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Abstract: Intelligent algorithm has been widely implemented to effectively diagnose faults in indus-
trial instrument, electrical equipment and mechanical equipment. In addition, the rapid development
of sensing technology generated enormous time series signal. Accordingly, diagnosing faults by ana-
lyzing time series signal has been widely developed. This paper aims to diagnose faults by applying
improved Convolution Neural Network with Compression Enhancement (ICECNN-1D) to analyze
time series signal, which effectively considers time series property of signal while diagnosing faults
by artificial intelligence. Additionally, a large number of trend features and fluctuation features in
high-frequency time series are also considered. the recognition rates of almost other machine learning
algorithm are less than 90% in the experiments. Other methods may provide high rate of recognition,
but their fluctuation of the recognition rate has varied obviously with different loads, and results
provide undesirable ability of generalization under different working conditions. Comparatively,
ICECNN-1D model provides high recognition rate and terrific ability of generation while processing
time series with high frequency, and its accuracy of the recognition rate fluctuates inconspicuously
with different loads.

Keywords: deep learning; Conventional Neural Network; time series signal; fault diagnosis

1. Introduction

Failures in electrical equipment, industrial instruments and mechanical equipment
are some of the main factors that lead to abnormal industrial processes [1]. Consequently,
to solve such problems, methods to diagnose faults in industrial processes have been
investigated in recent decades. Moreover, many scholars have, in particular, tried to
diagnose faults in power systems. Methods of detecting and diagnosing faults in traction
systems have been introduced [2]. Moreover, weighted Sliding Hilbert Transform (WSHT)
has been applied to estimate instantaneous amplitude to diagnose faults in power systems
in wind turbines [3]. Finally, faults in power switches’ open-circuits and current sensors
faults have been diagnosed using Sliding Mode Observer [4].

Recently, machine learning has been widely implemented to detect and diagnose faults.
First of all, a cost function which apllied several clusters in machine learning algorithm
with optimal sensor placement was introduced to diagnose faults in mechanical equipment.
Therefore, a machine learning algorithm that optimizes model parameters in the diagnosis
system was designed [5]. Secondly, a scheme to classify bearing faults based on Support
Vector Machine was evaluated by analyzing vibration data of bearings under different work
conditions [6]. Additionally, a machine learning algorithm with optimized parameters
was implemented to generate simulated vibration signals during actual shock and mixed
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failures; it aims to identify the faulty gearbox under various speeds [7]. In addition, machine
learning and natural language processing methods were implemented to diagnose faults
in railway signaling equipment, which can reduce the technical requirements for on-site
maintenance personnel [8]. Finally, a focused literature survey of machine learning and
data mining methods for fault diagnosis and methodological research in support of smart
devices was introduced [9].

In recent decades, the increasing scale of data size has augmented the difficulty of using
machine learning to diagnose faults [10,11]. Consequently, the application of deep learning
to diagnose faults in manufacturing equipment has become a novel method. Initially,
deep-SincNet, a deep learning architecture which is applied for Multi-Fault Diagnosis
Tasks, was proposed to learn fault features from raw motor currents [12]. Furthermore, a
Single-Side Canonical Correlation Analysis fault detection framework with the aid of a
Neural Network to detect faults in industrial equipment was introduced [13]. Furthermore,
an intelligent method to reduce the complexity of a training model by mining data was
proposed. This method applied a Bayesian network to deduce fault symptoms from
historical fault data [14]. Lastly, in order to solve problems in hydraulic systems, such
as difficulty in acquiring parameters and a system containing many faults, uncertainty
and concealment, various hydraulic system fault diagnosis techniques and methods were
analyzed [15].

In recent years, with the development of deep learning, various novel CNN-1D
networks have been used in the field of fault diagnosis and have achieved good diagnosis
results [16–20]. However, it is still difficult to extract the high-frequency fault features of
micro faults, which affects the early fault diagnosis of industrial process equipment.

This paper introduced a method to diagnose fault by applying improved Convention
Neural Network with Compression Enhancement (ICECNN-1D) to analyze time-series
signal. Contributions of this paper can be summarized as follows:

(1) To solve the problem that the use of intelligent algorithms to diagnose faults has
not involved the consideration of time series properties of signals, a fault diagnosis method
based on an audio–visual fusion algorithm was proposed. As a result, machine learning
algorithms effectively utilized information about time series while diagnosing faults.

(2) In conventional CNN-1D, time series need to be divided into time series with a
certain width as its input, which will cause the loss of the deep features of time series
signals changing with time during the training and learning process. Although CECNN-1D
can effectively extract high-frequency fault features through compression enhancement,
the correlation between high-frequency features and faults is weakened. Therefore, the
global pooling layer is used in the ICECNN-1D model instead of the full connection layer
in the CECNN-1D model, which makes full use of a large number of signal trend features
and fluctuation features hidden in the high-frequency time series for fault detection, which
makes the model more stable.

2. Fault Diagnosis Method Based on ICECNNN-1D
2.1. Basic Concept of Convolutional Neural Network with Compression Enhancement

Conventional Neural Networks (CNNs) are composed of a convolutional layer, a down
sampling layer, an activation function and a connected layer [21,22]. The convolutional
layer is made of several convolutional kernels which divide images into small parts to
help to extract features. Secondly, the down-sampling layer was adopted to reduce the
dimensionality of the kernel, which aims to decrease computation and increase the receptive
field. Thirdly, the activation function was located at the end of the Neural Network model
to increase the speed of the learning process [22]. In addition, one-dimensional CNN
(1D-CNN) regarded the convolutional kernel as a window. Then, the time series signal
needs to translate following this window to acquire local information and extract local
features from dot product results from features and weights. To solve the problem that
a traditional CNN does not consider the time series character of one-dimensional time
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series signals, to effectively extract features of time series signals with high frequency, the
ICECNN-1D Neural Network model, which is shown in Figure 1, was proposed.

Figure 1. ICECNN-1D Neural Network structure.

CECNN-1D is different from traditional Neural Networks. The proposed method
added a two-level pooling compression layer to compress and reduce time series signals.
The first layer extracts the average signal features of each segment and the second layer
uses the maximum pooling to extract important feature information. A large amount of
redundant information in time series signals with high frequencies is removed by using
two-layer cascade pooling. The audio–visual information of a one-dimensional signal can
be effectively fused by using two-layer cascading pooling. Moreover, a large amount of
redundant information from time series signals with high-frequency can be removed so that
features are effectively extracted from high-frequency signals by subsequent operations.
On the other hand, according to Figure 1, the proposed method ICECNN-1D replaces the
full connection layer in CECNN-1D with a global average pooling layer after multiple
convolution and pooling layers. The global average pooling layer can get a corresponding
output for each feature graph by averaging each output feature graph. This layer does not
need training parameters. Compared with the full connection layer, it can significantly
reduce the number of model parameters and improve the training speed. At the same time,
it can enhance the correlation between features and target categories, enhance the nonlinear
expression ability of the model, and finally transfer its features to the Softmax layer for
multi fault feature classification.

2.2. Audio–Visual Information Fusion Methods Based on One-Dimensional Signal

When mechanical equipment fails, the detected signal of sensors has changed accord-
ingly. Therefore, extracting and analyzing different fault features become an important
part of fault diagnosis, especially in intelligent fault diagnosis systems based on signal
processing and knowledge. The method to analyze signals is an important prerequisite of
diagnosis accuracy.

One-dimensional signal features and two-dimensional image features have a cor-
responding relationship, so images are represented by color histograms. Consequently,
one-dimensional signals can be extracted by layering. Therefore, the theoretical basis of the
audio–visual fusion method in this study is constructed.

(1) Correspondence between image features and one-dimensional signal features.
The two-dimensional image is expanded by rows and columns to form a single signal

xi, where i = 1, 2, 3, . . . , N, if discarding the spatial characteristics of the image. The image
mean is defined as:

x̄ =
1
n

n

∑
k=1

xi (1)
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Accordingly, the standard deviation is defined as:

s =

√
1

n− 1

n

∑
k=1

(xi− x̄)2 (2)

Moreover, the covariance function is defined as:

cov(x, y) = E[(x− µ)(y− η)] (3)

The function of the correlation coefficient is defined as:

S(i, j) =
C(i, j)√

C(i, i)C(j, j)
(4)

The autocorrelation function of the image is defined as:

C(ε, η, j, k) =
s ∑

j+w
m=j−w ∑k+w

m=k−w f (m, n) f (m− ε, n− η)

∑ mj+w
m=j−w ∑k+w

n=k−w[ f (m, n)]2
(5)

Experiments show that the texture of the image is related to its original position and
the magnitude of the energy. As a result, if the arrangement of energy is concentrated and
it is close to the original position, the texture of the image is thicker. Conversely, if the
energy’s arrangement is dispersed and it is farther from original position, the texture of the
image is thinner [23].

The normalized co-occurrence matrix S in the gray-level co-occurrence matrix Vλ(p, q)
is applied to describe the probability distribution of pixel pairs at a certain spatial position:

Wλ =
Vλ(p, q)

S
(6)

Then the feature of color’s second layer in the signal is f1, which describes the unifor-
mity of the grayscale distribution of the image. A coarse texture image means a larger value
of f1 and more energy consumption. Conversely, a fine texture image means a smaller
value of f1 and less energy consumption.

f1 =
L−1

∑
i=0

L−1

∑
j=0

W2
λ(p, q) (7)

Simultaneously, f2 describes the sharpness of image texture.The clearer texture means
larger f2 value.

f2 =
L−1

∑
n=0

n2

{
L−1

∑
i=0

L−1

∑
j=0

W2
λ(p, q)

}
(8)

where

n = |i− j| (9)

The entropy value is f3, which describes the amount of information in the image
texture. A more textured image indicates a larger f3 value.

f3 = −
L−1

∑
i=0

L−1

∑
j=0

Wλ(p, q) log[Wλ(p, q)] (10)

Assuming that the discrete signal sequence is {xi} where i = 1, 2, 3, . . . , N, the above
six characteristic parameters are defined as follows:
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S =

N
∑

i=1
(xi−x)

3

/(N−1)σ3 (11)

Simultaneously, the kurtosis Equation is:

K =
N

∑
i=1

(xi − x)
3

/(N − 1)σ4 (12)

Therefore, the peak indicators (CF) are calculated by:

CF = max|xi|/

√√√√ 1
N

N

∑
i=1

(xi)
2 (13)

The pulse index (IF) is:

IF = max|xi|/
1
N

N

∑
i=1
|xi| (14)

The waveform indicators (SF) are:

SF =

√
N

N
∑

i=1
(xi)

2

/ N
∑

i=1
|xi |

(15)

The measured state signals usually show a normal distribution if equipment is running
normally, which indicates that state parameters of equipment are basically in the normal
range [24]. Slopes S and K are used to indicate the degree to which the signal deviates
from the normal distribution, so they are often implemented to characterize the occurrence
of disturbances; the CF peak indicator is sensitive to weak signals that vary over time.
Moreover, analyzing monitoring and CF peak indicator can help to predict early equipment
failures. SF waveform indicator is more sensitive to pitting faults in rotating devices such
as bearings; the intermediate frequency pulse index and the CLF range index are more
sensitive to instantaneous failures, especially in the early stage of failure. However, if
intermediate frequency pulse index and the CLF range index increase to a certain level,
Results show a downward trend in the gradual development of faults, which indicates that
the intermediate frequency pulse index and the CLF range index are highly sensitive to
initial faults, but results are not stable.

(2) Color histogram of one-dimensional signal.
The color histogram has obvious differences if color changes. In order to describe

fault characteristics, using color characteristics of the image, the statistical histogram can
be established by implementing color features from the image. The parametric Equation (1)
for the statistical histogram is:

H(k) =
nk
N

k = 0, 1, . . . , L− 1 (16)

where H(k) represents the kth histogram, N denotes the total number of data and Nk is the
number of data in the kth histogram. Then, the function to count the cumulative histogram
of the image color feature is defined by:

I(k) =
k

∑
i=0

ni
N

k = 0, 1, . . . , L− 1 (17)

where I(k) represents the cumulative histogram within the time range k and ni is the
number of data at time i. Additionally, Pij means the jth column of the ith row in the data
P. Then, the function at the first layer of color is expressed as:
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ui =
1
N

n

∑
j=1

Pij (18)

This function is the average value of a segment of a signal, which is the average signal
feature of a segment of a signal obtained by the first level pooling layer compression from
the proposed ICECNN-1D network. Secondly, the function at the second layer of color is
calculated by:

σi =

(
1
N

N

∑
j=1

(
Pij − ui

)2
) 1

2

(19)

In addition, the function at the third layer of color is expressed as:

Si =

(
1
N

N

∑
j=1

(
Pij − ui

)3
) 1

3

(20)

where Pij − ui is the difference between the error of each column from data and the first
function of the corresponding color. In this way, three-layer color function is similar to the
three colors of an image, so it can use the same method as the image to construct a color
histogram and extract local features. On the other hand, by associating the signal with the
visual features, the second level maximum pooling layer global average pooling layer of
ICECNN-1D network can be applied to compress and extract the important features of
signal while removing redundant information.

2.3. Working Principle Equipment Fault Diagnosis System

The general fault diagnosis service platform is an embodiment of “universal”, which
means software settings that can be matched for any acquisition module. For the service
platform introduced in this paper, the main point is versatility of the software platform. The
service platform also contains several hardware acquisition modules, which are hardware
acquisition modules verified by the system in this design. First of all, for most of the
acquisition modules (including the hardware used in this system test), the schematic
diagram is shown in Figure 2.

Figure 2. Flow chart of diagnosing faults.
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Figure 2 describes the whole process of diagnosing faults by introducing a mechanical
fault diagnosis system which is composed of the following parts: First of all, a time series
signal was acquired from different sensors such as an accelerometer and it was sent to the
storage module from the computer. Then, the software part adopted the desktop application
software based on JavaFX by using JDK1.8. The software provided basic functional modules
such as real-time monitoring, data analysis (FFT, power spectrum, original signal, envelope
spectrum, cepstrum), data management (historical data storage, real-time storage data,
sampling data storage), system configuration, etc. Then, the vibration data were sampled
and stored and the processing data were analyzed, thereby judging change in the vibration
condition of the detected position, and slow change in the vibration effective value, peak
value and frequency spectrum was shown through long-term data recording [25,26].

3. Intelligent Equipment Fault Diagnosis Experimental Scheme

This section presents experiments conducted to verify the performance of the ICECNN-
1D model by using rotor bearing fault data from Case Western Reserve Bearing Data Center
Website [27]. The vibration signal of the bearing with different failures was sampled
with 48 kHz sample frequency. Motor bearings were seeded with faults using electro-
discharge machining (EDM). Faults ranging from 0.007 inches in diameter to 0.040 inches
in diameter were introduced separately at the inner raceway, rolling element (i.e., ball) and
outer raceway. Faulted bearings were reinstalled into the test motor and vibration data
were recorded for motor loads of 0 to 3 horsepower (motor speeds of 1797 to 1720 RPM).
Vibration data were collected by using accelerometers, which were attached to the housing
with magnetic bases. Accelerometers were placed at the 12 o’clock position at both the drive
end and fan on end of the motor housing. During some experiments, an accelerometer was
attached to the motor supporting the base plate as well. Vibration signals were collected
by implementing a 16 channel DAT recorder. Additionally, digital data were collected
at 12,000 samples per second and data were also collected at 48,000 samples per second
for drive end bearing faults. Speed and horsepower data were collected using the torque
transducer/encoder and were recorded manually. As shown in Figure 3, the bearing pitting
fault diameter is 0.014 mm and the rotor bearing drive end inner race fault status data
under different motor loads (motor speeds) whose values are 1797 rpm, 1772 rpm, 1750
rpm and 1730 rpm respectively.

Figure 3. Fault data of inner race of drive end bearing under different loads.

Four datasets—A, B, C and D—were adopted in the experiments. A, B and C were
datasets under motor loads of 1 hp, 2 hp and 3 hp (corresponding to motor speed of
1772 rpm, 1750 rpm and 1730 rpm, respectively). Each dataset includes 6650 training
samples and 200 test samples. As a result, the training samples adopt dataset enhancement
technology and there is no overlap phenomenon between test samples. Dataset D is the
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union of datasets A, B and C, which means it includes three load states, with a total of
19850 training samples and 700 test samples. The experimental datasets are described in
Table 1.

Table 1. Description of experimental datasets.

Fault Location No Rolling
Element

Inner
Raceway

Outer
Raceway Load

Label 1 2 3 4 5 6 7 8 9 10
Fault
diameter (inch) 0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021

A training 665 665 665 665 665 665 665 665 665 665 1Testing 20 20 20 20 20 20 20 20 20 20

B training 665 665 665 665 665 665 665 665 665 665 2Testing 20 20 20 20 20 20 20 20 20 20

C training 665 665 665 665 665 665 665 665 665 665 3Testing 20 20 20 20 20 20 20 20 20 20

D training 1985 1985 1985 1985 1985 1985 1985 1985 1985 1985 1,2,3Testing 70 70 70 70 70 70 70 70 70 70

Five experiments were implemented to verify fault diagnosis performance of the
introduced model by using time series signals with high frequency by comparing with the
current mainstream model, The experiment was built by utilizing the TensorFlow frame-
work and the specific training environment configuration is shown in Table 2. Moreover,
different convolution kernel size was applied to analyze the performance of the introduced
Neural Network model. All experimental settings are as follows: Let the batch size be
equal to 120, and initial learning rate of Adam optimizer is 0.0015. Moreover, the input
width of the signal is 2048*2, and iterative training is performed for 30 rounds. Therefore,
10 experiments are performed to obtain the average value.

Table 2. Experimental environment setting.

Experimental Environment Hardware Configuration

Operating system Windows 11
CPU Intel(R) Xeon(R) Gold 5218R cpu @ 2.10 GHz
GPU NVIDIA GeForce RTX 3080

Tensorflow 1.14
python 3.7

3.1. Experiment 1: Fault Diagnosis Effect of ICECNN-1D of High Frequency Time Series Signal

The first experiment compared training time and accuracy of diagnosing faults by
the introduced method withNCNN-1D and ECNN-1D to analyze performance of the
introduced method. Results perceived time series data with high-frequency and the effect
of fault diagnosis are analyzed. The cascade pooling layer was removed from CECNN-1D
and ICECNN-1D, and the first layer used 4*1 small convolution kernel model which is
NCNN-1D and ECNN-1D respectively, the two models was implemented to compare with
performance by the introduced model. The experimental results are shown in Table 3.

Table 3. Experimental comparison results of NCNN-1D and CECNN-1D.

Model
Average Accuracy (%) Average Time (s)

Train Test Train Test

NCNN-1D 0.9645 0.9532 223 0.79
ECNN-1D 0.9744 0.9776 164 0.71

ICECNN-1D 0.9782 0.9794 158 0.68
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According to Table 3 shows that after the cascade pooling layer is removed, the average
recognition rate of ECNN-1D is higher than that of NCNN-1D, and the average time is
lower than that of NCNN-1D, which shows that using the global average pooling layer
instead of the whole concatenated layer can effectively improve the accuracy of the model
and reduce parameter training.

Meanwhile, the trend of the iteration umber was recorded by analyzing accuracy rate
and loss function value by implementing two models. Additionally, experimental results
were shown in Figures 4 and 5:

Figure 4. The accuracy trend of three models’ function.

According to Figure 4, the proposed method can provide better performance to train
time series signal than performance by NCNN-1D and ECNN-1D. The tested trend curve
provides great volatility and it rise with slow speed. However, the final recognition rate is
not high, and it cannot fit well with the training recognition rate curve. Thereby, the overall
training result of the model is not ideal.

Figure 5. Trend chart of the three models’ loss function.

According to Figure 5, the fitting effect of trained and tested curves is not ideal. How-
ever, the trained loss function value curve is often in a high range at the end, but the tested
objective function value curve is in a lower range at the end, and the proposed method can
also provide better convergence speed than NCNN-1D and ECNN-1D. Consequently, the
trend curves of ICECNN-1D model training and provides good performance and result is
accurate.

Recognition by ICECNN-1D model is effective because the average accuracy is 97.88%,
and it takes less time. According to results from experiment 1, ICECNN-1D model provides
some advantages such as effectively compressing high-frequency time series data, removing
redundant information and reducing the dimension of data, which enhance the perception
ability of high-frequency time series data and strengthening correlation between high-
frequency time series signals and fault categories, and have better fault identification
ability [28,29].
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3.2. Experiment 2: Performance under Different Compression Sizes

It is necessary to analyze the performance of ICECNN-1D cascaded pooling layers
under different compression sizes. Experiment 2 was carried out with compression sizes of
1*1 (uncompressed), 2*1, 3*1, 4*1, 5*1, 6*1,7*1, 8*1, 9*1, and 10*1, respectively. Moreover,
experiments were carried out under data set B, The experimental results are shown in
Figure 6.

Figure 6. Accuracy statistics at different compression sizes.

According to Figure 6, the increasing compression size of the ICECNN-ID cascaded
pooling layer caused the increasing accuracy rate, whose maximum recognition rate is at
97.87% when the size is 4. Experiment indicated the cascaded pooling operation can be
used. Moreover, effectively compress and filter high-frequency time series data can remove
redundant information. High frequency information can also be effectively expressed
through global average pooling and achieve a certain enhancement effect [30]. Therefore,
the ICECNN-1D model adopted a small-sized compression length, which can increase
recognition accuracy.

3.3. Performance of the First Convolutional Layer in Different Sizes of Convolution Kernels

Experiment 3 analyzed the performance of the first convolutional layer of ICECNN-
1D in different sizes of convolution kernels. The first convolutional layer implemented
convolution kernels with different sizes of 4*1, 8*1, 12*1, 16*1, 20*1, 24*1, 28*1, 32*1, 36*1 and
40*1 in the experiment. Other hyperparameters have not changed. The average accuracy
rate is obtained as follows shown in Figure 7.

Figure 7. Accuracy statistics for different convolution kernel sizes.

As shown in Figure 7, if the size of the convolution kernel in the first convolutional
layer of ICECNN-1D model continued increasing, the overall training accuracy will also
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increase. The accuracy increased rapidly between 4*1 and 20*1, but when the convolution
kernel reached a certain size, the test accuracy will decline and remain at a certain level.
Analyzed result indicated the first convolution layer adopted an appropriate size convolu-
tion kernel (the convolution core with the size of "20 * 1" is selected in this study), which
can increase network’s perception range and test recognition rate of time series data and
learn characteristics of time series data efficiently.

3.4. Experiment 4: Performance under Different Timing Input Widths

In experiment 4, time series signals with different length were implemented as the
input of ICECNN-1D, CECNN-1D and NCNN-1D, and ability of model to perceive different
widths of time series data was analyzed [30]. During the experiment, the collected data
in one cycle was 512, and length of 512 was used as the signal length of one cycle (T). In
data set A, the signal width of 1T to 10T is used as the input, The experimental results are
shown in Tables 4–6.

Table 4. Experimental results under different timing widths of ICECNN-1D model.

Model ICECNN-1D Recognition Accuracy (%)

Period (T) 1T 2T 3T 4T 5T

train 0.9577 0.9626 0.9763 0.9726 0.9791
test 0.9452 0.9594 0.9676 0.9742 0.9762

Period (T) 6T 7T 8T 9T 10T

train 0.9797 0.9796 0.9793 0.9782 0.9886
test 0.9749 0.9788 0.9723 0.9765 0.9781

Table 5. Experimental results under different timing widths of CECNN-1D model.

Model CECNN-1D Recognition Accuracy (%)

Period (T) 1T 2T 3T 4T 5T

train 0.9576 0.9623 0.9754 0.9746 0.9789
test 0.9498 0.9572 0.9668 0.9730 0.9759

Period (T) 6T 7T 8T 9T 10T

train 0.9794 0.9794 0.9745 0.9714 0.9769
test 0.9721 0.9735 0.9715 0.9725 0.9779

Table 6. Experimental results under different timing widths of NCNN-1D model.

Model NCNN-ID Recognition Accuracy (%)

Period (T) 1T 2T 3T 4T 5T

train 0.9445 0.9540 0.9627 0.9644 0.9659
test 0.9459 0.9465 0.9530 0.9422 0.9551

Period (T) 6T 7T 8T 9T 10T

train 0.9652 0.9677 0.9617 0.9647 0.9648
test 0.9540 0.9580 0.9589 0.9560 0.9539

As shown in Tables 4–6, the training and testing accuracy of NCNN-ID and CECNN-
1D is lower than that of ICECNN-1D. As the input width increased from 1 cycle to 10 cycles,
the training recognition rate and test recognition rate of ICECNN-1D model increased
gradually. When the input reached 5 cycles, the recognition rate is high and it becomes
basically stable. CECNN-1D has a certain fluctuation, while the accuracy of NCNN-1D test
fluctuates greatly. Although there is an upward trend, the changes are not obvious, which
indicated that the NCNN-ID model provides poor stability, poor performance in time series



Electronics 2022, 11, 4207 12 of 14

feature extraction, and weak generalization ability. However, ICECNN-ID model provided
good performance to extract time series features, and the increase of the perception width
could enhance the recognition rate.

3.5. Experiment 5: Performance Comparison of Different Models

Experiment 5 compared several different machine algorithm models with the ICECNN-
1D model, the one-dimensional machine learning (LetNet5-1D), AlexNet machine algo-
rithm, VI-CNN, CECNN-1D and BP machine algorithm under the LetNet5 framework
were applied for comparative experiments. To verify the generalization ability of the model,
four kinds of data in A, B, C and D are used, and the experimental results of the average
recognition rate and average training time are shown in Table 7.

Table 7. Statistics of average recognition rate and average training time.

Average Recognition Rate
Average Training Time (s)

A B C D

BPNN 78.86 74.33 75.79 78.15 132
LetNet5-1D 79.89 80.32 79.69 82.23 207
AlexNet-2D 86.64 89.59 88.66 87.26 225

VI-CNN 93.62 89.76 94.75 91.59 254
CECNN-1D 97.26 95.79 97.42 96.61 178
ICECNN-1D 97.55 97.86 97.89 97.84 167

Average accuracy of diagnosed results under 4 different loads was counted. According
to Table 7, the recognition rates of BPNN, LetNet5-1D and AlexNet-2D are all below 90%.
Additionally, VI-CNN machine algorithm provided a high recognition rate, but it provided
undesirable ability of generation under different work condition because its recognition
rate fluctuated obviously under different loads. CECNN-1D provides high recognition
rate, but its recognition rate fluctuates under different loads and is lower than that of
ICECNN-1D.The average training time of BPNN is the shortest, but the average recognition
rate is also the lowest, but the average training time of ICECNN-1D is shorter than other
algorithms, and the average recognition rate is the highest. Finally, results showed that
ICECNN-1D provided ideal performance while processing high-frequency time series data,
the indicated model also provided decent ability of generalization.

4. Conclusions

This paper introduced an intelligent fault diagnosis method by combining audio-
visual fusion method and CNN. This method not only considers time series property while
diagnosing faults but also considers the correlation between high-frequency signals and
fault categories. Moreover, stability of introduced method was verified by analyzing fault
diagnosis effects of rotor bearing with different loads. Accordingly, experimental results
indicated ICECNN-1D provided reliable and accurate results to analyze time series signal
while diagnosing faults. Moreover, considering problem that limited state information
may increase the difficulty of analyzing multi-dimensional state information of electrical
equipment, industrial instrument and mechanical equipment. Consequently, the proposed
method fused audio and visual information to effectively utilize information in the time
series signals, which improve the efficiency of diagnosing faults.

This study only analyzes the rotor bearing pitting fault. Therefore, in the future work,
we will further study the fault diagnosis of rotor bearings under different loads, different
fault types and multiple fault modes, and use the proposed method to conduct in-depth
research on early fault diagnosis of bearings; In addition, we will continue to deeply study
the color histogram theory of one-dimensional signals, carry out experiments from the
aspect of signal vision, so as to provide a comprehensive and ideal solution for the fault
diagnosis of electrical equipment, industrial instruments and mechanical equipment.
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