cells and
between moderately stressed and highly stressed cells. The ANN was implemented in
software for simulations, and later the architecture was mapped onto an FPGA device, as
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elaborated in the following section. The trained neural classifier was tested with the test
samples with ten test images each for healthy, moderately stressed and highly stressed
kidney cells. ANN-based classification for health-related dataset have been reported in
the literature and details are provided in [35,36]. Several lightweight feed-forward neural
architectures were explored in this study to classify healthy, moderately stressed and
highly stressed images. An overall simulation flowchart is shown in Figure 7, and the
neural architecture is shown in Figure 8. As one of the major challenges in implementing
neural network architecture on FPGAs is the limited number of multipliers available on
any device; therefore, it is important that a network is mapped with a limited number of
neurons and hidden layers. The proposed architecture strikes a good balance between
accuracy and the required numbers of neurons and hidden layers that could effectively be
mapped on a resource-limited FPGA device. In order to train the network, the function
“trainbr” was used. This function is particularly useful because it performs Bayesian
regularisation backpropagation that disables validation stops by default. As validation is
usually used as a form of regularisation, “trainbr” has its own form of validation built into
the algorithm. The training goal was set as 0.001, where the error was calculated by using
the ‘mse’ function. The neural architecture shown in Figure 8 offered the best results in
terms of test image classification accuracy with a minimum number of neurons and hidden
layers. This was particularly important in the context of the hardware implementation for
real-time classification.
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Figure 8. Neural network architecture for healthy, moderate and highly stressed cell classification.

3. Results
3.1. Software

The dataset was formulated by using the previously mentioned pre-processing tech-
niques, where test samples were classified as healthy, moderately stressed and highly
stressed cells. The best results were achieved when image enhancement and Gaussian
noise removal were used in combination with the Canny edge detector. In total, 15 samples,
each from healthy, moderate and highly stressed cells, were used for training, where the
calculated cell area was used as an input to the network. The network was tested with
ten samples from each class. The classification accuracy between healthy and moderately
stressed cells and moderately stressed and highly stressed cells in terms of regression
is shown in Figures 9a and 10a. The convergence graphs for training between healthy
and moderately stressed and moderately stressed and highly stressed cells are shown in
Figures 9b and 10b, respectively. The confusion matrices for both scenarios are shown in
Figure 11a,b, respectively.
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Figure 11. This figure shows the test accuracies in terms of confusion matrices for healthy and
moderately stressed cells (a) and moderately and highly stressed cells (b).

As seen in Figure 9, the network for healthy and moderately stressed cells converged
in a total of 20 epochs, whereas 28 epochs were used for the network to converge for
moderately stressed and highly stressed cells. In total, almost 100% training accuracy
was achieved with both classifiers with the feed-forward network. The neural network
performed well with a relatively small number of training examples as the training loss
decreased to 0, which is what was needed for these experiments. As in each backpropaga-
tion training session, different weights and biases were initialised; thus, several networks
were trained to ensure that an appropriate network with good generalisation was found.
When the training performance goal was achieved, further training was stopped, which
also helped to improve the generalisation of the network. Once the training was stopped,
the weights and biases were returned. Given that a relatively small dataset and a shallow
network were used for training the network to improve generalisation and address the
network overfitting, a regularisation technique was adopted. This technique involved
modifying the performance function, and instead of using the sum of square performance
function to calculate network error, another term was added to the performance function
that consisted of the mean of the sum of the square of network weights and biases, as
shown in Equation (5), where γ is the performance ratio, mreseg is the mean square error
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regularised and msw (mean square weights) is represented by Equation (6). Hence, by hav-
ing smaller weights and biases, the network response could be forced to become smoother,
which is less likely to overfit; however, the drawback of this function is that it does not use
the validation set [37,38].

msereg = γ ∗msw + (1− γ) ∗mse (5)

msw =
1
n ∑n

j=1

(
wj
)2 (6)

The mean square error is calculated as shown in Equation (7).

MSE =
1
n ∑n

i=1

(
Yi − Ŷi

)2 (7)

As shown in Equation (7), MSE is the mean square error, n the number of data points,
Yi the observed values and Ŷi the predicted values.

The classification accuracy in terms of regression for healthy and moderately stressed
cells was recorded as 99.96%, as shown in Figure 9a. The classification accuracy for moder-
ately stressed and highly stressed cells was recorded as 99.58%, as shown in Figure 10a.

The total dataset was divided into training and testing where completely independent
test samples were used to test the trained network. In total, ten samples, each from healthy,
moderately stressed and highly stressed cells, were taken for classifier testing, and relevant
confusion matrices are shown in Figure 11. As shown in Figure 11a,b, the correctly classified
samples were identified by diagonal green squares where 100% accuracy was achieved
for test datasets between healthy and moderately stressed and 90% between moderately
and highly stressed cells. As shown in Figure 11b, two highly stressed samples were
misclassified. Therefore, all the moderately stressed cells were classified as 100%, and the
overall accuracy for highly stressed cells is calculated as 80%. As shown in Figure 11a that
the first two diagonal cells show the number and percentage of correct classifications by the
trained network. In total, 10 normal cell images were correctly classified. This corresponds
to 50% of all images. Similarly, 10 samples were correctly classified as moderately stressed
cells which correspond to 50% of all images. None of the images was misclassified, which
corresponds to 100% overall accuracy. In Figure 11b, all 10 images were correctly classified
as moderately stressed cells, whereas 8 images were correctly classified as highly stressed
cells which are 40% of all images, and 2 images were misclassified, which is 20% of highly
stressed cells. Hence, total classification accuracy corresponds to 90%.

3.2. Hardware Accelerator (FPGA)

As biological neurons are inherently parallel, to fully exploit the inherent parallelism
of artificial neurons, heterogeneous embedded platforms are needed to accelerate computa-
tional tasks inspired by the architecture of the human brain. To overcome the limitations of
homogenous CPU-based platforms, embedded hardware platforms have been investigated,
such as GPUs, FPGAs and ASIC (Application Specific Integrated Circuits) [1–8]. FPGA
implementations are particularly promising because of the reconfigurability, cost and ac-
celerated computing speed they offer. In this paper, the authors demonstrated an FPGA
prototype where software-based neural architecture explored in the previous section of this
paper was mapped onto an FPGA Artix-7 chip, and results are reported. The hardware
implementation was performed on the Nexys4FPGA board (Nexys4DDR) to minimise the
classification time between healthy, moderately stressed and highly stressed kidney cells.
The software architecture investigated in this paper is implemented onto an FPGA device
by using Hardware Description Language (VHDL). The hardware-software design flow
that includes MATLAB and Xilinx Vivado FPGA implementation is shown in Figure 12,
where the architecture was mapped onto an Artix7 FPGA chip.
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Figure 12. This figure shows the block diagram of neural network architecture implementation on
the Nexys4 DDR FPGA device.

As shown in Figure 12, the raw cell images were used as input to the software (MAT-
LAB) environment where image pre-processing was performed, and once the input images
were pre-processed, the dataset was split into training and test samples. The training
samples were used to train the neural network, and the test images were used to evaluate
the classification accuracy. Neural network architecture parameters were extracted from
the previously saved software-based design and mapped onto the hardware architecture.
The hardware implementation involved simulation and synthesis of design at the gate
level. The input to the FPGA was interfaced through the UART (Universal Asynchronous
Receiver and Transmitter), where a 16-bit input in terms of the area of the segmented cell
was fed into the architecture as a test sample. For the serial interface with the MATLAB
environment, UART was modelled and interfaced with the number of hardware blocks,
as shown in Figure 13. Data transmission protocol was established by sending data bit
by bit with a start and stop bit to differentiate between different samples. The sixteen-bit
data was loaded into the shift register and transmitted through the UART for the neural
hardware classifier.
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Figure 13. Hardware neural network architecture interfaced through UART.

The hardware design was simulated and synthesised by using the Xilinx Vivado
toolchain. The hardware classifier implementation results between healthy and moderately
stressed cells are shown in Figure 14, and the simulation results for highly stressed cells
consecutively presented to the network are shown in Figure 15. As shown in Figure 14, the
cell classifier output stays ‘0’ and only becomes ‘1’ when a moderately stressed cell sample
is presented to the network. To rigorously test the architecture, Figure 15 shows two consec-
utive samples of highly stressed cells presented to the network and were correctly classified
with ‘1’ at the output. The software was implemented in MATLAB running on Intel(R)
Core(TM) i7-10510U CPU @ 1.80 GHz, 8 GB RAM, MATLAB, 9.10.0.1739362 (R2021a), USA.
The software test samples took 0.22 s per sample to classify, whereas hardware-based im-
plementation on FPGA took 400 ns to compute one sample. In comparison to the software
implementation, it is almost 5.5 × 105 times faster on a dedicated hardware accelerator.
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The total power consumption was calculated by using the Xilinx Vivado power estimation
and analysis tool. The device’s static power is referred to as leakage, which represents the
transistor leakage power when the device is powered on and not configured. The design
dynamic power consumption represents the power consumption from the logic utilisation
and switching activity. Total on-chip power was recorded as 19 W. A further breakdown of
total power consumption is shown in Table 1.
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Figure 14. This figure shows the classifier output between healthy normal cells and moderately
stressed cells.
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stressed cells.

Table 1. Total on-chip power consumption.

Static Power Consumption 0.53 W (1%)

Dynamic Power Consumption 18.47 W (99%)
Logic (14.5 W)

Signals (3.79 W)
I/O (0.067 W)

Tables 2 and 3 show the neural network response on both software and hardware
platforms. Tables 4 and 5 show the total chip area utilisation of the implemented hardware
design. Total on-chip power consumption shows that dynamic power significantly dom-
inates static power. The FPGA test environment is shown in Figure 16 where hardware
design was downloaded on the FPGA chip and interfaced with an external LED as well as
an oscilloscope to verify the classified samples.

Table 2. This table shows the output of healthy and moderately stressed cells from both MATLAB
and the FPGA device.

NN Output (MATLAB) NN Output FPGA NN Output (MATLAB) NN Output FPGA

0.1425 (Healthy) 0 (Healthy) 0.942 (Moderately stressed 1 (Moderately stressed)
0.0058 (Healthy) 0 (Healthy) 0.9213 (Moderately stressed) 1 (Moderately stressed)
0.0418 (Healthy) 0 (Healthy) 0.942 (Moderately stressed 1 (Moderately stressed)
0.0056 (Healthy) 0 (Healthy) 0.942 (Moderately stressed 1 (Moderately stressed)
0.0086 (Healthy) 0 (Healthy) 0.9213 (Moderately stressed) 1 (Moderately stressed)
0.0425 (Healthy) 0 (Healthy) 0.942 (Moderately stressed 1 (Moderately stressed)
0.0058 (Healthy) 0 (Healthy) 0.9213 (Moderately stressed) 1 (Moderately stressed)
0.0418 (Healthy) 0 (Healthy) 0.942 (Moderately stressed 1 (Moderately stressed)
0.0056 (Healthy) 0 (Healthy) 0.942 (Moderately stressed 1 (Moderately stressed)
0.0086 (Healthy) 0 (Healthy) 0.9213 (Moderately stressed) 1 (Moderately stressed)
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Table 3. This table shows the output of moderately stressed cells and highly stressed cells from both
MATLAB and the FPGA device.

NN Output (MATLAB) NN Output FPGA NN Output (MATLAB) NN Output FPGA

0.0016 (moderately stressed) 0 (moderately stressed) 1.0044 (highly stressed) 1 (highly stressed)
0.0015 (moderately stressed) 0 (moderately stressed) 1.0059(highly stressed) 1 (highly stressed)
0.0017 (moderately stressed) 0 (moderately stressed) 1.0047(highly stressed) 1 (highly stressed)
0.0014 (moderately stressed) 0 (moderately stressed) 0.9302(highly stressed) 1 (highly stressed)
0.0015 (moderately stressed) 0 (moderately stressed) 1.0044 (highly stressed) 1 (highly stressed)
0.0314 (moderately stressed 0 (moderately stressed) 0.0035 (moderately stressed) 0 (moderately stressed)
0.0215 (moderately stressed) 0 (moderately stressed) 1.0047(highly stressed) 1 (highly stressed)
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Table 4. Resource utilisation of FPGA device (Nexyx4DDR—Artix 7).

FPGA Resources Available Utilised

Slice (LUTs) 63,400 2408 (<4%)
Slice registers (FFs) 126,800 35 (<1%)
Bonded IO blocks 210 3 (<2%)

BUFGCTRL 31 1 (<4%)

Table 5. Neural hardware architecture utilisation.
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4. Discussion

Automated cell classification is a challenging task in computer vision. There are
very few studies reported in the literature that specifically addresses the problem from a
hardware-software co-design perspective. This paper demonstrates a promising solution
based on a rather simple shallow neural network for the detection of HK-2 kidney cell
injury. The cell injury is caused by high amounts of extracellular calcium. The HK-2
cells were cultured in our lab at the American University of Ras Al-Khaimah, UAE. The
classification accuracy of our proposed ANN is reported to be 100% for detection between
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healthy and moderately stressed cells and 90% between moderately stressed and highly
stressed cells.

Deep learning-based techniques such as CNN have shown great promise for cell
toxicity detection, as reported in [17]. However, such classifiers suffer from several aspects,
including the need for a very large amount of raw data for network training, which
retrospectively requires much longer training and processing time, and computational
resources. This limitation makes it less practical for real-time cell detection and classification.
Since image enhancement is an important aspect of cell analysis, this study elaborated
on its use in computer vision in retrospect to the applied AI. As demonstrated in this
study, that image enhancement, complemented by appropriate edge detection, significantly
improves the overall network performance. As CNN-based approaches do not necessarily
require the processing of input cell images, raw images could be used directly as input
to the network. However, collecting a very large dataset for cell classification in the lab
environment is not practical. It would almost always be necessary to use data augmentation
techniques and create synthetic data to facilitate a sufficient number of examples to train
the network with multiple layers [39,40]. As reported in [39], the authors investigated
CNN for cell classification using microscope images, where CNN was built using VGG-16
architecture. The authors of the paper [39] reported having used 13 convolutional layers,
5 max pooling and 2 fully connected layers followed by three output neurons to classify
three different categories of cells. Images were cropped from 224 × 224 to 64 × 64 sizes
and were used as input, where the first 14 layers were fine-tuned with transfer learning.
The training was performed on Nvidia GeForce GTX GPU, which took 1000 epochs to
train the network. The network training required 6 h. The train and test accuracies are
reported as 93%. Similarly, authors in [16] reported CNN-based cell classification for six
different categories. Microscopy cell images with a resolution of 2592 × 1944 were used,
and data was augmented to produce a total of 4587 train images. A relatively small CNN
was implemented with four convolutional layers, three layers each for max pooling and a
dense layer followed by a softmax layer which contained six neurons to classify six different
cell image categories. The network was trained on Intel(R) Core(TM) i7-10700T CPU @
2.00 GHz. Both training and test accuracies were reported as 97% and 98%, respectively. It
was reported that almost 13–18 h were required to train the network.

While CNN-based approaches could be applied for cell classification, it is obvious that
high-end computational resources and much longer training time are required. Despite
the use of hardware accelerators such as GPUs, the training time is impractical to meet the
requirement of real-time classification. As cellular features of the HK-2 kidney cells cannot
easily be detected by the human eye, we proposed and demonstrated a hardware-software
co-design approach to train a shallow network and improve diagnostics in real-time. The
superiority of the proposed co-design technique was demonstrated with 100% training
and test accuracy for healthy and moderately stressed cells and 100% training and 90% test
accuracy for moderately stressed and highly stressed cells. As the quality of images varies
from sample to sample due to varying light intensities and the limitations of current light
microscope imaging technology, the results achieved are promising. We also demonstrated
that while image enhancement techniques do not play an important role in CNN-based
classification, however, for real-time FPGA implementation, it is a requirement due to the
limited number of computational resources available on a single FPGA device. Instead of
relying on a very deep network to learn patterns in cellular image samples, we can alleviate
this burden at the network level by rather adopting and enhancing techniques for image
enhancement and including edge detection to precisely detect the boundaries of the region
of interest. As can be seen from the confusion matrices provided for training and testing,
we achieved 100% results, except for two test samples which were misclassified between
moderately stressed and highly stressed cells. We assume that it was mainly due to the
similarity between the cell structures, which were less distinct in comparison to the healthy
and moderately stressed cells, which had a clear distinction in terms of cell boundaries
and shapes.
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Most of the existing studies in biomedicine over-rely on CNN-based classification
techniques. This is perhaps due to the ease and availability of existing tools and libraries
that help facilitate such exploration. Nonetheless, the authors argue that using CNN as a
black box will restrict further advancement in the field unless the low-level dynamics are
properly understood. As a limited number of datasets are currently available and most of
the existing datasets need to be augmented for deep neural networks training, in this paper,
we successfully demonstrated that a small dataset collected in our biotechnology lab can be
used with appropriate image enhancement and detection techniques to achieve excellent
performance in real-time. This method further enhances the clinical relevance of our
study, where real-time information is needed for diagnostics. It is particularly important to
address the limitations of long training times and the requirement for specialised hardware
resources for CNN-based implementations. The hardware acceleration proposed in this
study demonstrates that cell detection can be performed in real-time by mapping the trained
network onto an FPGA device that paves the way for personalised digital healthcare. In the
proposed study, image pre-processing (software) took 2–2.5 s for each sample to compute.
For software, only image detection on a trained neural network took 0.22 s. However, once
the trained neural network is mapped onto an FPGA device, the image detection only took
400 ns to compute one sample.

Despite the number of advantages this study offers, one of the limitations is the
amount of time required to collect samples in the lab environment. Secondly, our study
results cannot yet be directly applied in clinical setup because cell images could include
several types, which require expert insight into the cell morphologies. We envisage that
further enhancement in image acquisition quality will improve the hardware software
classification of cell images in real time.

5. Conclusions

In this study, the authors of the paper demonstrated a unique solution based on
hardware-software co-design. The proposed solution is user-friendly and could be used by
researchers and clinicians. While clinical experts can provide input and detect any changes
or injury reflected through the kidney HK-2 cells, they are prone to errors. Therefore,
automating such techniques and developing a robust AI-enabled real-time platform is
advantageous. This paper proposes a framework to detect cell toxicity in real time by
mapping a shallow neural network on an FPGA device. The proposed holistic approach
integrates the biological sample images collected from the lab environment, developed and
deployed onto an AI-enabled hardware accelerator for real-time classification. The input
samples were pre-processed and mapped onto the software and digital hardware platforms,
which is critical to optimise personalised care and management. While deep learning-
based techniques hold great promise, we demonstrated that such techniques require an
enormous amount of time for training as well as specialised computational resources.
This limitation can be overcome with the proposed framework, where input samples are
carefully pre-processed, and a network is developed and mapped onto embedded hardware
for real-time detection.
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