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Abstract: Talent resources are a primary resource and an important driving force for economic
and social development. At present, researchers have conducted studies on talent introduction,
but there is a paucity of research work on the stability of talent introduction. This paper presents
the first study on talent stability in higher education, aiming to design an intelligent prediction
model for talent stability in higher education using a kernel extreme learning machine (KELM)
and proposing a differential evolution crisscross whale optimization algorithm (DECCWOA) for
optimizing the model parameters. By introducing the crossover operator, the exchange of information
regarding individuals is facilitated and the problem of dimensional lag is improved. Differential
evolution operation is performed in a certain period of time to perturb the population by using the
differences in individuals to ensure the diversity of the population. Furthermore, 35 benchmark
functions of 23 baseline functions and CEC2014 were selected for comparison experiments in order
to demonstrate the optimization performance of the DECCWOA. It is shown that the DECCWOA
can achieve high accuracy and fast convergence in solving both unimodal and multimodal functions.
In addition, the DECCWOA is combined with KELM and feature selection (DECCWOA-KELM-FS)
to achieve efficient talent stability intelligence prediction for universities or colleges in Wenzhou.
The results show that the performance of the proposed model outperforms other comparative
algorithms. This study proposes a DECCWOA optimizer and constructs an intelligent prediction of
talent stability system. The designed system can be used as a reliable method of predicting talent
mobility in higher education.

Keywords: swarm intelligence; whale optimization algorithm; extreme learning machine; talent
stability prediction; machine learning

1. Introduction

Talent resources are the core resources on which universities rely for survival and
development. A reasonable flow of talent can stimulate the vitality of the organization,
improve the quality of talent, form a virtuous cycle and promote the complementary
advantages of talent resources among universities. However, the “war for talents” against
the background of “double tops” has led to the disorderly and utilitarian flow of talents in
colleges and universities, an increase in the introduction to talents, a continuous increase
in local competition, an accelerated frequency of talent flow and a structural imbalance
of talent flow among colleges and universities in the region. This has engendered many
negative effects on the development of universities. Therefore, a reasonable forecast in
stable trends of university talent is crucial to the survival and development of universities.
However, traditional methods have some limitations on predicting the stability of talent.
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It is a new trend to use artificial intelligence algorithms to achieve accurate predictions of
talent stability. There have been few studies that have used the artificial intelligence tools
to solve the prediction issue of talent stability, so we have summarized some related works
which used artificial intelligence tools to tackle the prediction problems for students; this is
shown in Table 1.

Table 1. The latest research status of prediction issues for students.

Authors Methods Overview

Yang et al. [1] The theory of planned behavior
They suggested that attitudes, subjective norms, perceived
behavior, gender and parental experience have a significant
impact on students’ entrepreneurial intentions.

Gonzalez-Serrano et al. [2] Questionnaire method They demonstrated that attitudes and perceived behaviors
were statistically significant.

Gorgievski et al. [3] Values theory and planned
behavior theory

They found a strong link between personal values and
entrepreneurial career intentions.

Nawaz et al. [4] Partial least squares structural
equation modeling (PLS-SEM)

They found emotional intelligence, entrepreneurial
self-efficacy and self-regulation also directly affect college
students’ entrepreneurial intentions.

Yang et al. [5] Decision tree They extracted four key attributes that affect students’
intentions to start a career.

Djordjevic et al. [6] Data analysis approach

They predicted the entrepreneurial intentions of youth in
Serbia based on demographic characteristics, social
environment, attitudes, awareness of incentives and
environmental assessment.

Wei et al. [7] Kernel extreme learning machine
They provided a reasonable reference for the formulation of
talent training programs and guidance for the entrepreneurial
intention of students.

Bhagavan et al. [8] Data mining tools and methods
They predicted the current performance of students through
their early performance and awareness, and identified
students’ expected abilities.

Huang et al. [9] Artificial intelligence algorithms
and fuzzy logic models

They designed a diversified employment recommendation
system, combined with students’ personal interests, and
provided employment plans.

Li et al. [10] The cluster analysis
technology model

They achieved accurate predictions of the employment
situation of graduates.

The swarm intelligence algorithm (SIA) is a crucial optimization method by which to
predict traditional talent stability. SIA is derived from natural phenomena or group behav-
iors, etc., such as group predation and physical phenomena. Optimization principles exist
within these phenomena. As a kind of SIA, the whale optimization algorithm (WOA) [11]
has a clear algorithm structure and good performance, which was proposed in 2016. It
was designed by simulating the hunting behavior of whales. During foraging, the whales
use bubbles as tools to surround their prey. Furthermore, the algorithm has been used in
many natural science fields, such as shop scheduling problems [12,13] and engineering
design problems. Navarro et al. [14] proposed a version of the WOA with the K-means
mechanism to explore the algorithm’s search space. The proposed model was effective
against resolving complex optimization issues. Abbas et al. [15] proposed a combination
of the technique of an extremely randomized tree with the WOA for the detection and
prediction of medical diseases. Abd et al. [16] introduced a novel WOA version application
for multilevel threshold image segmentation. Abdel-Basset et al. [17] presented a new
WOA version based on local search mechanisms to optimize a scheduling problem with the
multimedia data objects field. Qiao et al. [18] presented a novel version of the WOA, which
combined the worst individual disturbance and the neighborhood mutation search strategy
for solving engineering design problems. Peng et al. [19] introduced an enhanced WOA,
which combined the information-sharing search strategy and the Nelder-Mead simplex
strategy, to evaluate the parameters of solar cells and photovoltaic modules. Abderazek
et al. [20] presented the WOA and a moth-flame optimizer for optimizing spur gear design.
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For the high-quality training of talent, in addition to focusing on the employment and
entrepreneurship of university students, the stability of talents is also an important foun-
dation for social and economic development. Employment stability reflects psychological
satisfaction with practitioners regarding the employment unit, employment environment,
remuneration package and career development. In the past five years, the average turnover
rate of several colleges and universities in Wenzhou was 28.1%. An appropriate turnover
rate is conducive to the “catfish effect” in enterprises and institutions, and stimulates the
vitality and competitiveness of the organization; however, an excessive turnover rate has a
negative impact on the human resource costs and economic efficiency of universities, as
well as their social reputation and the quality development of the economy and society.

Big data has a wide scope of application in the field of talent mobility management.
Through the effective mining of big data onto talent flows in a university, the stability of
talent employment is analyzed, and the correlation hypothesis is verified by integrating
an intelligent optimization algorithm, neural network, support vector machine and other
machine learning methods; an intelligent prediction model is then constructed. At the
same time, key factors affecting the stability of talent employment are mined, and the key
influencing factors are analyzed in depth to explore the main features affecting the stability
of talent employment and to provide reference for government decision-making and policy
formulation. The main contributions are shown as bellow:

(1) A multi-strategy hybrid modified whale optimization algorithm is proposed.
(2) Introducing the crossover operator to facilitate the exchange of information and

improve the problem of dimensional lag.
(3) DECCWOA is verified on the 35 benchmark functions to demonstrate the optimization

performance.
(4) DECCWOA is combined with KELM and feature selection to achieve efficient talent

stability intelligence prediction.
(5) Results show the proposed methods surpass other reported approaches.

The remainder of this paper is structured as follows. Section 2 reviews the whale
optimization algorithm. Section 3 provides a comprehensive description of the proposed
method. The proposed method is verified and applied using benchmark function experi-
ments and feature selection experiments in Section 4. The conclusion and future work are
outlined in Section 5.

2. Relate Work

In recent years, swarm intelligence optimization algorithms have emerged, such as
the Runge Kutta optimizer (RUN) [21], the slime mold algorithm (SMA) [22], the Harris
hawks optimization (HHO) [23], the hunger games search (HGS) [24], the weighted mean
of vectors (INFO) [25], and the colony predation algorithm (CPA) [26]. Moreover, they
have achieved very good results in many fields, such as feature selection [27,28], image
segmentation [29,30], bankruptcy prediction [31,32], plant disease recognition [33], medical
diagnosis [34,35], the economic emission dispatch problem [36], robust optimization [37,38],
expensive optimization problems [39,40], the multi-objective problem [41,42], scheduling
problems [43–45], optimization of a machine learning model [46], gate resource alloca-
tion [47,48], solar cell parameter identification [49] and fault diagnosis [50]. In addition to
the above, the whale optimization algorithm (WOA) [11] is an optimization algorithm sim-
ulating the behaviors of whales rounding up their prey. During feeding, whales surround
their prey in groups and move in a whirling motion, releasing bubbles in the process, and
thus, closing in on their prey. In the WOA, the feeding process of whales can be divided into
two behaviors, including encircling prey and forming bubble nets. During each generation
of swimming, the whale population will randomly choose between these two behaviors to
hunt. In d-dimensional space, suppose that the position of each individual in the whale
population is expressed as X = (x1, x2, . . . , xD).

Agrawal et al. [51] proposed an improved WOA and applied it to the field of feature
selection [52]. Bahiraei et al. [53] proposed a novel perceptron neural network, which
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combined the WOA and other algorithms, and was applied to the field of polymer materials.
Qi et al. [54] introduced a new WOA with a directional crossover strategy, directional
mutation strategy, and levy initialization strategy. The potential for using the suggested
approach to address engineering issues is very high. Bui et al. [55] proposed a neural-
network-model-based WOA, which also integrated a dragonfly optimizer and an ant
colony optimizer, and was applied to the construction field. Butti et al. [56] presented an
effective version of the WOA to optimize the stability of power systems. Cao et al. [57]
also proposed a new WOA to improve the efficiency of the proton exchange of membrane
fuel cells. Cercevik et al. [58] presented an optimization model, combined with the WOA
and others, to improve the parameters of seismic isolated structures. Zhao et al. [59]
presented a susceptible-exposed-infected-quarantined (hospital or home)-recovered model
based on the WOA and human intervention strategies to simulate and predict recent
outbreak transmission trends and peaks in Changchun. A brand-new hybrid optimizer
was developed by Fan et al. [60] to solve large-scale, complex practical situations. The
proposed hybrid optimization algorithm combined a fruit flew optimizer with the WOA.
Raj et al. [61] proposed the application of the WOA as a solution to reactive power planning
with flexible transmission systems. Guo et al. [62] proposed an improved WOA with two
strategies to improve the exploration and exploitation abilities of the WOA, including
the random hopping update mechanism and random control parameter mechanism. To
improve the algorithm’s convergence rate and accuracy, a new version of the WOA was
presented by Jiang et al. [63] to apply constraints to engineering tasks.

Although the WOA has obtained good results in many fields, the algorithm easily
falls into the local optimum in the face of complex problems. Therefore, many excellent
improvement algorithms have been proposed. For example, Hussien et al. [29] proposed
a novel version of the whale optimizer with the gaussian walk mechanism and the virus
colony search strategy to improve convergence accuracy. To solve the WOA’s susceptibility
to falling into the local optimum with slow convergence speeds, an improved WOA
with a communication strategy and the biogeography-based model was proposed by Tu
et al. [64]. Wang et al. [65] presented a novel-based elite mechanism WOA, with a spiral
motion strategy to improve the original algorithm. Ye et al. [49] introduced an enhanced
WOA version of the levy flight strategy and search mechanism to improve the algorithm’s
balance. Abd et al. [66] presented an innovative method to enhance the WOA, including
the differential evolution exploration strategy. Abdel-Basset et al. [67] introduced an
enhanced whale optimizer, which was combined with a slime mold optimizer to improve
the performance of the algorithm. To enhance the WOA’s search ability and diversity, a
novel version of the WOA with an information exchange mechanism was proposed by Chai
et al. [68]. Heidari et al. [69] presented a whale optimizer with two strategies, including an
associative learning method and a hill-climbing algorithm. Jin et al. [70] proposed a dual
operation mechanism based on the WOA to solve the slow convergence speed problem.
Therefore, the WOA is an effective optimizer by which to improve the performance of
traditional talent stability prediction.

3. Materials and Methods

This section will improve the problems existing in the traditional whale optimization
algorithm, so as to propose a new version of the algorithm. During the process of the
whale population continuously approaching the optimal position, the population appears
in an aggregation state, which is the main reason for the algorithm falling into the local
optimal. Based on this, the DE operation is performed on the whale population during a
certain period, and the whale population is disturbed by the differential information of
multiple individuals, so as to ensure the diversity of the population. By introducing the
idea of a crisscross optimization algorithm, a vertical crossover is performed in dimensions
to improve dimensional stagnation as iterations progress, and horizontal crossover is
performed between individuals to fully facilitate the exchange of information between
individuals, allowing the problem space to be fully searched, effectively improving the
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search capability of the algorithm. Overall, the proposed algorithm is named as the DE-
based crisscross whale algorithm (DECCWOA).

3.1. Whale Optimization Algorithm
3.1.1. Encircling Prey

In the process of encircling the prey, each individual will choose the position closest
to the prey in the group, that is, the global optimal solution, or will randomly select a
whale and approach it. The equation for updating the position of the whale is shown
in Equation (1).

Xt+1
i = Xt

best − A
∣∣∣ C× Xt

q − Xt
it

∣∣∣ (1)

where Xt
q is Xt

best when the whale swims toward the optimal whale position, and Xt
rand when

the whale swims toward the random whale position. A is a random number with a uniform
distribution between (−a, a), and the initial value of a is 2, which linearly decreases to 0
with the number of iterations. C is a random number that satisfies the uniform distribution,
and its value is between (0, 2). The choice of whether the whale individual swims toward
the optimal whale or random position is up to the value of A. When |A < 1| , the whale
decides to swim toward the optimal individual; otherwise, the whales will select a random
location in the population and approach it.

3.1.2. Forming Bubble Nets

Whales release bubbles while hunting, thus forming a spiraling, blistering net to repel
the prey. If bubble feeding is chosen, the whale first calculates the distance between itself
and the best whale, then swims upwards in a spiral and spits out bubbles of varying sizes
to feed on the fish and prawns. At this point, the position of the whale is updated by the
equation shown in Equation (2).

Xt+1
i =

∣∣Xt
best − Xt

i
∣∣× ebl × cos(2πl) + Xt

best (2)

where b is a constant, and l is a random number between [−1, 1], meeting a uniform distribution.

3.2. Differential Evolution Algorithm (DE)

The differential evolution algorithm (DE) [71] was proposed in 1997 based on the
idea of evolutionary algorithms, such as genetic algorithms, which are essentially multi-
objective optimization algorithms that can be used to solve the overall optimal solution in
a multi-dimensional space. The DE is the same as other genetic algorithms in that the main
process consists of three steps: mutation, crossover and selection. However, the variance
vector of the differential DE is generated from the parent differential vector and is crossed
with the parent individual vector to generate a new individual vector, which is directly
selected with its parent individual. Suppose the position vector of the i-th individual in the
population is Xi.

3.2.1. Crossover Operations

The basic variance vector is generated by Equation (3), and r1 6= r2 6= r3. Therefore,
in the DE algorithm, the population must be greater than 3. F is the crossover operator,
with a value usually between [0, 2], which controls the amplification of the deviation vector.
Commonly, the difference between the two vectors is multiplied by the crossover operator
and added to the third vector to generate a new mutation vector.

Xi = Xr1 + F× (Xr2 − Xr3) (3)

In this article, in order to allow for faster convergence of the population algorithm
while maintaining population diversity, we attempt to calculate the difference between the
position of the current population and the optimal population position (Xbest), on the basis
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of which a new variant population is generated. Therefore, Equation (3) is rewritten as
shown in Equation (4).

Vi = Xi + F× (Xbest − Xi) (4)

3.2.2. Mutation Operations

To increase the diversity of the interference vectors, crossover operations are intro-
duced. Equation (5) presents the principle of the crossover operation.

Ui,j =

{
Vji i f randb(j) ≤ CR or j = rnbr(i)
Xi,j i f randb(j) > CR or j 6= rnbr(i)

, i = 1, 2, . . . , NP; j = 1, 2, . . . , D (5)

randb(j) denotes the generation of the j-th estimate of a random number between
[0, 1] and rnbr denotes a randomly chosen sequence. CR is the crossover operator. In
simple terms, if the randomly generated randb(j) is less than CR or j = r, then the variant
population is placed in the selection population; if not, the original population is placed in
the selection population.

3.2.3. Selection Operation

In order to decide whether the vectors in the selection population can become part of
the next generation, the newly generated position vectors are compared with the current
target vectors, and, if it appears that the objective function is further optimized or the
original state is maintained, then, the newly generated individuals will appear in the next
generation. The selection operation is defined as shown in Equation (6).

Xi =

{
Ui i f f (Ui) < f (Xi)
Xi i f f (Ui) ≥ f (Xi)

(6)

The DE is a simple and easy-to-implement algorithm that mainly performs genetic
operations by means of differential variation operators. The algorithm has shown good
robustness and efficiency in solving most optimization problems [72–75]. Furthermore, the
algorithm is intrinsically parallel and can coordinate searches, so that the DE has a faster
convergence rate for the same requirement.

3.3. Crisscross Optimization Algorithm

The crisscross optimization algorithm (CSO) [76] is a new population-based stochastic
search algorithm that performs both horizontal and vertical crossover in each generation
during each iteration, thus allowing certain dimensions of the population that are trapped in
a pseudo-optimal a chance to jump out. The new individuals obtained after each crossover
need to go through competition, and only the individuals better than the parent generation
will be retained for the next iteration.

3.3.1. Horizontal Crossover Operator

A horizontal crossover operation is similar to crossover operations in genetic al-
gorithms, a kind of arithmetic crossover between the same dimension of two different
individual particles in a population. Assuming a horizontal crossover in the d-th dimension
for the i-th and j-th parent individual particles, the formula for generating offspring is
shown in Equations (7) and (8).

MShc(i, d) = r1 × X(i, d) + (1− r1)× X(j, d) + c1 × (X(i, d)− X(j, d)) (7)

MShc(j, d) = r1 × X(j, d) + (1− r1)× X(i, d) + c1 × (X(j, d)− X(i, d)) (8)

where r1 and r2 are random numbers between [0, 1], and, c1 and c2 are random numbers be-
tween [−1, 1]. X(i, d) and X(j, d) represent the d-th dimension of the i-th and j-th individ-
uals in the population, respectively. MShc(i, d) and MShc(j, d) are the d-th dimension of the
offspring generated by X(i, d) and X(j, d) via horizontal crossover, respectively. From a so-
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ciological point of view, r1 × X(i, d) is the memory term of particle X(i). (1− r1)× X(j, d)
is the group cognitive term of particles X(i) and X(j), representing the interaction between
different particles. c1 is the learning factor, c1 × (X(i, d)− X(j, d)) can effectively enlarge
the search interval and search for optimization at the edge. The schematic diagram of the
horizontal crossover operation is shown in Figure 1.
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3.3.2. Vertical Crossover Operator

A vertical crossover is an arithmetic crossover between two different dimensions of
a particle in a population. Since different dimensional elements have different ranges
of values, the two dimensions need to be normalized before crossover. Furthermore, in
order to allow the dimension that has stalled in the local optimum to jump out of the
local optimum without destroying the information of the other dimension, only one child
particle is generated for each vertical crossover operation, and only one of the dimensions
is updated. The vertical crossover operation is defined by Equation (9).

MSvc(i, d1) = r× X(i, d1) + (1− r)× X(i, d2), i ∈ N(1, M), d1 d2 ∈ N(1, D) (9)

where r is a random number between [0, 1]. MSvc(i, d1) is the d1-th dimension of the off-
spring produced by the d1-th and d2-th dimensions of individual X(i) by vertical crossover.
The new individual contains not only the information of the d1-th dimension of the parent
particle, but also the information of the d2-th dimension with a certain probability, and the
information of the d2-th dimension will not be destroyed during the crossover. A schematic
diagram of the vertical crossover is shown in Figure 2.
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3.4. Framework of Proposed DECCWOA

The whale algorithm, the crossover and mutation operations in the DE and the criss-
cross operators together form the overall framework of the DECCWOA. We consider a
positive population renewal to be complete when a location closer to a food source is found
in one iteration. When the entire whale population has completed S positive updates, we
consider the population to have been concentrated and to be losing population diversity.
In one iteration, after the whales have completed one location update, it is determined
whether the population has completed S positive updates, and, if so, the crossover and
mutation operations of the DE algorithm are performed, resulting in a perturbation of the
whale population, further ensuring population quality. Moreover, vertical crossover is
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performed in dimensions to improve dimensional stagnation as iterations progress, and,
when the entire population has completed one location update, horizontal crossover is
performed between individuals to fully facilitate the exchange of information between
individuals, allowing the problem space to be fully searched, effectively improving the
search capability of the algorithm. The pseudo-code of the DECCWOA can be seen in
Algorithm 1, and a flow chart of the overall DECCWOA framework is shown in Figure 3.

Algorithm 1: The pseudo-code of the DECCWOA

Input: Number of populations N, maximum number of iterations T, , objective function f obj;
Output: Optimum whale position Xbest;

Initialize the whale population positions X;
Calculate fitness values for all individuals in the whale population and sort them;
Set the position of the individual with the smallest fitness value fbest to Xbest;
Set s = 0;
while (t < T)
for each agent

Update a, A, C l, S and p;
if p < 0.5

if |A| < 1 && s < S
Update the position of agent using Equation (1), and set Xq as Xbest;

elseif |A| ≥ 1 && s < S
Select a random search agent as Xrand;
Update the position of agent using Equation (1), and set Xq as Xrand;

elseif s ≥ S
Performing crossover and mutation operations in DE;

end if
else

Update the position of agent using Equation (2);
end if
Perform vertical crossover operator using Equation (9);

end for
Perform horizontal crossover operation using Equations (7) and (8);
Calculate fitness values for all individuals in the whale population and sort them;
Set the position of the individual with the smallest fitness value gbest to Xgbest;
if gbest < fbest
Updates Xbest and fbest;

s = s + 1;
end if
t = t + 1;

end while
Return Xbest

In the basic whale algorithm, only each individual in the population is updated accord-
ing to the corresponding situation in each iteration, excluding other complex operations.
Therefore, the time complexity of the algorithm is only related to the maximum number of
iterations T and the population size N; that is, the time complexity of the whale algorithm
is O(T ∗ N). When executing the vertical crossover algorithm, the time complexity of the
vertical crossover is O(D); a vertical crossover is performed at the end of each individual
update as the vertical crossover occurs in dimension D. When the horizontal crossover is
executed after the whole population has been updated, the time complexity of the horizon-
tal crossover is O(N ∗ D) depending on the size of the individuals and the dimension of the
problem, as the horizontal crossover is performed by communicating between individuals
and updating the dimensional information in turn. In DE, a crossover is performed, and the
mutation and selection operations are only related to dimensions, so the time complexity
of an iteration is O(D). In this work, only when the position of the population is updated
every time and a certain period is met, we carry out an operation of crossover, mutation



Electronics 2022, 11, 4224 9 of 35

and selection for the population. Therefore, the operation of theoretically introducing the
DE does not add a high time cost to the algorithm. In summary, the time complexity of the
proposed algorithm DECCWOA is O(T ∗ (O(N ∗ D) + O(N))).
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4. Experimental Results

This section presents a quantitative analysis of the introduced DE and CSO mecha-
nisms and presents the experimental results comparing the proposed algorithm, DECC-
WOA, with other improved WOA algorithms and improved swarm intelligence algorithms
that have better performance on 35 benchmark functions. Furthermore, to show that the
proposed algorithm is still valid for practical applications, the DECCWOA is applied to
the intelligent prediction of talent stability in universities. All experiments were carried
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out on a Windows Server 2012 R2 operating system with Intel(R) Xeon(R) Silver 4110 CPU
(2.10 GHz) and 32.GB RAM. All algorithms were coded and run on MATLAB 2014b.

To ensure fairness of the experiment, all algorithms were executed in the same en-
vironment. For all algorithms, the population size was set to 30, the maximum number
of function evaluations was set to 300,000 and, to avoid the effect of randomness on the
results, each algorithm was individually executed 30 times on each benchmark function.
avg and std reflect the average ability and stability of each algorithm after 30 independent
experiments. To allow a more visual presentation of the average performance of all the
algorithms, the Freidman test is used to evaluate the experimental results of all algorithms
on the benchmark function and the final ranking is recorded.

4.1. Experimental Results of the DECCWOA on Benchmark Functions

The DECCWOA and its related comparison algorithm conducted comparison experi-
ments on 35 benchmark functions selected from 23 benchmark functions and CEC2014. In
detail, Table A1 of the Appendix A shows a summary of the 35 test functions, which can
be divided into three categories, including unimodal functions, multimodal functions and
hybrid functions.

4.1.1. Parameter Sensitivity Analysis

Not every dimension of an individual is selected for crossover in a vertical crossover
operation. In the vertical crossover operation, there is a key parameter p2. When the
random probability is less than p2, the crossover operation is performed in the correspond-
ing dimension of the individual, as shown in Equation (9). Otherwise, the operation is
considered not to be performed in that dimension. The possible values of p2 are 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. In order to visually present the impact of p2 on the
optimization capabilities of the DECCWOA, we conducted comparative experiments using
different versions. The names corresponding to the different algorithm versions are shown
in Table 2.

Table 2. Names of different algorithm versions when p2 is different.

Algorithm DEC
CWOA1

DEC
CWOA2

DEC
CWOA3

DEC
CWOA4

DEC
CWOA5

DEC
CWOA6

DEC
CWOA7

DEC
CWOA8

DEC
CWOA9

DEC
CWOA10

p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Different values of p2 have a direct impact on the optimization of the DECCWOA.
Table 3 shows the results of the DECCWOA2 and Table A2 in Appendix A shows the
detailed results when p2 is taken to different values. The rankings generated by the
Friedman test show that when the value of p2 is too large, the less effective the average
optimization is. The significance of introducing a longitudinal crossover operator is to
help the population change dimensional stagnation. That is because when p2 takes a larger
value, it means that each dimension of the individual changes with a high probability.
This not only changes the dimension of stagnation, but also the dimension of having good
performance along with it. Notably, when p2 is taken as 0.1 versus 0.2, the performance is
similar for 28 of the 35 benchmark functions, but, for overall performance, the DECCWOA2
is slightly better. This is because, when the value of p2 is too small, only a few dimensions
are adjusted after the individual enters the vertical crossover operator, which does not have
the problem of falling into local optima due to dimensional stagnation being significantly
improved, especially in solving multimodal functions and hybrid functions. Therefore, in
the course of the next experiments, p2 was set to 0.2.
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Table 3. Experimental results for analysis of different versions.

Algorithms
Overall

+/−/= Rank

DECCWOA1 ~ 2
DECCWOA2 4/3/28 1
DECCWOA3 14/3/18 6
DECCWOA4 12/2/21 5
DECCWOA5 14/4/17 3
DECCWOA6 14/5/16 4
DECCWOA7 14/4/17 7
DECCWOA8 15/4/16 8
DECCWOA9 17/2/16 9
DECCWOA10 16/2/17 10

4.1.2. Comparison of Mechanisms

In order to verify the effectiveness of the introduced mechanism in improving the
optimization capabilities of the WOA, ablation studies on the integrated DE and CSO
were conducted. Table 4 presents the comparison results for the introduced mechanisms.
The detailed results can be found in Table A3 of Appendix A. Notably, on most of the
benchmark functions, the DECCWOA has the best optimization capability by performing
the Friedman test on 30 times randomized trials. Furthermore, the CCWOA with the
introduction of CSO outperforms the WOA on more than 90% of the benchmark functions.
However, for the DEWOA, which introduces the DE into the WOA, although the overall
results are not significantly improved, a comparison of the optimization performance of
CCWOA and DECCWOA shows that the combination of CSO with the DE makes the WOA
more optimizable.

Table 4. Comparison results for the introduced mechanisms.

Algorithms
Overall

+/−/= Rank

DECCWOA ~ 1
DEWOA 31/1/3 4
CCWOA 18/4/13 2

WOA 25/1/9 3

Convergence curves of the comparison results for the introduced mechanisms are
shown in Figure 4. Among them, the CCWOA excels in both optimization accuracy and
convergence speed on F4, F6 (from 23 benchmark functions) and unimodal functions of F14
(from CEC2014), F12, F13 (from 23 benchmark functions), multimodal functions of F18, F19,
F23, F24, F29 (from CEC2014) and hybrid functions of F30 and F32. In particular, CCWOA
also has stronger search ability in multimodal functions and hybrid functions. This shows
that CSO effectively improves the problem that the basic WOA is prone to falling into the
local optimum. It is also worth noting that the introduction of the DE did not give the
desired results on most of the benchmark functions. However, when acting together with a
CSO on the WOA, the convergence speed and optimization accuracy of the DECCWOA
are significantly improved. Especially in F4, F6 and F13, it is obvious that the DECCWOA
has better performance than the CCWOA. This is because we perform the DE crossover
and mutation operations over a period of time in order to take advantage of differences
between individuals to disturb the population, but do not perform the rounding up of prey
in the basic WOA at this time, thus slowing the efficiency of the whale population towards
the food source. However, when CSO is applied to the whole population, not only is the
information between individuals utilized, but also the information in the spatial dimension
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is considered. Combined with the periodic perturbation of the DE, the whale population
can search the whole problem space more efficiently.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 36 
 

 

 

Figure 4. Convergence curves of the comparison results for the introduced mechanisms. 

4.1.3. Comparison with Improved WOA Versions 

In order to provide a clearer picture of the results of the experiments comparing the 

DECCWOA with other improved WOA algorithms for 35 benchmark functions, 𝑎𝑣𝑔 

and 𝑠𝑡𝑑 of all functions obtained after 30 independent experiments on the correspond-

ing benchmark functions and the average ranking results of the Friedman test on the 

average results are recorded in Table 5. The detailed results are shown in Table A4 of 

Appendix A. The composite average ranking of the DECCWOA is the highest, followed 

by the RDWOA and the CCMWOA with the lowest. Among them, +/−/= respectively 

records the number of benchmark functions that the DECCWOA is superior to, inferior 

to and similar to in terms of performance to other competing algorithms among the 35 

test functions. For the worst performing CCMWOA, the DECCWOA outperforms it for 

twenty-eight benchmark functions, has the same performance on five functions, and 

performs slightly worse on only two functions. Moreover, compared to the RDWOA, 

which ranks second overall, the DECCWOA has better performance for sixteen bench-

mark functions, has the same optimization ability for thirteen functions and only has 

poor performance for six functions. This proves that the DECCWOA has better perfor-

mance than other improved WOA algorithms for most of the optimization problems, 

Figure 4. Convergence curves of the comparison results for the introduced mechanisms.

4.1.3. Comparison with Improved WOA Versions

In order to provide a clearer picture of the results of the experiments comparing
the DECCWOA with other improved WOA algorithms for 35 benchmark functions, avg
and std of all functions obtained after 30 independent experiments on the corresponding
benchmark functions and the average ranking results of the Friedman test on the average
results are recorded in Table 5. The detailed results are shown in Table A4 of Appendix A.
The composite average ranking of the DECCWOA is the highest, followed by the RDWOA
and the CCMWOA with the lowest. Among them, +/−/= respectively records the number
of benchmark functions that the DECCWOA is superior to, inferior to and similar to in
terms of performance to other competing algorithms among the 35 test functions. For the
worst performing CCMWOA, the DECCWOA outperforms it for twenty-eight benchmark
functions, has the same performance on five functions, and performs slightly worse on only
two functions. Moreover, compared to the RDWOA, which ranks second overall, the DEC-
CWOA has better performance for sixteen benchmark functions, has the same optimization
ability for thirteen functions and only has poor performance for six functions. This proves



Electronics 2022, 11, 4224 13 of 35

that the DECCWOA has better performance than other improved WOA algorithms for
most of the optimization problems, further demonstrating that the introduced CSO and
DE have a positive steering effect on improving the basic WOA, such as slow convergence
speed and poor accuracy guiding role.

Table 5. Comparison results for DECCWOAs with improved WOA versions.

Algorithms
Overall

+/−/= Rank

DECCWOA ~ 1
RDWOA 16/6/13 2
ACWOA 26/3/6 6

CCMWOA 28/2/5 9
CWOA 29/0/6 8

BMWOA 32/1/2 7
BWOA 23/3/9 4
LWOA 26/4/5 5
IWOA 24/1/10 3

In this section, the performance of the DECCWOA is compared with other improved
versions of the WOA, including the RDWOA, the ACWOA, the CCMWOA [77], the
CWOA [78], the BMWOA, the BWOA, the LWOA [79] and the IWOA [80]. Figure 5 shows
the convergence curves of the average results obtained after 30 operations for all algorithms.
On unimodal functions such as F6, it can be intuitively observed that the DECCWOA has
the strongest search capability, with the RDWOA in second place, but the DECCWOA has
a better performance than the RDWOA in terms of both accuracy and convergence speed.
For both F12 and F13, the optimal values found by the other improved WOA algorithms
are similar and more concentrated; however, the accuracy of the optimization obtained
by the DECCWOA calculation is substantially improved. On F18, F19, F21, F23, F25 and
F29, the DECCOWA can still search for more satisfactory optimal values compared to
the other improved WOA algorithms. This demonstrates that the improvements to the
WOA in this experiment are relatively more effective, and that, even when solving for
multimodal functions, the DECCWOA can still jump out of the local optimum in time to
obtain a high-quality optimal solution.

4.1.4. Comparison with Advanced Algorithms

Table 6 presents the comparison results for the DECCWOA with advanced algorithms.
The detailed results can be found in Table A5 of Appendix A. avg reflects the average opti-
mization ability of the algorithm after independently running on the benchmark function
for 30 times, and std represents the influence of randomness on the optimization ability of
the algorithm, which further reflects the stability of the algorithm to solve problems. From
Table 6, the DECCWOA is superior to the IGWO on twenty functions and is inferior to the
IGWO on eight functions (F3, F5, F22, F28, F30, F33, F34, F35). The DECCWOA beats the
OBLGWOA on nineteen functions and loses to the OBLGWO on five functions (F3, F7, F28,
F30, F33). For the CGPSO, ALCPSO and RCBA, the DECCWOA is inferior to them on nine
functions, and outperforms most of the others. In detail, the DECCWOA is worse than the
CGPSO at F5, F7, F8, F16, F17, F26, F30, F33 and F34, worse than the ALCPSO at F15, F16,
F20, F21, F22, F28, F30, F33 and F34 and is worse than the RCBA at F14, F15, F16, F17, F20,
F26, F30, F33 and F34. The DECCWOA beats the CBA on twenty-four functions, and loses
to the CBA in six functions (F15, F16, F20, F30, F33, F34). The DECCWOA outperforms
the OBSCA on 32 functions and only performs worse than the OBSCA on one function
of F3. The DECCWOA is worse than the SCADE on F3 and F6. Based on the analysis
above, the DECCWOA did not perform as well as the ALPSO, RCBA and CBA on the
three unimodal functions (F14~F16) selected in CEC2014, but demonstrated competitive
performance on the seven unimodal functions (F1~F7) selected from the twenty-three
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benchmark functions. The DECCWOA does not perform more competitively than the other
comparison algorithms in terms of hybrid functions, but the DECCWOA performs well on
most of the multimodal functions.
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Table 6. Comparison results for the DECCWOA and advanced algorithms.

Algorithms
Overall

+/−/= Rank

DECCWOA ~ 1
IGWO 20/8/7 2

OBLGWO 19/5/11 5
CGPSO 23/9/3 4
ALPSO 19/9/7 3
RCBA 23/9/3 6
CBA 24/6/5 7

OBSCA 32/1/2 9
SCADE 28/2/5 7

In order to verify the effectiveness of the proposed DECCWOA compared to other ad-
vanced algorithms, comparison experiments were carried out. Among them, an enhanced
GWO with a new hierarchical structure (IGWO) [81], boosted GWO (OBLGWO) [82],
cluster guide PSO (CGPSO) [83], hybridizing sine cosine algorithm with differential evo-
lution (SCADE) [84], particle swarm optimization with an aging leader and challengers
(ALPSO) [85], hybrid bat algorithm (RCBA) [86], chaotic BA (CBA) [87] and opposition-
based SCA (OBSCA) [88] were selected as the comparison algorithms. Convergence curves
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for comparison with the advanced algorithms are displayed in Figure 6. In particular,
for unimodal functions, the DECCWOA has the same search capability as the IGWO,
OBLGWO, CGPSO and SCADE in F1. For F6, the DECCWOA has the strongest optimiza-
tion capability and, as can be seen in Figure 6, the DECCWOA maintains a satisfactory
convergence rate for F6. On the multimodal functions, such as F12, F13, F21, F23, F24
and F29, the DECCWOA also shows strong optimization ability. Compared with the clas-
sic ALPSO, the optimization performance of the DECCWOA is not inferior, and it can
even converge to a better solution at a faster convergence rate. When solving a hybrid
optimization problem, such as F31, although the IGWO can still obtain better solutions in
the late iteration, its convergence speed is slow and the search ability is poor in the early
iteration. The OBLGWOA, CGPAO, SCADE and OBSCA are unsatisfactory in terms of
their optimization ability and convergence speeds during the entire iterative process, while
the ALPSO, RCBA and CBA are relatively better; however, the DECCWOA showed better
optimization than them.
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4.2. Experiments on Application of the DECCWOA in Predicting Talent Stability in Higher Education
4.2.1. Description of the Selected Data

The subjects studied in this paper were 69 talented individuals who left several col-
leges and universities in Wenzhou from 1 January 2015, accounting for 11.5% of the official
staff. The following characteristics were examined: subject gender, political status, profes-
sional attributes, age, type of place of origin, category of talents above the municipal level,
nature of the previous unit, type of location of college and university, year of employment
at college and university, type of position at college and university, professional relevance
of employment at college and university, annual salary level at college and university,
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current employment unit, time of introduction of current employment unit, nature of
current employment unit and type of location of current employment unit. The indicators,
as presented in Table A6 of the Appendix A, were mined and analyzed to explore the
importance and interconnectedness of each indicator, and to build an intelligent predic-
tion model based on these indicators. Moreover, the following indicators are bolded as
important indicators.

4.2.2. Experimental Results

The proposed DECCWOA was combined with the KELM and the feature selection
(DECCWOA-KELM-FS) method to solve the classification problem of employment inten-
tion of talent. The experimental results are shown in Tables 7 and 8. The DECCWOA-KELM-
FS’s results on the ACC, Sensitivity, Specificity and MCC indicators are 95.87%, 94.96%,
96.59% and 91.64%, respectively. The classification results are all superior to other com-
parison algorithms, including the DECCWOA-KELM, DECCWOA-KELM, WOA-KELM,
ANN, RF and SVM. Furthermore, the stability results of the ten experimental results of the
proposed model are also superior. The std metrics results of the ACC, Sensitivity, Specificity
and MCC indicators are 3.19 × 10−2, 6.85 × 10−2, 4.25 × 10−2 and 6.66 × 10−2. Obviously,
the stability of the proposed algorithm is better than that of most comparison algorithms.
Therefore, by combining the DECCWOA with the KELM and FS, the talent stability predic-
tion of Wenzhou Vocational College is effectively realized. To further visualize the results,
Figure 7 shows a comparison of results between the proposed algorithm and the other
five methods, including the average results and standard deviations of the five indicators.
Similarly, the average performance and stability of the DECCWOA-KELM-FS in each index
are better than most reported algorithms.

Table 7. Four avg metrics results of the proposed model and other models.

Models ACC Sensitivity Specificity MCC

DECCWOA-KELM-FS 95.87% 94.64% 96.59% 91.64%
DECCWOA-KELM 92.57% 94.05% 92.50% 86.27%

WOA-KELM 90.32% 89.39% 91.05% 81.10%
ANN 88.96% 87.58% 90.51% 77.16%

RF 92.67% 92.85% 91.01% 85.33%
SVM 89.30% 91.92% 86.96% 79.75%

Table 8. Four std metrics results of the proposed model and other models.

Models ACC Sensitivity Specificity MCC

DECCWOA-KELM-FS 3.19 × 10−2 6.85 × 10−2 4.25 × 10−2 6.66 × 10−2

DECCWOA-KELM 5.60 × 10−2 8.31 × 10−2 8.93 × 10−2 1.01 × 10−1

WOA-KELM 4.33 × 10−2 9.06 × 10−2 1.02 × 10−1 8.80 × 10−2

ANN 4.16 × 10−2 5.61 × 10−2 5.91 × 10−2 9.50 × 10−2

RF 4.17 × 10−2 1.08 × 10−1 6.74 × 10−2 8.59 × 10−2

SVM 6.72 × 10−2 1.12 × 10−1 1.07 × 10−1 1.18 × 10−1

Figure 8 shows the feature selection results of the proposed model. As can be seen, F7
(city-level and above talent categories) and F22 (professional and technical position at the
time of leaving) are both screened the most, eight times. It shows that the two key factors
affecting the stability of university talents are F7 and F22, which provides some guiding
significance of the flow of highly educated talents. Based on the fact that the proposed
method has such excellent performance, it can also be applied in many other fields in the
future, such as information retrieval services [89,90], named entity recognition [91], road
network planning [92], colorectal polyp region extraction [93], image denoising [94], image
segmentation [95–97] and power flow optimization [98].
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5. Conclusions

This paper studied the stability of higher education talent for the first time, and
proposed a DECCWOA-KELM-FS model to intelligently predict the stability of higher
education talent. By introducing a crossover algorithm, the information exchange between
individuals was promoted and the problem of dimension stagnation was improved. The
DE operation was carried out in a certain time, and the difference between individuals was
used to disturb the population and ensure the diversity of the population. In order to verify
the optimization performance of the DECCWOA, 35 benchmark functions were selected
from 32 benchmark functions and CEC214 for comparative experiments. Experimental
results showed that the DECCWOA algorithm had higher accuracy and faster convergence
rates when solving unimodal and multimodal functions; although the mixture function
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also had very good performance. By combining the DECCWOA with the KELM and
feature selection, the stable intelligence of talent in Wenzhou colleges and universities was
efficiently predicted. This method can be used as a reliable and high precision method to
predict the flow of talent in colleges and universities.

Subsequent studies will further improve the generality of the proposed GLLCSA-
KELM-FS and solve more complex classification problems, such as disease diagnosis and
financial risk prediction.
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Appendix A

Table A1. Details of the selected 35 benchmark functions.

Types No. Functions Rang fmin

Unimodal
Functions

F1 f1(x) = ∑n
i=1 x2

i [−100, 100] 0

F2 f2(x) = ∑n
i=1|xi |+ ∏n

i=1|xi | [−10, 10] 0

F3 f3(x) = ∑n
i=1

(
∑i

j−1 xj

)2 [−100, 100] 0

F4 f4(x) = maxi{|xi |, 1 ≤ i ≤ n} [−100, 100] 0

F5 f5(x) = ∑n−1
i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

[−30, 30] 0

F6 f6(x) = ∑n
i=1([xi + 0.5])2 [−100, 100] 0

F7 f7(x) = ∑n
i=1 ix4

i + random[0, 1] [−1.28, 1.28] 0

Multimodal
Functions

F8 f8(x) = ∑n
i=1−xi sin

(√
|xi |
)

[−500, 500] −418.9829 × 5

F9 f9(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 0

F10 f10(x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e [−32, 32] 0

F11 f11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600] 0

F12
f12(x) = π

n
{

10 sin
(
πy1

)
+ ∑n−1

i=1
(
yi − 1

)2[1 + 10 sin2
(

πyi+1
)]

+ (yn − 1)2
}
+ ∑n

i=1 u
(
xi , 10, 100, 4

)
yi = 1 +

xi+1
4 , u

(
xi , a, k, m

)
=


k
(
xi − a

)m xi > a
0 −a < xi < a
k
(
−xi − a

)m xi < −a

[−50, 50] 0

F13 f13(x) = 0.1
{

sin2(3πx1
)
+ ∑n

i=1
(
xi − 1

)2[1 + sin2(3πxi + 1
)]

+ (xn − 1)2
[
1 + sin2(2πxn )

]}
+ ∑n

i=1 u
(
xi , 5, 100, 4

) [−50, 50] 0

Unimodal
Functions

F14 Rotated High Conditioned Elliptic Function [−100, 100] 100

F15 Rotated Bent Cigar Function [−100, 100] 200

F16 Rotated Discus Function [−100, 100] 300
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Table A1. Cont.

Types No. Functions Rang fmin

Simple
Multimodal
Functions

F17 Shifted and Rotated Rosenbrock’s Function [−100, 100] 400

F18 Shifted and Rotated Ackley’s Function [−100, 100] 500

F19 Shifted and Rotated Weierstrass Function [−100, 100] 600

F20 Shifted and Rotated Griewank’s Function [−100, 100] 700

F21 Shifted Rastrigin’s Function [−100, 100] 800

F22 Shifted and Rotated Rastrigin’s Function [−100, 100] 900

F23 Shifted Schwefel’s Function [−100, 100] 1000

F24 Shifted and Rotated Schwefel’s Function [−100, 100] 1100

F25 Shifted and Rotated Katsuura Function [−100, 100] 1200

F26 Shifted and Rotated HappyCat Function [−100, 100] 1300

F27 Shifted and Rotated HGBat Function [−100, 100] 1400

F28 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function [−100, 100] 1500

F29 Shifted and Rotated Expanded Scaffer’s F6 Function [−100, 100] 1600

Hybrid
Function1

F30 Hybrid Function 1 (N = 3) [−100, 100] 1700

F31 Hybrid Function 2 (N = 3) [−100, 100] 1800

F32 Hybrid Function 3 (N = 4) [−100, 100] 1900

F33 Hybrid Function 4 (N = 4) [−100, 100] 2000

F34 Hybrid Function 5 (N = 5) [−100, 100] 2100

F35 Hybrid Function 6 (N = 5) [−100, 100] 2200

Table A2. Experimental results for analysis of key parameter p2.

F1 F2 F3

avg std avg std avg std

DECCWOA1 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 6.0453 × 10−8 3.3108 × 10−7

DECCWOA2 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 4.2361 × 10−17 2.3074 × 10−16

DECCWOA3 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 6.1871 × 10−28 1.4243 × 10−27

DECCWOA4 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.8338 × 10−27 2.4802 × 10−27

DECCWOA5 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 5.5498 × 10−28 1.4428 × 10−27

DECCWOA6 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 5.9383 × 10−28 1.6120 × 10−27

DECCWOA7 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 9.3229 × 10−28 1.9913 × 10−27

DECCWOA8 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 3.4963 × 10−28 1.1052 × 10−27

DECCWOA9 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 5.3287 × 10−28 1.2818 × 10−27

DECCWOA10 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 4.2382 × 10−28 1.3085 × 10−27

F4 F5 F6

avg std avg std avg std

DECCWOA1 0.0000 × 100 0.0000 × 100 2.4439 × 101 6.6504 × 100 0.0000 × 100 0.0000 × 100

DECCWOA2 0.0000 × 100 0.0000 × 100 2.4123 × 101 6.5641 × 100 0.0000 × 100 0.0000 × 100

DECCWOA3 0.0000 × 100 0.0000 × 100 2.6257 × 101 2.8910 × 10−1 0.0000 × 100 0.0000 × 100

DECCWOA4 0.0000 × 100 0.0000 × 100 2.5987 × 101 4.1389 × 10−1 0.0000 × 100 0.0000 × 100

DECCWOA5 0.0000 × 100 0.0000 × 100 2.6107 × 101 3.0119 × 10−1 0.0000 × 100 0.0000 × 100

DECCWOA6 0.0000 × 100 0.0000 × 100 2.5412 × 101 4.8062 × 100 0.0000 × 100 0.0000 × 100

DECCWOA7 0.0000 × 100 0.0000 × 100 2.5432 × 101 4.8097 × 100 0.0000 × 100 0.0000 × 100

DECCWOA8 0.0000 × 100 0.0000 × 100 2.4619 × 101 6.6972 × 100 0.0000 × 100 0.0000 × 100

DECCWOA9 0.0000 × 100 0.0000 × 100 2.5539 × 101 4.8318 × 100 0.0000 × 100 0.0000 × 100

DECCWOA10 0.0000 × 100 0.0000 × 100 2.6489 × 101 3.4054 × 10−1 0.0000 × 100 0.0000 × 100
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Table A2. Cont.

F7 F8 F9

avg std avg std avg std

DECCWOA1 1.6842 × 10−4 2.7932 × 10−4 −1.3963 × 104 5.1858 × 103 0.0000 × 100 0.0000 × 100

DECCWOA2 1.5645 × 10−4 1.7877 × 10−4 −1.2595 × 104 1.3910 × 102 0.0000 × 100 0.0000 × 100

DECCWOA3 6.6910 × 10−5 9.9764 × 10−5 −1.2619 × 104 2.7031 × 102 0.0000 × 100 0.0000 × 100

DECCWOA4 1.0031 × 10−4 1.4658 × 10−4 −1.2530 × 104 5.3042 × 102 0.0000 × 100 0.0000 × 100

DECCWOA5 8.9743 × 10−5 1.0676 × 10−4 −1.3512 × 104 5.1597 × 103 0.0000 × 100 0.0000 × 100

DECCWOA6 5.2519 × 10−5 5.3764 × 10−5 −1.2569 × 104 1.9404 × 10−12 0.0000 × 100 0.0000 × 100

DECCWOA7 6.4531 × 10−5 6.4938 × 10−5 −1.3485 × 104 2.8423 × 103 0.0000 × 100 0.0000 × 100

DECCWOA8 4.0419 × 10−5 5.3492 × 10−5 −1.2805 × 104 9.0308 × 102 0.0000 × 100 0.0000 × 100

DECCWOA9 6.3101 × 10−5 7.7305 × 10−5 −1.2569 × 104 2.0267 × 10−12 0.0000 × 100 0.0000 × 100

DECCWOA10 3.8169 × 10−5 6.1534 × 10−5 −1.2673 × 104 2.7066 × 102 0.0000 × 100 0.0000 × 100

F10 F11 F12

avg std avg std avg std

DECCWOA1 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA2 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA3 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA4 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA5 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA6 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA7 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA8 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA9 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DECCWOA10 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

F13 F14 F15

avg std avg std avg std

DECCWOA1 1.3498 × 10−32 5.5674 × 10−48 3.6810 × 106 2.7334 × 106 1.3342 × 105 1.9982 × 105

DECCWOA2 1.3498 × 10−32 5.5674 × 10−48 5.1469 × 106 3.7469 × 106 2.2654 × 105 3.0564 × 105

DECCWOA3 1.3498 × 10−32 5.5674 × 10−48 1.6507 × 107 1.0130 × 107 9.4042 × 107 8.6776 × 107

DECCWOA4 1.3498 × 10−32 5.5674 × 10−48 7.2801 × 106 5.0765 × 106 8.7941 × 106 7.2596 × 106

DECCWOA5 1.3498 × 10−32 5.5674 × 10−48 1.1619 × 107 7.8606 × 106 3.3924 × 107 2.5699 × 107

DECCWOA6 1.3498 × 10−32 5.5674 × 10−48 1.2238 × 107 8.2473 × 106 7.4207 × 107 5.2159 × 107

DECCWOA7 1.3498 × 10−32 5.5674 × 10−48 2.5408 × 107 1.2932 × 107 1.5504 × 108 1.0836 × 108

DECCWOA8 1.3498 × 10−32 5.5674 × 10−48 2.9064 × 107 1.2592 × 107 3.1493 × 108 3.1857 × 108

DECCWOA9 1.3498 × 10−32 5.5674 × 10−48 2.7983 × 107 1.7994 × 107 4.3963 × 108 5.9410 × 108

DECCWOA10 1.3498 × 10−32 5.5674 × 10−48 4.0140 × 107 2.8456 × 107 6.8723 × 108 7.6542 × 108

F16 F17 F18

avg std avg std avg std

DECCWOA1 7.4819 × 103 4.6257 × 103 4.9577 × 102 4.4816 × 101 5.2004 × 102 4.4169 × 10−2

DECCWOA2 5.3970 × 103 5.6834 × 103 5.2284 × 102 4.4110 × 101 5.2009 × 102 4.7541 × 10−2

DECCWOA3 5.5074 × 103 3.3963 × 103 5.9759 × 102 5.0184 × 101 5.2036 × 102 1.4114 × 10−1

DECCWOA4 4.7987 × 103 4.0122 × 103 5.5522 × 102 5.6453 × 101 5.2019 × 102 9.2319 × 10−2

DECCWOA5 3.9879 × 103 2.8027 × 103 5.6621 × 102 4.6593 × 101 5.2029 × 102 1.0546 × 10−1

DECCWOA6 4.7947 × 103 3.8454 × 103 6.0512 × 102 3.7665 × 101 5.2031 × 102 1.4175 × 10−1

DECCWOA7 4.7025 × 103 3.4303 × 103 6.4612 × 102 5.0034 × 101 5.2039 × 102 1.4396 × 10−1

DECCWOA8 5.7773 × 103 3.8347 × 103 6.9438 × 102 9.0009 × 101 5.2033 × 102 1.7149 × 10−1

DECCWOA9 6.8194 × 103 3.9312 × 103 6.7202 × 102 7.1887 × 101 5.2035 × 102 1.6351 × 10−1

DECCWOA10 7.6046 × 103 2.9400 × 103 6.9534 × 102 7.7239 × 101 5.2038 × 102 1.7225 × 10−1
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Table A2. Cont.

F19 F20 F21

avg std avg std avg std

DECCWOA1 6.2052 × 102 3.2852 × 100 7.0040 × 102 2.2886 × 10−1 8.0287 × 102 1.0273 × 101

DECCWOA2 6.1946 × 102 2.9290 × 100 7.0052 × 102 2.0981 × 10−1 8.1110 × 102 2.0103 × 101

DECCWOA3 6.2495 × 102 2.9171 × 100 7.0250 × 102 8.3283 × 10−1 8.7716 × 102 1.8311 × 101

DECCWOA4 6.2184 × 102 2.6694 × 100 7.0111 × 102 7.1368 × 10−2 8.2441 × 102 7.7346 × 100

DECCWOA5 6.2371 × 102 2.6632 × 100 7.0164 × 102 4.2137 × 10−1 8.4642 × 102 1.7780 × 101

DECCWOA6 6.2456 × 102 3.2157 × 100 7.0230 × 102 8.4958 × 10−1 8.7407 × 102 2.4081 × 101

DECCWOA7 6.2621 × 102 3.2713 × 100 7.0300 × 102 8.7250 × 10−1 8.9713 × 102 1.9802 × 101

DECCWOA8 6.2840 × 102 3.4007 × 100 7.0506 × 102 2.9144 × 100 9.1581 × 102 1.9967 × 101

DECCWOA9 6.2897 × 102 3.4733 × 100 7.0619 × 102 2.5650 × 100 9.2703 × 102 2.5100 × 101

DECCWOA10 6.2933 × 102 3.7025 × 100 7.0753 × 102 3.4438 × 100 9.4279 × 102 2.4986 × 101

F22 F23 F24

avg std avg std avg std

DECCWOA1 1.0312 × 103 2.7380 × 101 1.0420 × 103 1.1886 × 102 3.9026 × 103 6.5371 × 102

DECCWOA2 1.0377 × 103 3.4427 × 101 1.0510 × 103 7.9342 × 101 4.1202 × 103 7.1968 × 102

DECCWOA3 1.0545 × 103 3.3397 × 101 1.7059 × 103 3.0416 × 102 5.3301 × 103 4.9187 × 102

DECCWOA4 1.0420 × 103 3.5382 × 101 1.1956 × 103 2.0676 × 102 4.2088 × 103 6.4091 × 102

DECCWOA5 1.0502 × 103 2.9746 × 101 1.4485 × 103 4.7609 × 102 4.9060 × 103 7.5372 × 102

DECCWOA6 1.0708 × 103 2.3208 × 101 1.6654 × 103 3.5966 × 102 5.0839 × 103 7.4254 × 102

DECCWOA7 1.0725 × 103 2.9966 × 101 2.4340 × 103 3.6991 × 102 5.5460 × 103 6.9622 × 102

DECCWOA8 1.0867 × 103 3.0093 × 101 2.8661 × 103 5.7401 × 102 5.6002 × 103 5.3783 × 102

DECCWOA9 1.0862 × 103 2.9502 × 101 3.4724 × 103 6.7538 × 102 5.6526 × 103 7.8496 × 102

DECCWOA10 1.0860 × 103 3.5118 × 101 3.7201 × 103 5.3438 × 102 5.6708 × 103 5.7142 × 102

F25 F26 F27

avg std avg std avg std

DECCWOA1 1.2002 × 103 6.7099 × 10−2 1.3005 × 103 1.5439 × 10−1 1.4003 × 103 4.8887 × 10−2

DECCWOA2 1.2002 × 103 6.0385 × 10−2 1.3005 × 103 1.1841 × 10−1 1.4003 × 103 5.5441 × 10−2

DECCWOA3 1.2008 × 103 2.9906 × 10−1 1.3005 × 103 1.1364 × 10−1 1.4003 × 103 4.0852 × 10−2

DECCWOA4 1.2004 × 103 1.2088 × 10−1 1.3005 × 103 1.3836 × 10−1 1.4003 × 103 1.9112 × 10−1

DECCWOA5 1.2005 × 103 1.9004 × 10−1 1.3005 × 103 1.0714 × 10−1 1.4003 × 103 5.7154 × 10−2

DECCWOA6 1.2008 × 103 2.5696 × 10−1 1.3005 × 103 9.5896 × 10−2 1.4003 × 103 1.0255 × 10−1

DECCWOA7 1.2010 × 103 3.2942 × 10−1 1.3005 × 103 1.1984 × 10−1 1.4003 × 103 1.7872 × 10−1

DECCWOA8 1.2011 × 103 3.7909 × 10−1 1.3005 × 103 1.3301 × 10−1 1.4004 × 103 6.0314 × 10−1

DECCWOA9 1.2012 × 103 3.9281 × 10−1 1.3006 × 103 1.4510 × 10−1 1.4003 × 103 5.1310 × 10−2

DECCWOA10 1.2014 × 103 4.0093 × 10−1 1.3005 × 103 1.1885 × 10−1 1.4004 × 103 1.7136 × 10−1

F28 F29 F30

avg std avg std avg std

DECCWOA1 1.5176 × 103 6.4897 × 100 1.6104 × 103 6.8683 × 10−1 1.9247 × 106 1.1101 × 106

DECCWOA2 1.5189 × 103 7.4912 × 100 1.6104 × 103 7.6782 × 10−1 1.5103 × 106 1.1011 × 106

DECCWOA3 1.5422 × 103 1.3549 × 101 1.6115 × 103 6.7294 × 10−1 1.9418 × 106 1.2814 × 106

DECCWOA4 1.5266 × 103 6.5567 × 100 1.6110 × 103 6.9374 × 10−1 1.7005 × 106 9.1883 × 105

DECCWOA5 1.5304 × 103 9.0407 × 100 1.6113 × 103 6.2976 × 10−1 1.8482 × 106 1.1135 × 106

DECCWOA6 1.5424 × 103 1.2171 × 101 1.6116 × 103 5.9848 × 10−1 1.9396 × 106 1.2724 × 106

DECCWOA7 1.6047 × 103 2.9073 × 102 1.6119 × 103 6.5689 × 10−1 2.0687 × 106 1.2220 × 106

DECCWOA8 1.5684 × 103 3.2783 × 101 1.6120 × 103 4.3100 × 10−1 2.2597 × 106 1.5545 × 106

DECCWOA9 1.5970 × 103 4.5170 × 101 1.6121 × 103 6.1504 × 10−1 2.2349 × 106 1.2776 × 106

DECCWOA10 1.6376 × 103 9.5739 × 101 1.6119 × 103 7.4369 × 10−1 2.4610 × 106 1.6436 × 106
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Table A2. Cont.

F31 F32 F33

avg std avg std avg std

DECCWOA1 5.8087 × 103 6.2358 × 103 1.9179 × 103 2.6069 × 101 1.4137 × 104 7.6746 × 103

DECCWOA2 4.8867 × 103 3.6023 × 103 1.9189 × 103 2.3237 × 101 8.3832 × 103 5.6464 × 103

DECCWOA3 4.0166 × 103 2.5970 × 103 1.9215 × 103 2.4809 × 101 5.5742 × 103 2.6752 × 103

DECCWOA4 5.2173 × 103 3.9350 × 103 1.9267 × 103 3.4926 × 101 4.9997 × 103 2.4000 × 103

DECCWOA5 4.9446 × 103 4.1973 × 103 1.9262 × 103 2.9792 × 101 4.5639 × 103 2.0732 × 103

DECCWOA6 4.5409 × 103 2.8935 × 103 1.9239 × 103 2.2044 × 101 5.0427 × 103 2.4608 × 103

DECCWOA7 4.7751 × 103 2.8190 × 103 1.9279 × 103 2.2825 × 101 4.5396 × 103 1.8457 × 103

DECCWOA8 4.6894 × 104 2.3224 × 105 1.9358 × 103 3.7797 × 101 4.8777 × 103 1.6024 × 103

DECCWOA9 7.0415 × 103 9.3191 × 103 1.9284 × 103 2.5490 × 101 4.5525 × 103 2.1545 × 103

DECCWOA10 6.2462 × 103 9.1482 × 103 1.9295 × 103 2.4829 × 101 3.7338 × 103 1.6768 × 103

Overall rank F34 F35 overall

avg std avg std +/−/= rank

DECCWOA1 8.6335 × 105 6.2796 × 105 2.8860 × 103 2.2542 × 102 ~ 2
DECCWOA2 7.0965 × 105 6.4048 × 105 2.7590 × 103 1.9713 × 102 4/3/28 1
DECCWOA3 8.1850 × 105 6.4237 × 105 2.6856 × 103 1.9951 × 102 14/3/18 6
DECCWOA4 8.3727 × 105 6.0484 × 105 2.8021 × 103 1.8728 × 102 12/2/21 5
DECCWOA5 7.2517 × 105 6.6623 × 105 2.7406 × 103 2.2485 × 102 14/4/17 3
DECCWOA6 5.9730 × 105 4.4486 × 105 2.7219 × 103 1.8356 × 102 14/5/16 4
DECCWOA7 6.4163 × 105 4.3900 × 105 2.6995 × 103 2.0571 × 102 14/4/17 7
DECCWOA8 7.0675 × 105 6.1652 × 105 2.7178 × 103 1.9634 × 102 15/4/16 8
DECCWOA9 6.4914 × 105 5.4887 × 105 2.7793 × 103 1.9480 × 102 17/2/16 9

DECCWOA10 5.9732 × 105 4.7600 × 105 2.7603 × 103 2.1609 × 102 16/2/17 10

Table A3. Comparison results for the introduced mechanisms.

F1 F2 F3

avg std avg std avg std

DECCWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 4.1255 × 10−18 2.1806 × 10−17

DEWOA 1.2420 × 10−10 3.9129 × 10−10 8.5083 × 10−6 1.4067 × 10−5 7.8264 × 103 1.2145 × 104

CCWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

WOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 3.2071 × 101 6.1783 × 101

F4 F5 F6

avg std avg std avg std

DECCWOA 0.0000 × 100 0.0000 × 100 2.5968 × 101 3.5258 × 10−1 0.0000 × 100 0.0000 × 100

DEWOA 6.3178 × 10−3 1.5936 × 10−2 4.4319 × 10−3 4.7769 × 10−3 9.6180 × 10−5 1.2811 × 10−4

CCWOA 0.0000 × 100 0.0000 × 100 2.2483 × 101 6.1153 × 100 1.1597 × 10−11 1.3565 × 10−11

WOA 7.5414 × 100 1.7526 × 101 2.3562 × 101 4.4675 × 100 4.7799 × 10−6 1.8846 × 10−6

F7 F8 F9

avg std avg std avg std

DECCWOA 1.0328 × 10−4 1.7676 × 10−4 −1.2783 × 104 8.3042 × 102 0.0000 × 100 0.0000 × 100

DEWOA 3.4741 × 10−3 5.8983 × 10−3 −1.4406 × 104 4.9552 × 103 6.2111 × 10−10 8.6723 × 10−10

CCWOA 1.7804 × 10−5 3.0937 × 10−5 −1.2569 × 104 5.6938 × 10−7 0.0000 × 100 0.0000 × 100

WOA 1.5818 × 10−4 1.8724 × 10−4 −1.2236 × 104 8.6401 × 102 0.0000 × 100 0.0000 × 100
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Table A3. Cont.

F10 F11 F12

avg std avg std avg std

DECCWOA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

DEWOA 4.8353 × 10−6 1.1226 × 10−5 6.9380 × 10−7 3.7853 × 10−6 7.0591 × 10−6 9.9086 × 10−6

CCWOA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.6821 × 10−12 2.1310 × 10−12

WOA 3.6119 × 10−15 1.7906 × 10−15 2.7668 × 10−4 1.5155 × 10−3 2.1111 × 10−4 1.1507 × 10−3

F13 F14 F15

avg std avg std avg std

DECCWOA 1.3498 × 10−32 5.5674 × 10−48 4.6009 × 106 3.5694 × 106 1.5068 × 105 1.7046 × 105

DEWOA 1.3742 × 10−4 2.1617 × 10−4 4.5118 × 107 3.3352 × 107 2.6842 × 109 2.2525 × 109

CCWOA 2.2806 × 10−11 2.1476 × 10−11 1.0815 × 107 7.8011 × 106 6.3006 × 106 3.9908 × 106

WOA 1.1255 × 10−3 3.3493 × 10−3 3.3488 × 107 1.7699 × 107 3.8002 × 106 7.5915 × 106

F16 F17 F18

avg std avg std avg std

DECCWOA 6.2884 × 103 4.0514 × 103 4.9673 × 102 3.4575 × 101 5.2008 × 102 5.6636 × 10−2

DEWOA 3.6134 × 104 3.3572 × 104 8.0754 × 102 1.5372 × 102 5.2033 × 102 2.2602 × 10−1

CCWOA 5.8371 × 103 3.4122 × 103 5.3911 × 102 5.8876 × 101 5.2032 × 102 8.7776 × 10−2

WOA 3.6143 × 104 2.3682 × 104 5.8016 × 102 5.5983 × 101 5.2032 × 102 1.6884 × 10−1

F19 F20 F21

avg std avg std avg std

DECCWOA 6.1813 × 102 3.3345 × 100 7.0050 × 102 1.8285 × 10−1 8.0336 × 102 5.5434 × 100

DEWOA 6.4146 × 102 2.3442 × 100 7.1656 × 102 1.1726 × 101 9.7436 × 102 2.7480 × 101

CCWOA 6.2191 × 102 3.1893 × 100 7.0106 × 102 1.1101 × 10−1 8.2734 × 102 1.6890 × 101

WOA 6.3521 × 102 3.8342 × 100 7.0102 × 102 7.0807 × 10−2 9.8601 × 102 3.9020 × 101

F22 F23 F24

avg std avg std avg std

DECCWOA 1.0398 × 103 4.1688 × 101 1.0459 × 103 8.8217 × 101 3.7945 × 103 5.1310 × 102

DEWOA 1.1215 × 103 3.4240 × 101 5.3843 × 103 9.7624 × 102 7.0285 × 103 1.3163 × 103

CCWOA 1.0486 × 103 3.6153 × 101 1.3579 × 103 7.6567 × 102 4.2859 × 103 5.9815 × 102

WOA 1.1285 × 103 5.7638 × 101 4.9219 × 103 6.8542 × 102 5.7481 × 103 9.5752 × 102

DECCWOA 1.0398 × 103 4.1688 × 101 1.0459 × 103 8.8217 × 101 3.7945 × 103 5.1310 × 102

F25 F26 F27

avg std avg std avg std

DECCWOA 1.2002 × 103 7.7530 × 10−2 1.3005 × 103 1.0640 × 10−1 1.4003 × 103 5.7690 × 10−2

DEWOA 1.2026 × 103 6.7176 × 10−1 1.3011 × 103 8.8278 × 10−1 1.4032 × 103 6.9794 × 100

CCWOA 1.2007 × 103 1.9439 × 10−1 1.3005 × 103 1.0762 × 10−1 1.4003 × 103 5.6885 × 10−2

WOA 1.2017 × 103 5.8032 × 10−1 1.3005 × 103 1.4025 × 10−1 1.4003 × 103 4.6882 × 10−2

F28 F29 F30

avg std avg std avg std

DECCWOA 1.5215 × 103 7.2851 × 100 1.6105 × 103 5.6166 × 10−1 1.6567 × 106 1.2704 × 106

DEWOA 3.9455 × 103 1.8290 × 103 1.6129 × 103 5.3817 × 10−1 5.2403 × 106 3.8043 × 106

CCWOA 1.5263 × 103 7.8018 × 100 1.6111 × 103 5.3599 × 10−1 2.3769 × 106 1.7422 × 106

WOA 1.5710 × 103 2.7076 × 101 1.6124 × 103 6.2114 × 10−1 3.8096 × 106 3.0597 × 106
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Table A3. Cont.

F31 F32 F33

avg std avg std avg std

DECCWOA 6.8401 × 103 6.1595 × 103 1.9156 × 103 1.7561 × 101 8.1086 × 103 4.1891 × 103

DEWOA 1.1805 × 104 1.9283 × 104 2.0808 × 103 7.9264 × 101 2.3551 × 104 1.9203 × 104

CCWOA 1.5061 × 104 2.0280 × 104 1.9305 × 103 3.7604 × 101 5.3268 × 103 3.0310 × 103

WOA 6.2265 × 103 4.2908 × 103 1.9415 × 103 3.6716 × 101 2.3634 × 104 1.4518 × 104

Overall rank F34 F35 overall

avg std avg std +/−/= rank

DECCWOA 7.8180 × 105 6.8802 × 105 2.8140 × 103 2.4485 × 102 ~ 1
DEWOA 1.1914 × 106 1.0362 × 106 3.3508 × 103 3.5303 × 102 31/1/3 4
CCWOA 5.8255 × 105 4.9559 × 105 2.7967 × 103 1.7716 × 102 18/4/13 2

WOA 1.3452 × 106 1.6988 × 106 3.0734 × 103 2.6034 × 102 25/1/9 3

Table A4. Comparison results for the DECCWOA with improved WOA versions.

F1 F2 F3

avg std avg std avg std

DECCWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 2.7777 × 10−18 1.2942 × 10−17

RDWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

ACWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

CCMWOA 0.0000 × 100 0.0000 × 100 4.7501 × 10−286 0.0000 × 100 0.0000 × 100 0.0000 × 100

CWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 6.9438 × 100 1.0312 × 101

BMWOA 9.0723 × 10−4 1.2467 × 10−3 7.9729 × 10−3 7.3643 × 10−3 2.4579 × 10−1 7.2733 × 10−1

BWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

LWOA 4.9293 × 10−2 1.1696 × 10−2 1.0756 × 100 1.8737 × 10−1 1.8394 × 101 4.5449 × 100

IWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 8.8944 × 101 1.3312 × 102

F4 F5 F6

avg std avg std avg std

DECCWOA 0.0000 × 100 0.0000 × 100 2.4313 × 101 6.6194 × 100 0.0000 × 100 0.0000 × 100

RDWOA 0.0000 × 100 0.0000 × 100 1.8882 × 101 5.1359 × 100 5.1469 × 10−15 3.2926 × 10−15

ACWOA 0.0000 × 100 0.0000 × 100 2.4274 × 101 4.5690 × 100 6.3093 × 10−4 2.1127 × 10−4

CCMWOA 4.3891 × 10−289 0.0000 × 100 2.7607 × 100 7.6225 × 100 2.0854 × 10−2 8.2250 × 10−3

CWOA 8.4827 × 100 1.6542 × 101 2.5501 × 101 1.5480 × 100 1.0737 × 10−1 1.6796 × 10−1

BMWOA 4.4563 × 10−3 6.7037 × 10−3 1.2474 × 10−2 3.0382 × 10−2 1.2974 × 10−3 1.8541 × 10−3

BWOA 0.0000 × 100 0.0000 × 100 2.3788 × 101 6.4677 × 100 1.3716 × 10−4 5.6219 × 10−5

LWOA 3.5964 × 10−1 9.6483 × 10−2 4.8931 × 101 4.4527 × 101 5.8005 × 10−2 1.4408 × 10−2

IWOA 3.0373 × 10−4 1.4320 × 10−3 2.3521 × 101 7.0061 × 10−1 3.5922 × 10−6 1.7322 × 10−6

F7 F8 F9

avg std avg std avg std

DECCWOA 1.7008 × 10−4 2.2308 × 10−4 −1.2569 × 104 2.8058 × 10−12 0.0000 × 100 0.0000 × 100

RDWOA 2.8442 × 10−5 3.6777 × 10−5 −1.2521 × 104 1.6733 × 102 0.0000 × 100 0.0000 × 100

ACWOA 5.6623 × 10−6 5.7698 × 10−6 −1.2569 × 104 2.1881 × 10−3 0.0000 × 100 0.0000 × 100

CCMWOA 1.9668 × 10−4 1.6220 × 10−4 −1.0928 × 104 9.5870 × 102 0.0000 × 100 0.0000 × 100

CWOA 3.1139 × 10−4 3.9744 × 10−4 −1.1583 × 104 1.6942 × 103 0.0000 × 100 0.0000 × 100

BMWOA 1.0619 × 10−3 8.6629 × 10−4 −1.2569 × 104 2.9396 × 10−3 6.3549 × 10−4 1.1849 × 10−3

BWOA 2.5018 × 10−5 3.0399 × 10−5 −1.2357 × 104 4.2512 × 102 0.0000 × 100 0.0000 × 100

LWOA 1.2178 × 10−1 4.6795 × 10−2 −1.2382 × 104 4.4862 × 102 1.0110 × 102 2.6929 × 101

IWOA 2.6929 × 10−4 3.2479 × 10−4 −1.2298 × 104 7.5775 × 102 0.0000 × 100 0.0000 × 100



Electronics 2022, 11, 4224 25 of 35

Table A4. Cont.

F10 F11 F12

avg std avg std avg std

DECCWOA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

RDWOA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 2.1668 × 10−7 1.1868 × 10−6

ACWOA 1.0066 × 10−15 6.4863 × 10−16 0.0000 × 100 0.0000 × 100 6.7416 × 10−5 1.9647 × 10−5

CCMWOA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 7.8157 × 10−4 3.6365 × 10−4

CWOA 3.0198 × 10−15 2.0010 × 10−15 0.0000 × 100 0.0000 × 100 4.4206 × 10−3 6.6548 × 10−3

BMWOA 5.1495 × 10−3 4.7013 × 10−3 2.1417 × 10−3 4.0514 × 10−3 1.5181 × 10−5 2.4654 × 10−5

BWOA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.8415 × 10−5 6.4484 × 10−6

LWOA 6.6177 × 10−1 6.9724 × 10−1 1.4973 × 10−2 1.3048 × 10−2 5.5931 × 10−1 1.1387 × 100

IWOA 2.5461 × 10−15 2.0298 × 10−15 1.8892 × 10−3 1.0348 × 10−2 5.1354 × 10−7 1.4075 × 10−7

F13 F14 F15

avg std avg std avg std

DECCWOA 1.3498 × 10−32 5.5674 × 10−48 5.3971 × 106 4.3864 × 106 1.1568 × 105 1.0038 × 105

RDWOA 3.6625 × 10−4 2.0060 × 10−3 1.0435 × 107 6.2580 × 106 2.2927 × 107 2.8097 × 107

ACWOA 2.5808 × 10−3 4.6664 × 10−3 1.4456 × 108 5.9824 × 107 7.4176 × 109 4.5829 × 109

CCMWOA 6.6551 × 10−4 7.9798 × 10−4 3.1814 × 108 1.2548 × 108 3.0720 × 1010 7.7697 × 109

CWOA 5.3049 × 10−1 4.3677 × 10−1 6.6829 × 107 4.6037 × 107 2.0499 × 109 2.4020 × 109

BMWOA 1.2733 × 10−4 2.2038 × 10−4 1.0438 × 108 3.7729 × 107 2.8151 × 108 1.3106 × 108

BWOA 3.3556 × 10−3 5.0182 × 10−3 6.4289 × 107 2.9224 × 107 2.4303 × 108 1.3580 × 108

LWOA 2.1065 × 10−2 7.2157 × 10−3 3.7558 × 106 1.3953 × 106 5.2308 × 105 1.5679 × 105

IWOA 9.8357 × 10−6 9.6866 × 10−6 2.4173 × 107 1.2055 × 107 2.1211 × 106 3.5049 × 106

F16 F17 F18

avg std avg std avg std

DECCWOA 4.0353 × 103 2.8694 × 103 4.9768 × 102 4.3913 × 101 5.2008 × 102 6.1713 × 10−2

RDWOA 6.3763 × 103 3.2741 × 103 5.3428 × 102 3.9426 × 101 5.2012 × 102 1.1564 × 10−1

ACWOA 5.0442 × 104 6.7503 × 103 1.2586 × 103 2.9833 × 102 5.2085 × 102 1.1588 × 10−1

CCMWOA 5.9083 × 104 9.2658 × 103 2.7400 × 103 1.0666 × 103 5.2088 × 102 1.7053 × 10−1

CWOA 5.7234 × 104 3.7392 × 104 8.0857 × 102 2.2460 × 102 5.2029 × 102 1.3417 × 10−1

BMWOA 5.7008 × 104 9.2535 × 103 6.7153 × 102 6.3683 × 101 5.2097 × 102 9.6222 × 10−2

BWOA 3.2197 × 104 1.0637 × 104 6.9451 × 102 7.2749 × 101 5.2067 × 102 1.7262 × 10−1

LWOA 1.0354 × 103 4.9837 × 102 5.0374 × 102 4.8236 × 101 5.2048 × 102 9.4869 × 10−2

IWOA 1.6513 × 104 9.7529 × 103 5.7401 × 102 6.2791 × 101 5.2023 × 102 1.3567 × 10−1

F19 F20 F21

avg std avg std avg std

DECCWOA 6.1886 × 102 2.8176 × 100 7.0051 × 102 2.4043 × 10−1 8.0268 × 102 2.9674 × 100

RDWOA 6.2296 × 102 3.2376 × 100 7.0097 × 102 2.3043 × 10−1 8.4662 × 102 1.2443 × 101

ACWOA 6.3380 × 102 2.8192 × 100 7.4705 × 102 2.6949 × 101 9.9173 × 102 2.8423 × 101

CCMWOA 6.3421 × 102 3.1895 × 100 9.1058 × 102 6.8146 × 101 1.0329 × 103 2.5834 × 101

CWOA 6.3619 × 102 2.3328 × 100 7.1987 × 102 1.9833 × 101 9.8919 × 102 3.5017 × 101

BMWOA 6.3209 × 102 3.4550 × 100 7.0298 × 102 7.9463 × 10−1 9.6429 × 102 2.2995 × 101

BWOA 6.3659 × 102 2.7733 × 100 7.0210 × 102 4.7824 × 10−1 9.6653 × 102 2.0133 × 101

LWOA 6.2990 × 102 3.7057 × 100 7.0071 × 102 1.0660 × 10−1 8.7689 × 102 1.4956 × 101

IWOA 6.2837 × 102 3.5182 × 100 7.0086 × 102 1.8091 × 10−1 9.1853 × 102 2.3903 × 101
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Table A4. Cont.

F22 F23 F24

avg std avg std avg std

DECCWOA 1.0349 × 103 3.5053 × 101 1.0502 × 103 7.2638 × 101 3.9773 × 103 5.2239 × 102

RDWOA 1.0862 × 103 3.9406 × 101 1.6401 × 103 2.1508 × 102 4.8765 × 103 4.8011 × 102

ACWOA 1.1353 × 103 2.7084 × 101 4.6113 × 103 7.8646 × 102 6.0951 × 103 8.4619 × 102

CCMWOA 1.1585 × 103 2.0571 × 101 5.7676 × 103 4.6957 × 102 7.0634 × 103 8.3597 × 102

CWOA 1.1502 × 103 5.9550 × 101 5.0935 × 103 8.0866 × 102 6.4607 × 103 8.0167 × 102

BMWOA 1.1247 × 103 3.0558 × 101 4.7543 × 103 7.0975 × 102 7.1260 × 103 9.0188 × 102

BWOA 1.1033 × 103 2.3404 × 101 4.8599 × 103 7.9435 × 102 6.5557 × 103 1.0588 × 103

LWOA 1.1231 × 103 4.1332 × 101 2.1055 × 103 5.0404 × 102 5.3203 × 103 5.2375 × 102

IWOA 1.1290 × 103 5.0219 × 101 2.6021 × 103 4.6117 × 102 5.5791 × 103 7.2655 × 102

F25 F26 F27

avg std avg std avg std

DECCWOA 1.2002 × 103 5.1670 × 10−2 1.3005 × 103 1.1585 × 10−1 1.4003 × 103 4.7444 × 10−2

RDWOA 1.2005 × 103 1.8157 × 10−1 1.3005 × 103 1.0242 × 10−1 1.4002 × 103 3.7231 × 10−2

ACWOA 1.2017 × 103 5.3455 × 10−1 1.3011 × 103 8.3617 × 10−1 1.4239 × 103 1.2976 × 101

CCMWOA 1.2018 × 103 4.5129 × 10−1 1.3041 × 103 8.3728 × 10−1 1.4661 × 103 1.6380 × 101

CWOA 1.2018 × 103 5.2022 × 10−1 1.3006 × 103 1.2049 × 10−1 1.4102 × 103 1.2849 × 101

BMWOA 1.2023 × 103 4.1490 × 10−1 1.3005 × 103 1.1904 × 10−1 1.4003 × 103 1.0699 × 10−1

BWOA 1.2019 × 103 4.8775 × 10−1 1.3005 × 103 1.3303 × 10−1 1.4003 × 103 4.2027 × 10−2

LWOA 1.2008 × 103 3.0020 × 10−1 1.3005 × 103 1.1102 × 10−1 1.4003 × 103 9.9959 × 10−2

IWOA 1.2010 × 103 2.9781 × 10−1 1.3005 × 103 9.8276 × 10−2 1.4003 × 103 5.2298 × 10−2

F28 F29 F30

avg std avg std avg std

DECCWOA 1.5195 × 103 5.8976 × 100 1.6103 × 103 7.8355 × 10−1 1.4951 × 106 1.0794 × 106

RDWOA 1.5215 × 103 7.2912 × 100 1.6116 × 103 5.9134 × 10−1 1.1935 × 106 1.0797 × 106

ACWOA 1.8396 × 103 4.0931 × 102 1.6121 × 103 4.8464 × 10−1 1.3124 × 107 8.0308 × 106

CCMWOA 7.0062 × 103 4.0693 × 103 1.6130 × 103 3.2081 × 10−1 2.6816 × 107 1.9260 × 107

CWOA 1.9731 × 103 8.2350 × 102 1.6127 × 103 5.6484 × 10−1 9.8463 × 106 8.8774 × 106

BMWOA 1.5828 × 103 3.6612 × 101 1.6126 × 103 2.1626 × 10−1 6.9174 × 106 4.9113 × 106

BWOA 1.6258 × 103 4.8685 × 101 1.6124 × 103 4.8342 × 10−1 7.5640 × 106 5.4938 × 106

LWOA 1.5213 × 103 4.9669 × 100 1.6125 × 103 5.6375 × 10−1 4.9220 × 105 2.9566 × 105

IWOA 1.5506 × 103 1.6210 × 101 1.6125 × 103 5.1867 × 10−1 2.7873 × 106 2.0454 × 106

F31 F32 F33

avg std avg std avg std

DECCWOA 9.2541 × 103 2.1036 × 104 1.9198 × 103 2.4744 × 101 8.8237 × 103 5.3819 × 103

RDWOA 4.8557 × 103 3.4855 × 103 1.9194 × 103 2.6942 × 101 6.7743 × 103 3.5180 × 103

ACWOA 4.4984 × 107 4.3109 × 107 2.0047 × 103 3.3162 × 101 3.7129 × 104 1.9130 × 104

CCMWOA 9.8440 × 107 1.2615 × 108 2.0824 × 103 5.0281 × 101 5.7205 × 104 2.2855 × 104

CWOA 3.9424 × 106 1.2057 × 107 2.0018 × 103 6.3131 × 101 5.7907 × 104 5.9437 × 104

BMWOA 1.1037 × 105 1.2099 × 105 1.9467 × 103 4.0178 × 101 3.3436 × 104 1.7890 × 104

BWOA 1.1889 × 105 3.5142 × 105 1.9593 × 103 3.8145 × 101 3.2143 × 104 1.6907 × 104

LWOA 1.0695 × 104 5.9845 × 103 1.9230 × 103 2.4187 × 101 3.0576 × 103 7.5160 × 102

IWOA 5.4855 × 103 4.2910 × 103 1.9348 × 103 3.5960 × 101 1.6411 × 104 1.0072 × 104
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Table A4. Cont.

Overall rank F34 F35 overall

avg std avg std +/−/= rank

DECCWOA 1.0426 × 106 8.4796 × 105 2.8721 × 103 2.1610 × 102 ~ 1
RDWOA 4.2175 × 105 3.3446 × 105 2.7874 × 103 2.1665 × 102 16/6/13 2
ACWOA 4.2559 × 106 3.6243 × 106 3.0278 × 103 2.2024 × 102 26/3/6 6

CCMWOA 8.7004 × 106 5.9791 × 106 3.2984 × 103 4.4928 × 102 28/2/5 9
CWOA 3.1633 × 106 2.9730 × 106 3.1092 × 103 2.3259 × 102 29/0/6 8

BMWOA 1.0736 × 106 9.0915 × 105 3.0014 × 103 2.7107 × 102 32/1/2 7
BWOA 1.9551 × 106 1.5899 × 106 2.9774 × 103 2.8735 × 102 23/3/9 4
LWOA 2.0517 × 105 1.6837 × 105 2.9007 × 103 2.4887 × 102 26/4/5 5
IWOA 9.3081 × 105 7.7249 × 105 2.9329 × 103 1.7696 × 102 24/1/10 3

Table A5. Comparison results for the DECCWOA with advanced algorithms.

F1 F2 F3

avg std avg std avg std

DECCWOA 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.0221 × 10−18 4.2975 × 10−18

IGWO 0.0000 × 100 0.0000 × 100 3.6328 × 10−261 0.0000 × 100 1.3124 × 10−86 7.1881 × 10−86

OBLGWO 0.0000 × 100 0.0000 × 100 3.6589 × 10−142 2.004 × 10−141 6.2014 × 10−293 0.0000 × 100

CGPSO 2.3583 × 10−8 7.7088 × 10−8 3.9726 × 10−5 2.8781 × 10−5 6.3491 × 10−2 5.1833 × 10−2

ALPSO 1.1539 × 10−184 0.0000 × 100 2.5959 × 10−8 7.1555 × 10−8 2.2102 × 10−11 2.9723 × 10−11

RCBA 8.9446 × 10−3 2.9769 × 10−3 5.8765 × 10−1 8.4909 × 10−2 2.1948 × 100 5.2552 × 10−1

CBA 7.2954 × 10−8 3.8213 × 10−7 4.1161 × 101 1.3912 × 102 1.3118 × 101 6.5496 × 100

OBSCA 1.0911 × 10−103 5.5402 × 10−103 4.3833 × 10−91 1.1161 × 10−90 3.1617 × 10−24 1.1702 × 10−23

SCADE 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100 0.0000 × 100

F4 F5 F6

avg std avg std avg std

DECCWOA 1.0221 × 10−18 4.2975 × 10−18 2.6083 × 101 3.1418 × 10−1 0.0000 × 100 0.0000 × 100

IGWO 1.3124 × 10−86 7.1881 × 10−86 2.3216 × 101 1.8144 × 10−1 1.2448 × 10−5 3.5159 × 10−6

OBLGWO 6.2014 × 10−293 0.0000 × 100 2.6052 × 101 3.8656 × 10−1 3.9085 × 10−5 1.4498 × 10−5

CGPSO 6.3491 × 10−2 5.1833 × 10−2 1.0747 × 10−7 1.4040 × 10−7 1.5149 × 10−8 2.7356 × 10−8

ALPSO 2.2102 × 10−11 2.9723 × 10−11 3.5496 × 101 3.2473 × 101 5.9288 × 10−31 2.2626 × 10−30

RCBA 2.1948 × 100 5.2552 × 10−1 3.6041 × 101 4.0444 × 101 8.7533 × 10−3 2.4284 × 10−3

CBA 1.3118 × 101 6.5496 × 100 7.3423 × 101 1.2319 × 102 4.4526 × 10−7 2.4194 × 10−6

OBSCA 3.1617 × 10−24 1.1702 × 10−23 2.7647 × 101 3.8007 × 10−1 3.8321 × 100 2.7513 × 10−1

SCADE 0.0000 × 100 0.0000 × 100 1.5398 × 101 1.3017 × 101 1.7996 × 10−7 1.6508 × 10−7

F7 F8 F9

avg std avg std avg std

DECCWOA 1.1896 × 10−4 1.4262 × 10−4 −1.3066 × 104 2.6313 × 103 0.0000 × 100 0.0000 × 100

IGWO 2.9290 × 10−4 2.6976 × 10−4 −7.4319 × 103 6.6317 × 102 0.0000 × 100 0.0000 × 100

OBLGWO 2.4381 × 10−5 2.9727 × 10−5 −1.2561 × 104 4.4545 × 101 0.0000 × 100 0.0000 × 100

CGPSO 1.4906 × 10−5 1.4183 × 10−5 −3.7698 × 104 6.6756 × 103 3.0143 × 10−9 6.2053 × 10−9

ALPSO 7.8389 × 10−2 3.1754 × 10−2 −1.1531 × 104 2.8700 × 102 1.9471 × 101 7.9710 × 100

RCBA 1.1712 × 10−1 5.5739 × 10−2 −7.3244 × 103 5.4651 × 102 2.0111 × 101 4.6024 × 100

CBA 1.5885 × 10−1 3.4560 × 10−1 −7.3445 × 103 6.5505 × 102 1.2498 × 102 4.7753 × 101

OBSCA 8.1175 × 10−4 5.3137 × 10−4 −4.1274 × 103 2.4305 × 102 0.0000 × 100 0.0000 × 100

SCADE 2.9509 × 10−4 2.0997 × 10−4 −1.2569 × 104 1.1550 × 10−2 0.0000 × 100 0.0000 × 100
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F10 F11 F12

avg std avg std avg std

DECCWOA 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 1.5705 × 10−32 5.5674 × 10−48

IGWO 4.9146 × 10−15 1.2283 × 10−15 0.0000 × 100 0.0000 × 100 1.1169 × 10−6 3.8305 × 10−7

OBLGWO 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 3.8858 × 10−4 1.1452 × 10−3

CGPSO 1.8069 × 10−5 1.2953 × 10−5 4.3701 × 10−8 7.1267 × 10−8 6.2743 × 10−11 1.4249 × 10−10

ALPSO 8.0156 × 10−1 8.3429 × 10−1 1.6465 × 10−2 1.5344 × 10−2 3.0222 × 10−2 8.1300 × 10−2

RCBA 1.0853 × 10−1 2.7602 × 10−2 1.0473 × 10−2 1.0208 × 10−2 9.1885 × 100 2.8806 × 100

CBA 1.5880 × 101 2.1141 × 100 1.3514 × 10−2 1.8331 × 10−2 1.4396 × 101 4.7131 × 100

OBSCA 4.3225 × 10−15 6.4863 × 10−16 0.0000 × 100 0.0000 × 100 3.8964 × 10−1 4.5185 × 10−2

SCADE 8.8818 × 10−16 0.0000 × 100 0.0000 × 100 0.0000 × 100 5.6904 × 10−9 4.8080 × 10−9

F13 F14 F15

avg std avg std avg std

DECCWOA 1.3498 × 10−32 5.5674 × 10−48 4.2212 × 106 3.5710 × 106 1.6057 × 105 1.7381 × 105

IGWO 1.4838 × 10−2 2.6985 × 10−2 1.7924 × 107 6.8885 × 106 2.3989 × 106 1.4218 × 106

OBLGWO 5.7997 × 10−2 7.7859 × 10−2 1.7531 × 107 1.0402 × 107 1.3307 × 107 1.0251 × 107

CGPSO 3.1353 × 10−9 9.6561 × 10−9 9.8321 × 106 2.5274 × 106 1.5880 × 108 1.6828 × 107

ALPSO 2.8346 × 10−2 9.8785 × 10−2 5.7145 × 106 5.4783 × 106 2.9466 × 103 3.6264 × 103

RCBA 5.1201 × 10−3 4.6593 × 10−3 1.0422 × 106 3.8825 × 105 2.5206 × 104 1.0389 × 104

CBA 3.1616 × 101 2.6961 × 101 4.7886 × 106 1.8780 × 106 1.2467 × 104 1.0840 × 104

OBSCA 2.1646 × 100 1.1588 × 10−1 3.9908 × 108 1.1211 × 108 2.4969 × 1010 3.6691 × 109

SCADE 8.3767 × 10−8 6.6478 × 10−8 4.7479 × 108 9.8759 × 107 2.9269 × 1010 4.2012 × 109

F16 F17 F18

avg std avg std avg std

DECCWOA 7.8122 × 103 5.4762 × 103 5.1647 × 102 4.8965 × 101 5.2007 × 102 5.1181 × 10−2

IGWO 7.2399 × 103 2.0340 × 103 5.2142 × 102 3.0682 × 101 5.2050 × 102 1.4090 × 10−1

OBLGWO 1.0074 × 104 3.8144 × 103 5.4284 × 102 3.5930 × 101 5.2095 × 102 5.4001 × 10−2

CGPSO 2.3365 × 103 5.0383 × 102 4.6884 × 102 3.1903 × 101 5.2098 × 102 4.2868 × 10−2

ALPSO 3.7450 × 102 1.3166 × 102 5.4221 × 102 5.6842 × 101 5.2080 × 102 5.8119 × 10−2

RCBA 3.2947 × 102 1.2959 × 101 4.7036 × 102 3.7390 × 101 5.2010 × 102 9.5615 × 10−2

CBA 4.7703 × 103 9.2720 × 103 4.9781 × 102 4.4714 × 101 5.2009 × 102 1.3697 × 10−1

OBSCA 5.3939 × 104 6.9272 × 103 2.2087 × 103 5.3362 × 102 5.2096 × 102 5.8056 × 10−2

SCADE 5.4785 × 104 6.7546 × 103 2.2800 × 103 4.7955 × 102 5.2094 × 102 5.3187 × 10−2

F19 F20 F21

avg std avg std avg std

DECCWOA 6.1885 × 102 2.4155 × 100 7.0061 × 102 3.1716 × 10−1 8.0279 × 102 8.0509 × 100

IGWO 6.1887 × 102 2.6487 × 100 7.0099 × 102 5.1420 × 10−2 8.8181 × 102 1.6752 × 101

OBLGWO 6.1968 × 102 4.3347 × 100 7.0117 × 102 9.6122 × 10−2 9.2963 × 102 3.9241 × 101

CGPSO 6.2402 × 102 2.9481 × 100 7.0241 × 102 2.0187 × 10−1 9.8743 × 102 2.5413 × 101

ALPSO 6.1705 × 102 2.4439 × 100 7.0001 × 102 8.9890 × 10−3 8.2142 × 102 9.5753 × 100

RCBA 6.3882 × 102 3.5284 × 100 7.0007 × 102 1.8671 × 10−2 1.0209 × 103 3.9995 × 101

CBA 6.4033 × 102 2.8154 × 100 7.0003 × 102 3.4856 × 10−2 1.0228 × 103 6.1207 × 101

OBSCA 6.3161 × 102 1.3106 × 100 9.0597 × 102 3.6858 × 101 1.0643 × 103 1.7737 × 101

SCADE 6.3355 × 102 2.2424 × 100 8.9018 × 102 3.3322 × 101 1.0695 × 103 1.2949 × 101



Electronics 2022, 11, 4224 29 of 35

Table A5. Cont.

F22 F23 F24

avg std avg std avg std

DECCWOA 1.0366 × 103 3.6638 × 101 1.0472 × 103 5.2652 × 101 3.6010 × 103 4.5441 × 102

IGWO 1.0087 × 103 1.9673 × 101 3.3271 × 103 4.7812 × 102 4.6073 × 103 7.5057 × 102

OBLGWO 1.0661 × 103 4.0353 × 101 4.0667 × 103 1.0107 × 103 5.5480 × 103 1.0343 × 103

CGPSO 1.1225 × 103 2.5722 × 101 5.5982 × 103 5.0945 × 102 6.0825 × 103 5.5185 × 102

ALPSO 1.0021 × 103 2.9422 × 101 1.6121 × 103 3.2630 × 102 4.0735 × 103 5.3691 × 102

RCBA 1.1638 × 103 6.3597 × 101 5.6153 × 103 6.4055 × 102 5.8506 × 103 8.1461 × 102

CBA 1.1526 × 103 7.2911 × 101 5.7931 × 103 7.2017 × 102 5.9590 × 103 7.1736 × 102

OBSCA 1.1929 × 103 1.5671 × 101 6.1341 × 103 3.2876 × 102 7.2777 × 103 4.0271 × 102

SCADE 1.2049 × 103 1.8580 × 101 7.4883 × 103 2.3162 × 102 8.2006 × 103 2.9486 × 102

F25 F26 F27

avg std avg std avg std

DECCWOA 1.2002 × 103 7.1972 × 10−2 1.3005 × 103 1.4836 × 10−1 1.4003 × 103 4.2207 × 10−2

IGWO 1.2008 × 103 3.5285 × 10−1 1.3006 × 103 1.2395 × 10−1 1.4004 × 103 2.5832 × 10−1

OBLGWO 1.2023 × 103 6.8209 × 10−1 1.3005 × 103 1.1878 × 10−1 1.4005 × 103 2.3451 × 10−1

CGPSO 1.2025 × 103 2.0362 × 10−1 1.3004 × 103 1.0032 × 10−1 1.4003 × 103 1.2353 × 10−1

ALPSO 1.2013 × 103 5.4330 × 10−1 1.3005 × 103 7.9368 × 10−2 1.4006 × 103 2.8021 × 10−1

RCBA 1.2006 × 103 3.7833 × 10−1 1.3005 × 103 1.3700 × 10−1 1.4003 × 103 9.7996 × 10−2

CBA 1.2011 × 103 7.3537 × 10−1 1.3005 × 103 1.4823 × 10−1 1.4003 × 103 1.5708 × 10−1

OBSCA 1.2023 × 103 4.4892 × 10−1 1.3036 × 103 2.6704 × 10−1 1.4695 × 103 1.1814 × 101

SCADE 1.2026 × 103 2.4794 × 10−1 1.3039 × 103 2.9836 × 10−1 1.4881 × 103 1.3091 × 101

F28 F29 F30

avg std avg std avg std

DECCWOA 1.5202 × 103 6.6341 × 100 1.6102 × 103 7.9146 × 10−1 1.8690 × 106 1.1246 × 106

IGWO 1.5176 × 103 3.7863 × 100 1.6116 × 103 5.8466 × 10−1 9.2251 × 105 5.5675 × 105

OBLGWO 1.5150 × 103 5.7646 × 100 1.6120 × 103 6.3233 × 10−1 1.3955 × 106 1.0330 × 106

CGPSO 1.5176 × 103 1.3084 × 100 1.6117 × 103 3.2922 × 10−1 3.3985 × 105 1.7015 × 105

ALPSO 1.5115 × 103 4.1448 × 100 1.6118 × 103 3.2864 × 10−1 5.5179 × 105 4.6710 × 105

RCBA 1.5371 × 103 9.0984 × 100 1.6135 × 103 3.4738 × 10−1 1.2165 × 105 7.5279 × 104

CBA 1.5589 × 103 1.7899 × 101 1.6133 × 103 5.2338 × 10−1 1.8619 × 105 1.2340 × 105

OBSCA 1.4085 × 104 8.8848 × 103 1.6129 × 103 2.5975 × 10−1 1.1278 × 107 5.7586 × 106

SCADE 1.8666 × 104 6.8024 × 103 1.6127 × 103 1.7040 × 10−1 1.5787 × 107 8.3755 × 106

F31 F32 F33

avg std avg std avg std

DECCWOA 4.3650 × 103 3.0442 × 103 1.9120 × 103 1.2480 × 101 7.8097 × 103 4.1959 × 103

IGWO 1.7080 × 104 2.1685 × 104 1.9180 × 103 1.4497 × 101 3.0438 × 103 6.5561 × 102

OBLGWO 8.3234 × 104 1.7925 × 105 1.9215 × 103 2.3356 × 101 5.5656 × 103 2.6114 × 103

CGPSO 2.4871 × 106 7.6618 × 105 1.9170 × 103 2.9535 × 100 2.4762 × 103 1.6062 × 102

ALPSO 7.8595 × 103 7.3812 × 103 1.9170 × 103 2.0884 × 101 3.0087 × 103 4.2177 × 102

RCBA 6.9919 × 103 7.0401 × 103 1.9292 × 103 2.9262 × 101 2.4379 × 103 1.3813 × 102

CBA 9.7529 × 103 9.7686 × 103 1.9246 × 103 2.6288 × 101 2.9663 × 103 1.2059 × 103

OBSCA 1.5585 × 108 1.0228 × 108 2.0091 × 103 1.5224 × 101 3.1925 × 104 1.3827 × 104

SCADE 1.9277 × 108 9.7379 × 107 2.0133 × 103 1.3639 × 101 2.7694 × 104 1.1641 × 104
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Overall rank F34 F35 overall

avg std avg std +/−/= rank

DECCWOA 5.6266 × 105 5.3759 × 105 2.8005 × 103 2.0373 × 102 ~ 1
IGWO 2.5893 × 105 2.2750 × 105 2.5846 × 103 1.4319 × 102 20/8/7 2

OBLGWO 5.1886 × 105 3.8300 × 105 2.6930 × 103 1.9962 × 102 19/5/11 5
CGPSO 1.2464 × 105 6.8764 × 104 2.9020 × 103 2.0995 × 102 23/9/3 4
ALPSO 1.1929 × 105 2.9474 × 105 2.7316 × 103 2.0662 × 102 19/9/7 3
RCBA 8.3440 × 104 3.8322 × 104 3.3862 × 103 3.5129 × 102 23/9/3 6
CBA 1.2013 × 105 7.8959 × 104 3.4067 × 103 2.6854 × 102 24/6/5 7

OBSCA 1.9523 × 106 9.0846 × 105 3.1622 × 103 1.4760 × 102 32/1/2 9
SCADE 2.4532 × 106 1.2033 × 106 3.1167 × 103 1.2839 × 102 28/2/5 7

Table A6. Description of each attribute for the talent stability data.

Attributes Name Description

F1 Sex 1 for male and 2 for female.

F2 Political affiliation
There are five categories: Communist Party members, reserve party members,
democratic party members, Communist Youth League members and the masses,
denoted by 1, 2, 3, 4 and 13, respectively.

F3 Professional attributes 1 indicates arts, 2 indicates science and 3 indicates less than junior college (junior
college not divided into arts and science subjects)

F4 Age

Ages 25–30, 31–35, 36–40, 41–45, 46–50, 51–55 and 56–60 are indicated by 1, 2, 3,
4, 5, 6 and 7, respectively. Young and middle-aged people have a strong level of
competence and a strong tendency to move because of upward mobility, life
pressures, etc.

F5 Household Registration There are three categories: in-city, in-province and out-of-province, indicated by
0, 1 and 2, respectively.

F6 Type of place of origin There are three categories: urban, township and rural, denoted by 1, 2 and 3,
respectively.

F7 City-level and above talent
categories

There are categories A, B, C, D and E, denoted by 1, 2, 3, 4 and 5, respectively. 6
is for talent category F and no talent category is denoted by 10.

F8 Nature of previous unit

0 indicating pending employment, 10 indicating state institutions, 20 indicating
scientific research institutions, 21 indicating higher education institutions, 22
indicating secondary and junior education institutions, 23 indicating health and
medical institutions, 29 indicating other institutions, 31 indicating state-owned
enterprises, 32 indicating foreign-funded enterprises, 39 indicating private
enterprises, 40 indicating the army, 55 indicating rural organizations, and 99
indicating self-employment. No previous unit is denoted by 100.

F9 Wenzhou colleges and
university’s location type Prefectural level cities, denoted by 2.

F10
Year of employment at
Wenzhou colleges and

universities

This is a measure of stability in the unit of employment. 1 is used for entry
before 2000 (merger), 2 for entry from 2001–2006 (preparation), 3 for entry from
2007–2008 (de-preparation), 4 for entry from 2009–2014 (school introduction
policy), 5 for entry from 2015–2017 (city introduction policy) and 6 for entry from
2018. To date (increased introduction by the school) entry is indicated by 6. (It
can also be described in terms of stable years 3, 4–6, 7–10, 11+ years).

F11 Types of positions at Wenzhou
colleges and universities

Teaching staff are represented by 24, PhD students and research staff by 11,
professional and technical staff by 29, administrative staff by 101 and counsellors
by 102.
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Attributes Name Description

F12
Professional relevance of
employment at Wenzhou
colleges and universities

It is used to measure the relevance of the major studied to the job, with higher
percentages indicating higher relevance.

F13
Monthly salary level for

employment at Wenzhou
colleges and universities: RMB

It is used to measure the average monthly salary received, with higher values
indicating higher salary levels.

F14 Current employment

Current employment is indicated by 1 for Wenzhou undergraduate institutions;
2 for civil servants or institutions; 3 for undergraduate institutions (including
doctoral studies); 4 for vocational institutions in other cities; 5 for vocational
institutions in the city, 6 for enterprises, 7 for going abroad and 8 for
pending employment.

F15 Time of introduction at current
employment

Indicated by 1 for entry before 2000 (merger), 2 for entry from 2001–2006
(preparation), 3 for entry from 2007–2008 (de-preparation), 4 for entry from
2009–2014 (school introduction policy), 5 for entry from 2015–2017 (city
introduction policy) and 6 for entry from 2018-present (increased
school introduction).

F16 Nature of current employment

0 indicating pending employment, 10 indicating state institutions, 20 indicating
scientific research institutions, 21 indicating higher education institutions, 22
indicating secondary and junior education institutions, 23 indicating health and
medical institutions, 29 indicating other institutions, 31 indicating state-owned
enterprises, 32 indicating foreign-funded enterprises, 39 indicating private
enterprises, 40 indicating the army, 55 indicating rural organizations and 99
indicating self-employment.

F17 Type of location of current
employment unit

Pending employment is represented by 0, sub-provincial and large cities by 1,
prefecture-level cities by 2 and counties and villages by 3.

F18 Type of current employment

The type of position currently employed is expressed in the same way as the
type of position in the previous employment unit indicated in F11. Pending
employment is indicated by 0, civil servants by 10, doctoral students and
researchers by 11, engineers and technicians by 13, teaching staff by 24,
professional and technical staff by 29, commercial service staff and clerks by 30,
military personnel by 80, administrative staff by 101 and counsellors by 102.

F19 Relevance of current
employment profession

The professional relevance of current employment is expressed in the same way
as the type of position in the previous employment unit indicated by F11.

F20 Monthly salary level in current
employment unit: RMB

The current employment monthly salary level is expressed in the same way as
the previous employment monthly salary level in F13.

F21 Salary differential

It is used to measure the change in the monthly salary of the current
employment unit from that of the previous employment unit, that is, the
difference between the monthly salary level of the current employment unit
expressed in F21 and the monthly salary level of the previous employment unit
expressed in F13, with a larger value indicating a larger increase in
monthly salary.

F22 Professional and technical
position at the time of leaving

Positive senior, deputy senior, intermediate, primary and none are represented
by 1, 2, 3, 4, and 5, respectively.

F23 Double first-rate 1 means double first-rate, 2 means not.

F24 Highest Education College, university and postgraduate are denoted by 0, 1 and 2, respectively.
Below junior college, it is denoted by 5.

F25 Highest degrees Tertiary, bachelor, master and doctoral degrees are denoted by 0, 1, 2 and 3,
respectively. Below the tertiary level, they are denoted by 5.

F26 Change in place of employment A variation is indicated by 1 and no variation is indicated by 0.
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