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Abstract: In view of the substation fire early warning using a single information sensor monitoring,
it is easy to make mistakes and omissions. Taking the cable in substation as the research object,
a multi-information fusion fire prediction model based on back propagation neural network (BPNN)
and fuzzy set theory is proposed. Firstly, the BPNN model is trained by using the existing data.
Secondly, the artificial fish swarm algorithm (AFSA) is used to optimize the BPNN, which speeds up
convergence speed of the model and improves the accuracy of prediction. The fuzzy set theory is
applied to fuse the predicted fire probability to obtain the optimal fire prevention and control decision.
Finally, the fire protection measures are taken according to the fire decision. The experimental show
that the average absolute errors of no fire, smoldering and open fire decreased by 26.06%, 38.5%
and 43.13% respectively. The model has higher prediction accuracy, can reasonably output different
levels of fire alarm signals, establish substation fire warning and prevention and control system, and
provide reference for future substation fire and other disasters warning and prevention and control.

Keywords: artificial fish swarm algorithm; back propagation neural network; multi-information
fusion; substation fire warning

1. Introduction

Substation which is important part of the power system is responsible for voltage
transformation, power distribution, and voltage regulation through current control. The
alternating current (AC) power supply system offers assure for the safety and stable opera-
tion of the substation, which is the premise for stable operation of the entire substation [1–3].
However, in actual situation, this part of the power supply system is prone to fire, which
causes the substation to not operate normally [4]. Station AC power supply provides
reliable power supply for station load. The cables that transmit energy are spread in substa-
tion cable ditches and cable shafts. If there is no effective means to monitor the operation
status of the cables, the fire caused by the cable failure will cause serious accidents in the
substation [5,6]. Thus, studying the fire warning technology of the cables in the sub-
station to raise the safety of AC power supply system for the station become more and
more significant.

At present, the main way of fire alarm for substation AC power system is moni-
tored by smoke sensor or temperature sensor [7]. Monitoring with a single sensor may
cause false alarm, or delay alarm, resulting in more serious fire. For the above prob-
lems, multi-information fusion technology has been applied to load forecasting, industrial
safety monitoring system, and substation fire monitoring system [8,9]. The literature [10]
uses a fusion of multiple information such as weather, holidays, and historical loads to
forecast transit compliance. It has better prediction results compared to single informa-
tion. Reference [11] applied multi-information fusion technology to chemical plant safety
warning and improved the performance of the warning system by monitoring dust con-
centration, temperature, and flue gas concentration. In ref. [12], an early warning system
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based on multi-information fusion was developed for the fire protection of energy storage
systems. The linkage with the fire protection system was realized. In this paper, the multi-
information fusion technology is applied to the fire probability prediction of substations.
For the early warning technology of fire, different information is selected to determine
whether a fire will occur or not [13]. In ref. [14], an accurate prediction model was con-
structed by analyzing the factors affecting hydrogen pipeline leakage fires and selecting
the main factors. Ref. [15] uses temperature, smoke, and carbon monoxide as input signals
for electrical fire warning systems. Ref. [16] applied a combination of smoke and gas
sensors for aircraft fire detection with shorter alarm times than smoke sensors operating
alone. Ref. [17] uses the characteristic parameter residual current of power equipment as a
characteristic signal for predicting electrical fires, which effectively reduces the false alarm
rate. Based on the above analysis, this paper proposes to use residual current, operating
voltage and operating current as input signals for predicting fires according to the working
characteristics of substations, and combine them with temperature to further improve the
accuracy rate.

With the development of artificial intelligence in various fields, the combination of
multi-information fusion technology and artificial intelligence algorithms is gradually ap-
plied to fire early warning. [18–21]. Ref. [22] applied fuzzy logic to substation fire detection
and combined it with multi-information fusion technology to improve the performance
of substation fire detection. Ref. [23] selected temperature, smoke concentration, and CO
concentration and applied BP neural network to predict the probability of fire. In ref. [24],
gray-fuzzy neural networks were proposed to predict fires and determine the fire probabil-
ity by predicting the smoke concentration and density. In ref. [25] uses dynamic Bayesian
networks combined with fuzzy set theory for evaluating the reliability of fire alarm systems.

Therefore, based on the working characteristics of the substation, this paper selects
residual current, working voltage, working current and the inherent characteristic tem-
perature when the fire occurs as the input of the prediction model. Artificial fish swarm
algorithm is used to optimize BP neural network to predict fire probability, and the pre-
diction results are divided into open fire probability, smoldering probability and no fire
probability. The three fire probabilities are output through the decision-making of fuzzy
theory to judge whether a fire occurs. Finally, the fire protection system is linked to ensure
the safety of the substation. The main innovations of this study are as follows:

1. Residual current, working voltage, working current and temperature are used as
input signals to judge the probability of fire. It can predict whether a fire will occur in
advance through the change of current before the fire.

2. BP neural network is used to predict open fire probability, smoldering probability and
no fire probability, and artificial fish swarm algorithm is used to optimize BP neural
network to improve prediction accuracy.

3. The three fire probabilities are combined with the fire duration for decision output,
and the final fire output is divided into four levels: no fire, alert, alarm and serious
alarm. Combined with fire fighting system to ensure substation safety.

2. Multi-Sensor Information Fusion Technology

The technology contains information layer, feature layer and decision layer [26,27].
The structure of the text shown in the Figure 1:

The decision-making layer makes judgment based on fire probability, and combines
fire probability value with other decision-making factors. When fire probability is exactly
0.5, it is impossible to judge whether there is a fire. Therefore, the fuzzy theory is introduced
and the duration of fire signal is added as decision-making factor to improve the decision-
making level. The output of decision-making level is divided into four levels: no fire,
warning, alarm and serious alarm. The step of fuzzy reasoning firstly fuzzifies the input
signals and output signals, then establishes the fuzzy rules [28]. Equations (1) and (2)
establish fuzzy implication relations. Rule i correspond to the fuzzy implication relationship
Ri. Finally, the table of input and output rules is generated.
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Ri = (Y1(i) and Y2(i) and TI) (1)

R(x, y, z, u) = Un
i=1Ri (2)
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The occurrence of fire can be clearly judged from the output surface of fuzzy inference.
The x axis is the probability of open fire, the y axis is the probability of smoldering fire, the z
axis is the decision output value u, and the fluctuation of color represents the early warning
situation. The dark blue situation is relatively light, and the yellow situation is serious.
Specifically, when u < 0.25, it is normal, 0.25 ≤ u < 0.5, it is abnormal, 0.5 ≤ u < 0.75, it is
critical alarm, and u ≥ 0.75, it is extremely urgent alarm.

3. Establishment of Substation Fire Warning Model
3.1. The Relationship between Input Signal and Output Signal

In the text, where i = 1,2, . . . , n is set to input signal. j = 1,2, . . . , m is set to output
signal. The relationship between them is as follows:

Sk =
n

∑
i=1

υkiXi + υk0, 1 ≤ k ≤ h (3)

Zk = σ(Sk), 1 ≤ k ≤ h (4)

Yj =
h

∑
k=1

ωjkZk + ωj0, 1 ≤ j ≤ m (5)

The hidden layer input is Sk, the hidden layer output is Zk, vki is the connection weight
between input layer and hidden layer, vk0 is the hidden layer threshold, ωjk is connection
weight from hidden layer to the output layer, ωj0 is the output layer threshold [15].

The error is calculated by simulating the output of the training samples and is propa-
gated backwards to continuously adjust the weights and thresholds to meet error require-
ments. The error function is:

E =
1
2

t

∑
a=1

m

∑
k=1

(qa
k − pa

k)
2 (6)

where qa
k is actual output, pa

k is expected output.

3.2. Optimized Prediction Model of AFSA Based on BPNN

Owing to random selection of thresholds and weights of the BPNN, resulting in
different convergence times, even the standard error cannot be reached within the specified
number of times, this paper uses AFSA to optimize the BPNN [29–31].

3.2.1. Description of AFSA

An individual’s state in an artificial fish population in a D-dimensional space is
Xi = (Xi1, Xi2, . . . , XiD), i = 1, 2, 3, . . . , N. Y represents the fitness of current position of
artificial fish. The fitness of current position Xi, Yi is used to evaluate the fitness of the
current position X. The distance between individuals is dij =

∣∣∣∣Xi − Xj
∣∣∣∣. The optimal

solution is found by foraging, clustering and tailing behaviour.

1. Foraging Behavior

Xv = Xi + random× visual (7)

Xi|next = Xi + random× step× Xv − Xi
||Xv − Xi||

(8)

Xi|next = Xi + random× step (9)

If Yv > Yi, the food concentration at the location is high and the artificial fish moves to
D in that direction. If it is not satisfied and the maximum number of attempts is reached, it
moves randomly.
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2. Cluster Behavior

Set a time t, artificial fish state Xi, number of partners Nf within the field of view to
form a set Si, if Si = ∅, artificial fish perform foraging behavior, if there are other partners,
partner population center location Xc, and Yc

N f
> δYi, artificial fish move to that location.

3. Tailing Behavior

The optimal position with inartificial fish field of view is Xm, and the corresponding
Ym is the maximum fitness value. If Ym

N f
> δYi indicates that the food concentration in this

location is high and not crowded, it moves in this direction.

3.2.2. Optimization Process of AFSA

The variables to be optimized in this paper are vki, ωjk, bk, bj of the BPNN. Each
artificial fish represents a set of weights and thresholds of the BPNN [32]. Use the reciprocal
of E as the Y value to find the maximum of the fitness Y.

Y =
1
E
= 1/

[
1
2

t

∑
a=1

m

∑
k=1

(qa
k − pa

k)
2

]
(10)

Figure 3 shows the optimization process.

3.3. Assessment Indicators

In the text, the accuracy of substation fire warning model is evaluated by means of
two error indexes, mean absolute percentage error (MAPE) yMAPE and root mean square
error (RMSE). MAPE and RMSE determine the accuracy of the model. Equation (11) is
MAPE, and Equation (12) is RMSE.

yMAPE =
1
n

n

∑
i=1

∣∣∣∣ya(i)− yp(i)
ya(i)

∣∣∣∣ (11)

yRMSE =

√√√√√ n
∑

i=1
[ya(i)− yp(i)]

2

n
(12)

ya(i) and yp(i) are the actual and predicted values of fire probability.
Figure 3 is the workflow diagram of the model based on the behaviour of the fish

school. The specific steps are: (1) Build a BP network model, set the dimensions of the
neural network weight threshold, and set the parameters to be optimized for the BP network
structure to the initial position of the fish school individual; (2) Calculate the fitness value
of the individual of the initial fish school, and determine the behaviour of the fish school
according to the judgment conditions; (3) Judge whether the optimal solution is found or
the maximum number of iterations is reached. If the conditions are met, the iteration is
terminated, otherwise, the iterative optimization is continued; (4) Output the weights and
thresholds assigned to the BP network by the optimal solution; (5) Calculate the output
fire probability.
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4. Forecast Results and Analysis

Select representative data samples from published papers and national standard fire
test data. The model is trained and forecasted using the model. In the text, the parameters
of BPNN are set to display the results once in 25 turns, the learning speed is 0.01, maximum
training times are 5000, and mean square error is 0.0001.The size of artificial fish stocks is 20,
is 0.6, step is 0.05. The number of iterations of the two algorithms is shown in Figure 4. The
number of iterations of forecasting model optimized by the AFSA is significantly reduced.
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The MAPE and RMSE of the predicted values optimized by BPNN and AFSA are
shown in Figure 6.
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Figure 6. Error of BPNN and AFSA-BPNN algorithms in predicting fire probability.

From the graph analysis, the MAPE of no fire probability decreases by 26.06%, the
RMSE decreases by 25.47%, the MAPE of smoldering probability decreases by 38.5%,
the RMSE decreases by 11.18%, the MAPE of open fire probability decreases by 43.13%,
the RMSE decreases by 16.23%, and the optimization of AFSA improve the accuracy of
substation fire prediction model. After forecasting probability value of substation fire,
output probability is judged by fuzzy strategy and different firefighting measures are taken
by output decision signal. Table 1 is the decision-making judgment of fire probability value
of forecast samples.

Table 1. Decision-making judgment of fire probability value of forecast samples.

Smoldering Probability Open Fire Probability Decision Output Decision-Making
Judgment Is the Decision Correct

1 0.5228 0.336 0.659 Alarm correct
2 0.0534 0.192 0.381 Warning correct
3 0.2906 0.5405 0.658 Alarm correct
4 0.2604 0.5025 0.656 Alarm correct
5 0.2957 0.5355 0.658 Alarm correct
6 0.1021 0.074 0.222 No fire correct
7 0.2176 0.5328 0.657 Alarm correct
8 0.5788 0.3159 0.659 Alarm correct
9 0.1548 0.0505 0.307 Warning correct
10 0.446 0.3966 0.651 Alarm correct

It can be seen from Table 1 that the decision and judgment on the fire probability
values of ten prediction samples are correct, indicating the feasibility of this method.

5. Substation Fire Control Strategy

Based on the decision-making judgment of the predicted sample fire probability value,
the fire alarm host interacts with the fire control equipment to take corresponding fire
control measures. When the output decision is no fire, the substation operates safely; when
the decision is warning, the fire extinguishing device is not started, and the substation
personnel always observe the abnormal signal, and check the warning place if necessary;
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when the decision is to alarm, the fire alarm host receives the signal to start the automatic
fire extinguishing device immediately; when the decision is serious alarm, the automatic
fire extinguishing device is started immediately, the power supply is cut off, and the
substation personnel go to the alarm to handle the accident. The fire control system is
shown in Figure 7. The black arrow indicates the direction of information interaction.
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For cable trench, cable sandwich, cable shafts and other electrical equipment in sub-
station, install automatic fire extinguishing devices to achieve active fire extinguishing in
the event of a fire. The aerosol fire extinguishing system can be used for fire extinguishing
devices in substations. When triggered by the aerosol fire extinguishing device, chemical
agents filled inside generate fire extinguishing gases, mainly metal oxide particles and inert
gases, to achieve full submerged fire extinguishing.

6. Conclusions

In this paper, aiming at the substation fire prevention problem, taking the substation
AC power system cables as the research object, the multi-information fusion technology
is proposed for the substation fire warning research, and the characteristics and decision-
making layers of the multi-information fusion technology are deeply studied. The BPNN
prediction model is optimized by AFSA optimization, which improves convergence speed
and reduces error, making the fire probability more accurate. Through fuzzy set theory and
decision-making factors, the accuracy of fire prediction in substation is further improved.
The substation control center takes different fire control measures according to the output of
decision-making. The model proposed in the text can not only be used in the fire prediction
of substation, but also can provide reference for dealing with other disasters in Substation
in the future.
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