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Abstract: Renewable Energy Sources are an effective alternative to the atmosphere‑contaminating,
rapidly exhausting, and overpriced traditional fuels. However, RESs have many limitations like
their intermittent nature and availability at far‑off sites from the major load centers. This paper
presents the forecasting of wind speed and power using the implementation of the Feedforward
and cascaded forward neural networks (FFNNs and CFNNs, respectively). The one and half year’s
dataset for Jhimpir, Pakistan, is used to train FFNNs and CFNNs with recently developed novel
metaheuristic optimization algorithms, i.e., hybrid particle swarm optimization (PSO) and a Bat al‑
gorithm (BA) named HPSOBA, along with a modified hybrid PSO and BA with parameter‑inspired
acceleration coefficients (MHPSO‑BAAC), without and with the constriction factor (MHPSO‑BAAC‑
χ). The forecasting results are made for June–October 2019. The accuracy of the forecasted values
is tested through the mean absolute error (MAE), mean absolute percentage error (MAPE), and root
mean square error (RMSE). The graphical and numerical comparative analysis was performed for
both feedforward and cascaded forward neural networks that are tuned using the mentioned opti‑
mization techniques. The feedforward neural network was achieved through the implementation of
HPSOBAwith amean absolute error, mean absolute percentage error, and root mean square error of
0.0673, 6.73%, and 0.0378, respectively. Whereas for the case of forecasting through a cascaded for‑
ward neural network, the best performance was attained by the implementation of MHPSO‑BAAC
with aMAE,MAPE andRMSE of 0.0112, 1.12%, and 0.0577, respectively. Thus, thementioned neural
networks provide a more accurate prediction when trained and tuned through the given optimiza‑
tion algorithms, which is evident from the presented results.

Keywords: wind energy; Bat algorithm (BA); cascaded forwardneural network (CFNN); feedforward
neural network (FFNN); hybrid PSO and BA (HPSOBA); particle swarm optimization (PSO)

1. Introduction
Environmental degradation, continuously increasing atmospheric pollution, the vari‑

able prices of conventional fuels, and their rapid depletion has forced electric power pro‑
ducers and distributors to integrate RESsmore sturdily into the existing power network [1].
RESs such as wind, with all their advantages, have the problem of being highly variable as
climatic conditions keep changing. Wind power generation continues to vary, in contrast
to traditional thermal power plants (TPPs), which can provide a constant power supply for
longer periods [2,3]. Thus, the power extracted from wind resources has more variability
as well as probability. The recurrent behavior of wind power is a substantial issue in their
commissioning as a sustainable solution for the production of clean electricity. The practi‑
cal answer to this problem is precise prediction of the resources for the intended regions.
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Forecasting is a method that takes previous results as input to make conversant ap‑
proximations that are prognostic in finding the course of upcoming tendencies [4]. Wind
speed forecasting requires previous data of wind speed for the considered region along
with some other environmental parameters such as temperature, relative humidity, and
wind direction [5]. Generally, the estimation of wind speed is segregated into three classes:
long‑, medium‑, and short‑term estimates. The short‑term forecast deals with the predic‑
tion of wind speed for a few hours, the medium‑term forecast covers the forecast in the
range of a fewhours to some days, and the long‑term forecast covers the prediction ofmore
than three days, without any eventual limit [6]. Existing works have attempted to perform
resource forecasting through many mechanisms: the application of stochastic techniques
such as Rayleigh distribution (RD), Normal distribution (ND), Weibull distribution (WD),
etc., and by the development of suitable neural networks (NNs).

The wind speed forecasting and power mechanism presented in this paper can be
implemented to identify and calculate the design parameters of the wind turbine for a
suitable region. Moreover, it can be used at the operational stage for a wind turbine as it
can estimate the amount of electric power that can be collected from a wind‑based system
during a particular period. Hence, it optimizes the scheduling of the grid and reduces the
operational costs of power plants by lowering the reserve capacity demand.

2. Literature Review
To date, variousNNs have been presented for the application to different fields for the

purpose of developing intelligent systems. Artificial neural networks (ANNs) are connec‑
tionist systems in which parallel operations are performed for intelligent decision making
bymimicking the behavior of the human brain’s neural systems [7]. The efficiency of these
NN‑based schemes is due to their ability to learn and make progress in data processing,
being open‑minded, and being intelligent to handle nonlinear data values [8,9]. The inte‑
gration of these NNs or their alternatives into the prediction system supports the sinking
of the error, which guarantees that the forecast value falls in a range that maintains equi‑
librium in the demand and supply of real‑time electricity [10]. Recent developments have
employed NN‑based systems in a variety of ways to perform wind forecasting for various
regions around the world.

The authors of [11] offered a model which used ANNs to predict wind speeds that
had seasonal and sequential topographies similar to the recorded wind data. The authors
tested the model for wind speeds of Kuala Terengganu, Mersing, and Kudat in Malaysia
for its verification. The results showed that the proposed system of hybrid artificial neural
networks (HANNs) could demonstrate variations inwind speed for all seasons throughout
the year. However, the authors did not present a detailed elaboration of the mechanism
adopted for the training of the presented HANN model. The authors in [12] explored
two methods for the estimation of wind power, and a detailed assessment was executed
usingANNs. The authors used a hybrid forecastingmethod for estimating the power from
wind and an extensive evaluation of the technique was conducted. The authors achieved
a short‑range wind power forecast for a farm of 40 wind turbine generators. The authors
concluded that the ANN‑based estimation method produced the projected results very
quickly, but the precision and accuracy level were low. In addition, they only focused on
the RMSE‑based computations to check the accuracy of the considered models.

The authors of [13] presented a deep‑learning‑based approach for forecasting wind
speed. The presented mechanism was based on multiobjective parameter optimization
andhybrid time series decomposition. The resultswere tested through four datasets for the
testing of the accuracy of the predicted values. The authors also used the Kruskal–Wallis
test for checking the effectiveness of the proposed schemes, and they concluded that the
performance of the given mechanisms was better than the traditional complex approaches
available in the literature. In [14], a post‑processingmethod based on time variation to per‑
form long‑term forecasting ofwind speedwas presented. The proposedmethodwas based
on a multiregional recurrent graph for multiregional wind speed forecasting. The results



Electronics 2022, 11, 4193 3 of 24

for wind speed forecasting for twenty‑five real meteorological monitoring points showed
that the proposed model gave a better performance in various comparative parameters.

The authors in [15] discussed turbulent wakes while trailing utility‑scale wind tur‑
bines that reduce the power production and efficiency of downstream turbines. The mod‑
els presentedwere trained through historical data of the last five years, and the valueswere
averaged over one minute. Data were taken from the summer view wind farm in Alberta,
Canada. The authors concluded that the trainedmodels calculated a lesser error in the fore‑
casted values in comparison to the standard two‑layer neural network and physics‑based
wake model. In [16], a variational mode decomposition, implemented to divide the raw
wind speed data into a set of intrinsic mode functions, was presented. The authors used
adaptive differential evolution to optimize several important parameters for temporal fu‑
sion transformers (TFT) for prediction purposes. For the input data set, the authors used
1‑hour wind speed values with eight real‑world data sets in Albert, Canada. The authors
concluded that the presented results indicated considerable advancement for wind speed
estimation and in assisting policymakers.

The authors in [17] also developed a wind speed prediction approach, namely Wind‑
Net, founded using convolutional neural networks (CNN) for the site in Taiwan. The esti‑
mating system was developed to deliver the forecasted data for the following three days.
The hourly data of the wind speed were collected for the previous week, and the dataset
was established with a total of 24 × 7 = 168 sets. The designed WindNet mechanism ex‑
ecuted 1D convolution on the accumulated data and the authors used sixteen filters that
accumulated a total of 16 × 168 1D convoluted map shapes. The results were compared
with the following four techniques: multilayer perception (MLP), support vector machine
(SVM), decision tree (DT), and random forest (RF). RMSE and MAE were used as point‑
ers to assess the performance of the presented architecture. However, the authors did
not consider the metaheuristic techniques training mechanism of the NN. In [18], the pre‑
diction of wind through NN training using optimization techniques was presented. PSO
and Levenberg–Marquardt (LM) algorithms were employed for the training of ANNs to
achieve wind speed and power estimation for the short term. The performance analysis
of the considered techniques was conducted only through the computation of the MAPE.
The authors in [19] performed a detailed study of wind resource forecasting through the
Weibull distribution (WD) directly or through integration with other mechanisms, as pre‑
sented in the recent literature. In [20,21], the RNN‑LSTM algorithm was proposed for
day‑ahead wind energy generation.

HPSOBAs and MHPSO‑BAACs are recently developed metaheuristic optimization
algorithms that have successfully solved the EDPs for various cases of constrained and
non‑constrained TPPs, HPSs, and RESs presented in [22,23]. The results presented lower
dispatch cost values, better convergence, and lesser computational times. However, to
make RES‑based power systems sustainable and carry the major load, the forecasting of
RESs is essential.

Research Contribution
The work in this paper presents the following contributions to the literature:

• Awind speed and its respective power estimation model were designed using FFNN
and CFNN trained through the recently developed metaheuristic optimization algo‑
rithms HPSOBAs, MHPSO‑BAACs, and the standard PSO.

• The forecasting is performed for the five months (June to October 2019) using the
historical data from January 2018 to May 2019.

• The accuracy of the forecasted values is tested through an error‑testing formulation
based on the MAE, MAPE, and RMSE.

• To have a fair comparison of the consideredNNs for thewind speed and its respective
power prediction in the Jhimpir region, training techniques, parameters, the number
of layers, and input values are considered the same.
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• The presented comparison of the results authenticates the better and more accurate
performance of the FFNN and CFNN when trained through MHPSO‑BAACs, HP‑
SOBAs, and PSOs.

• The presented work, if implemented, can help in enhancing the contribution of wind‑
turbine‑based power generation systems.
The structural block diagram of the wind speed forecasting model presented in this

paper is given in Figure 1.
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Figure 1. Block diagram of the presented system.

The organization of the paper is as follows: Section 3 presents the system model and
mathematical formulations, followed by the reviewof theNNand optimization techniques
considered in Section 4; Section 5 discusses the proposed researchmethodology; the results
and discussion is given in Section 6; Section 7 concludes the article, followed by the cited
references.

3. Mathematical Formulations
This section provides an overview of the mathematical formulations employed, the

consideredNNs, and the optimization techniques employed to train the FFNN. The subsec‑
tions also provide an overview of the standard PSO algorithm, as it is also used to train the
NNs for the comparison of the results. At the end of this section, a detailed explanation of
the design application of the system model is provided. The objective function employed
for the wind speed and its respective power estimation is given by

Objective Function =
1
N

N

∑
i=1

((vi,o)− (vi,t))
2, (1)

where vi,o and vi,t designate the observed or measured velocity as the input and target for
the neural networks (NNs), respectively. The mathematical representation of the FFNN
and CFNN is given by [24,25]

vk =
N

∑
i=1

WkiXi (2)

and

y =
N

∑
i=1

f iωi
i xi + f o

(
k

∑
j=1

ωo
j f h

j

(
N

∑
i=1

ωh
jixi

))
. (3)

The mathematical formula for the calculation of the predicted wind power by using
the forecast wind speed is given as

P =

(
1
2

)
ρACpv3, (4)

where A gives the swept area of the wind turbines, Cp gives the performance coefficient, ρ
gives the air density (kg/m3), and v designates the wind speed [26,27].
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The mean absolute error (MAE), mean absolute percentage error (MAPE), and root
mean square error (RMSE) are used to authenticate the accuracy of the forecasted values.
Mathematically, the MAE, MAPE, and RMSE are given by [28]:

MAE =

(
1
n

) N

∑
i=1
|Avi − Evi|, (5)

MAPE =

(
1
n

) N

∑
i=1

∣∣∣∣Avi − Evi
Avi

∣∣∣∣× 100, (6)

and

RMSE =

[(
1
n

) N

∑
i=1

(Avi − Evi)
2

] 1
2

, (7)

where Evi and Avi are the estimated and real values for ith data, respectively, and the total
number of samples is represented by N [29–31]. The proceeding subsection reviews the
FFNN considered for the estimate of the wind speed and the optimization techniques used
to train them [32].

4. Neural Network and Optimization Techniques
This section provides an overview of the considered artificial neural network (ANN),

along with the HPSOBA and MHPSO‑BAACs optimization techniques used to train the
FFNN. The subsections also provide an overview of the standard PSO algorithm as it is
also used to train the NNs for the aim of comparison. At the end of this section, a detailed
explanation of the design application of the system model is provided.

4.1. Feedforward Neural Network (FFNN)
The FFNN is a biologically stimulated classification algorithm. It consists of neurons

that act as the processing units and are structured in layers, and every neuron in the layer is
linked to all the units of the preceding layers. Data enters the input and moves forward in
the network through the layers until it arrives at the output layer. In the standard process
of FFNN, it works as a classifier and has no feedback between layers, giving them the name
of a feedforward neural network [33,34]. The nodal operation of the FFNN is explained in
Figure 2.
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4.2. Cascaded Forward Neural Network (CFNN)
When the connection from the perspicacity and multilayer network is integrated, the

system has direct linking where the input and output layers are shaped. Such a designed
system is called the CFNN [35]. The perceptron and link that is shaped between the input
and output layers of CFNN is a method of direct relation. On the other hand, for FFNN,
the linkage established among the input and output layers is due to an indirect connection.
The architecture of the CFNN is given in Figure 3.
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4.3. Particle Swarm Optimization (PSO)
PSO is a metaheuristic optimization process that is applied to achieve the appropriate

result for optimization glitches, and was suggested by Kennedy in 1995. PSO is founded
on the imitation of the swarm of birds flying in multidimensional space to hunt a suitable
place, regulating their explorations in the designated space for an improved search. To
solve optimization problems, it is the most effective method but has a feebleness such that
it may stick in the local minima. Modern research have strived to enhance the operational
capability of PSO by relocating or integrating new variables into the original formulation.
The presented research tried improving the performance through the refinement of the
loading of the group of particles, and some integrated different factors such as the con‑
striction factor and inertial weight, etc. In addition, the best global and local particles were
also used for the mutation operation [36]. Pictorially, PSO is given in Figure 4.

Figure 2 shows the intellectualized vector diagram that relates the particle movement
with the PSO equations. Equations (8) and (9) provide the mathematical representation of
the position and velocity parameters of standard PSO,

vt+1
id =

Inertial Component

ωvt
id +

Cognitive Component

c1r1(pbestid − xt
id) +

Social Component

c2r2(gbestgd − xt
id), (8)

and
xt

id = xt
id + vt+1

id , with i = 1, 2, . . . , n; while d = 1, 2, . . . , m, (9)

where i is the index term of the particle, t is the index term of the discrete time, n and
m give the number and dimensions of the particles in a group, respectively, d gives the
considered dimension, ω represents the inertia weight factor, r1 and r2 are the random‑
ization parameters, and c1 and c2 are the coefficients of cognitive and social acceleration,
respectively [34–37].
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4.4. Hybrid PSO and BA (HPSOBA)
The HPSOBA is a flexible and unique algorithm that combines the important features

of the classical BA and PSO algorithms. The developed procedure presented the best solu‑
tions for EDP for different groups of RESs and TPPs [37]. The mathematical formulation
for the velocity and position parameters of the HPSOBA is presented in (10) and (11), re‑
spectively:

vt+1
id = α×

(
ωvt

id + c1r1(pbestid − xt
id) + c2r2(gbestgd − xt

id)
)

; (10)

xt+1
i = (1− r)xt

i + rpbest i + vt+1
i . (11)

The process is designed by integrating two parameters in the velocity equation of the
standard PSO: a novel and distinctive variable α given in Equation (12),

α =
( c

r

)
f . (12)

The new parameter α is computed using the cognitive social component c and the
random pdf r of the standard PSO. Meanwhile, f is the frequency of BA while the ranges
remain the same as in the standard form. Commonly, c1 and c2 are considered of the same
value, and thus c has the same value for calculation in (12). The inertial weight parameter
ω is computed using Equation (13) [38]:

ω = ωmin +

[
ωmax −

(
ωmax −ωmin

itermax

)
iter
]

r. (13)

The considered value of the random pdf r is the same for both the variables α and
ω. The pseudocode and the flowchart of the HPSOBA are presented in Figure 5 and
Algorithm 1 [19].
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Algorithm 1. Hybrid PSO and BA (HPSOBA).

1: Initiate factors: population, frequency, iterations, and inertia weight
2: Initialization of position and velocity
3: for i = 1:npop
4: Set position
5: set velocity
6: apprise Pbest for position, velocity and yield
7: apprise Gbest
8: if finest result of velocity > finest velocity
9: Velocity = finest result;
10: end if
11: end for
12: HPSOBA main loop:
13: for iteration = 1:maxit
14: for i = 1:npop
15: Computeω and alpha
16: ω = ωmin +

[
ωmax −

(
ωmax−ωmin

itermax

)
iter
]
r

17: α← (c/r) f
18: Update velocity:
19: vt+1

id = α
(
ωvt

id + c1r1·(pbestid − xt
id) + c2r2·(gbestid − xt

id)
)

20: Update position:
21: xt+1

i = (1− r)xt
i + rPbest,i + vt+1

i
22: Apprise Pbest:
23: if velocity < finest velocity
24: position = finest position;
25: velocity = finest velocity;
26: output = finest output;
27: Apprise Gbest
28: if finest result of velocity > finest velocity
29: finest velocity = finest result
30: end if
31: end if
32: end for
33: Optimal Cost (iteration) = Optimal Result;
34: Display (iteration, Optimal Solution);
35: end for
36: Plot results

4.5. Modifications in HPSOBA
Relating to the modification of the HPSOBA, the mechanism designed is of MHPSO‑

BAAC with and without the constriction factor χ. The variable α is used to regulate both
the social and cognitive components and accelerate the particles. Hence, in the modified
algorithms presented, the velocity formulas become [19]:

vt+1
id =

 ωvt
id + α·

(
(pbestid − xt

id) + (gbestgd − xt
id)
)(

ωvt
id + α·

(
(pbestid − xt

id) + (gbestgd − xt
id)
))
× χ

, (14)

where the constriction factor is computed using (15),

χ =
2∣∣∣2− φ−
√

φ2 − 4φ
∣∣∣ , 4.1 ≤ φ ≤ 4.2. (15)

The computation of the position of the particle, and the parameters α and ω are ob‑
tained by the equations given in (11)–(13). The flow chart and pseudocode for theMHPSO‑
BAAC are presented in Figure 6 and Algorithm 2, respectively [39].
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Algorithm 2. The MHPSO‑BAACs Algorithms.

1: Initialize the factors: frequency, population, iterations and parameters
2: Initialize the velocity and position
3: for i = 1:population
4: set velocity and position
5: Update personal and global best values
6: if finest velocity < finest result of velocity
7: Velocity = finest result;
8: end if
9: end for
10: Main loop of MHPSO‑BAAC and MHPSO‑BAAC‑χ:
11: for iteration = 1:maxit
12: for i = 1:population
13: Calculate α and ω

14: Update position and velocity
15: Update personal best:
16: if finest velocity > velocity
17: position = finest position;
18: velocity = finest velocity;
19: output = finest output;
20: Update global best
21: if finest results of velocity > finest velocity
22: finest result = finest velocity
23: end if
24: end if
25: end for
26: Best Cost = Best solution cost;
27: Display (iteration, Optimal Solution);
28: end for
29: Plot results

5. Working of Proposed SystemModel
NNs have been implemented for the forecasting of wind resources with many dif‑

ferent approaches, including the training of the NNs through metaheuristic optimization
techniques. Some recent and prominent research have been briefly discussed in the liter‑
ature. The problem with using standard optimization algorithms for NN training is that
wind forecasting is a completely local phenomenon, as the climatic conditions of every re‑
gion of the world are different. In addition, the historical data of a region given as input
values are also different for every region. Thus, in this case, generalization is not possible.
However, the inherent flexibility of the NNs allows the systems to be trained and tuned
according to regional requirements.

This paper presents the wind speed and power forecasting performed through the
FFNNandCFNN trained through the novelHPSOBA,MHPSO‑BAACandMHPSO‑BAAC
optimization techniques. Historical data values for NN training play an important role in
forecast efficiency. If a large number of values from past observations are considered, the
NNs will become too general, and if a small number of previous observations are used
for the training process, the NN will become too explicit according to those data. These
situations will avoid the need to adjust according to new situations outside the data range
considered. Figure 7 presents the block diagram of the trained FFNNhaving input, output,
and hidden layers.
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Figure 7. Block Diagram of Trained Neural Networks.

The hidden layer consists of 150 units/neurons that are placed in parallel. The his‑
torical data for the first five months of 2019 is given to the first (input) layer of the NN.
These data are processed by the NN after being trained by the mentioned optimization
techniques, then the processed results are forwarded to the output layer of the NN. Over‑
fitting is a scenario in which the algorithm tries excessively to follow the input data, result‑
ing in its memorization. Hence, the prediction produces ambiguous results. This problem
of overfitting is avoided by having a minimum number of input parameters. Thus, the
input data remains simplified, and the possibility of overfitting of the target data is greatly
avoided.

The accuracy of this output is then computed through the error calculation technique,
namely MAE, MAPE and RMSE. The pictorial elaboration of the working of this system is
given in the flow chart in Figure 8.

The real values of the wind speed for the next five months of 2019 are used for the
accuracy determination using the Equation (5). Algorithm 3 gives the pseudocode of the
algorithms used for training the FFNN and CFNN.
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Algorithm 3. FFNN Trained Through HPSOBA and MHPSO‑BAACs Algorithm.

1: Initialize Neural Network (FFNN or CFNN)
2: Initialize node weight and bias
3: Define objective function
4: Feed historical data as input values
5: Parameter initialization: max. iterations maxit, population npop, frequency f, ω, c and r for all
algorithms
6: Set the wind velocity and position
7: for i = 1:npop
8: Initialize velocity and position
9: Update personal and global best
10: if optimum velocity < optimum result of wind velocity
11: velocity = optimum result;
12: end if
13: end for
14: HPSOBA, MHPSO‑BAAC and MHPSO‑BAAC‑χ main loop:
15: for iteration = 1: Maxit
16: for i = 1:npop
17: Calculate ω and α for all algorithms and χ for MHPSO‑BAAC‑χ only
18: Update velocity and position
19: Update personal best:
20: if velocity < optimum velocity
21: optimum position = position;
22: optimum velocity = velocity;
23: optimum output = output;
24: Update global best
25: if optimum velocity < optimum result of wind velocity
26: optimum result = optimum velocity;
27: end if
28: end if
29: end for
30: Optimum Value = Optimal solution;
31: Display (Iteration, Optimal Solution);
32: end for
33: Check accuracy of results through error computations
34: Plot forecasted wind speed and power

6. Results and Discussion
The forecasting of the wind speed and power is performed through the FFNN trained

by the standard PSO and recently designed HPSOBA, and MHPSO‑BAACs algorithms to
present a RES‑based sustainable solution to the energy demand. Pakistan has great poten‑
tial for wind‑energy‑based power generation, as assessed in detail by the authors in [40,41],
and requires major movement for the RES‑based approach as adopted by developed coun‑
tries in the European Union (EU) for a smart‑energy approach [42]. Although it has great
potential for wind energy, the country has focused on TPPs to satisfy electric power re‑
quirements due to its variability. This emphasizes the adoption of mechanisms that make
wind energy sources more reliable, especially considering the treatment of the ecosystem.

For this purpose, the algorithms have been implemented for the Jhimpir district in
southern Pakistan. The district has great potential for wind energy. According to a report
released by the AEDB, the region has two wind power plants with a collective installed
volume of 106 MW, which is hardly 20% of the actual wind potential for the region [43].
The time resolution for the wind speed data was based on daily minimum and maximum
climatic data, taken through the devices installed at various points of the wind farm and
recorded for the different values of the day. The daily averagewind speed and temperature
were calculated and saved for 2019 [44]. The details of the considered wind farm are taken
from [45] and arementioned in Table A1 of the Appendix A section. It is worthmentioning
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here that the wind speed data, used for generating the forecasted results, is taken on a
daily basis and spanned over the period of months. This shows that the presented results
in the following subsections are for long‑term forecasting derived through medium‑term
forecasting data, i.e., months of data derived through days of data.

The simulation performed usingMATLAB® has numerous features stated in [46]. The
system on which simulation was performed is comprised of a fifth‑generation AMD A‑8
processor, 4 GB RAM, and a storage of 128 GB [47]. The accuracy of the predicted values
is tested by the error computational techniques of MAE, MAPE, and RMSE, along with
checks of the fitting of the forecasted values compared to the actual values. The details of
a considered wind power generation system have been shared in the Table A1 given in the
Appendix A section of the paper. The values of the simulation parameters are specified in
Table 1.

Table 1. Parameters of HPSOBA, MHPSO‑BAACs used for simulation.

Sr. No. Parameters Range Values Set

1 Inertia Weight [0–1] ωmin = 0.6, ωmax = 0.8
2 Cognitive and Social co‑efficient [0–4] 2.5
3 Uniform random PDF [0–1] 0.5
4 Frequency [0–4] fmin = 3.0, fmax = 3.25
5 Phi [4.1 ≤ φ ≤ 4.2] φ = 4.1
6 Population ‑ 100
7 Iterations ‑ 1000

6.1. Wind Speed and Power Estimation through FFNN
The meteorological data such as wind speed and ambient temperature for the one

and half years (January 2018 to May 2019) are taken from [45,48]. The data are utilized
as 150 input samples of wind speed values for one and half years, and used to predict the
daily wind speed for the months of June to October 2019. The number of neurons is set
to 350 with the number of inputs, hidden, and output layers set as 1 each. The weight of
the neurons depends on the best‑achieved values of the particles of the algorithms used
to train the FFNN. The comparative wind speed and power plots for the FFNN are given
in Figure 9a,b, Figure 10a,b, Figure 11a,b and Figure 12a,b, trained through standard, HP‑
SOBA, MHPSO‑BAACs algorithms, and PSO, respectively.
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(b) Comparative analysis of wind power forecasting by the FFNN trained through HPSOBA.
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Figure 10. (a) Comparative analysis ofwind speed forecasting by the FFNN trained throughMHPSO‑
BAAC. (b) Comparative analysis of aind power forecasting by the FFNN trained through MHPSO‑
BAAC.
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(b) Comparative analysis of wind power forecasting by the FFNN trained through PSO.

From Figures 9a, 10a, 11a and 12a, it is evident that the FFNN trained through HP‑
SOBA and MHPSO‑BAAC provide a better wind speed forecasting that is closer to the
actual values of wind speed for the same period. Figures 9b, 10b, 11b and 12b give the
comparative graphs of the wind power calculated by Equation (3) for the actual and fore‑
cast wind speed values, while the performance coefficient and the swept area are taken as 1.
The figures follow the same trend, as the forecast wind power achieved by the implementa‑
tion of HPSOBA andMHPSO‑BAAC is closer to the actual wind power for June to October
2019, while the performance of the classical PSO appears to be a poor performer in this re‑
gard. The problem of overfitting or underfitting is avoided through a minimum number
of input parameters and the required layers. Thus, the input data remains simplified and
the possibility of overfitting of the target data is greatly avoided.

A similar trend is observed in the accuracy‑testing procedure, performed through the
calculation of the MAE, and is given in Table 2.

Table 2. Values of the mean forecasted wind speed, power, and accuracy testing parameter through
FFNN.

Training
Techniques

Objective
Function

Mean
Forecasted
Wind Speed

(m/s)

Mean
Forecasted
Wind Power

(MW)

MAE MAPE (%) RMSE
Elapsed
Time
(s)

HPSOBA 0.2218 5.6186 158.4656 0.0673 6.73 0.0378 64.755386
MHPSO‑BAAC 0.2545 5.8107 167.0027 0.0737 7.37 0.0936 73.470082
MHPSO‑BAAC‑χ 0.3635 5.5867 142.6933 0.0895 8.95 0.1785 69.108956

PSO 0.3290 5.4169 138.9516 0.0876 8.76 0.5542 73.763235

Table 2 presents the calculated values of the objective function, MAE, MAPR, and
RMSE, along with the mean estimated wind speed and power using the FFNN trained by
the mentioned algorithms. Table 2 clearly shows that the superior performance in terms of
the lower objective function and the error values of the designed HPSOBA and MHPSO‑
BAAC algorithms compared to the standard PSO. AlthoughMHPSO‑BAAC‑χ shows com‑
paratively higher error values, the mean forecasted wind power is much lower and more
closely related to the actual wind power.
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6.2. Wind Speed and Power Estimation through the CFNN
The algorithm compares the predicted results with 150 target samples that are from

the second half of the year 2019 as mentioned above. The number of neurons is set to 350
with the number of inputs, hidden, and output layers set as 1 each. The weight of the
neurons depends on the best‑achieved values of the particles from the algorithms used to
train the CFNN. The comparative wind speed and power graphs, along with the regres‑
sion fitting graph for the CFNN are given in Figure 13a,b, Figure 14a,b, Figure 15a,b and
Figure 16a,b, with the CFNN trained through the MHPSO‑BAAC, MHPSO‑BAAC‑χ, HP‑
SOBA, and standard PSO, respectively.
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MHPSO‑BAAC. (b) Comparative analysis of wind power forecasting by the CFNN trained through
MHPSO‑BAAC.
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Figure 16. (a) Comparative analysis of wind speed forecasting by the CFNN trained through PSO.
(b) Comparative analysis of wind power forecasting by the CFNN trained through PSO.

From Figures 13a, 14a, 15a and 16a, it is evident that the CFNNs trained through the
MHPSO‑BAAC and MHPSO‑BAAC‑χ provide a good trend following the actual values
of wind speed for the same period. However, the HPSOBA shows a much closer trend
followed by a wind speed estimation. Figures 13b, 14b, 15b and 16b give the comparative
plots of the wind power calculated by Equation (5) for the actual and forecasted wind
speed values, while the performance coefficient and the swept area are taken as one. The
figures follow the same trend, as the forecastedwind power of Figures 9b, 10b, 11b and 12b
are closer to the actual wind power for June to October 2019 with the HPSOBA showing a
much closer matching, while the performance by the classical PSO appears to be poor in
this regard. The problem of over‑ and underfitting is avoided through aminimumnumber
of input parameters and the required layers. Thus, the input data remains simplified, and
the possibility of overfitting of the target data is greatly avoided.

An identical trend is observed in the accuracy‑testing procedure, performed through
the error value calculations, and is given in Table 3.
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Table 3. Values of the mean forecasted wind speed, power, and accuracy‑Testing parameter through
the CFNN.

Training Technique Objective
Function

Mean
Forecasted
Wind Speed

(m/s)

Mean
Forecasted
Wind Power

(MW)

MAE MAPE (%) RMSE
Elapsed
Time
(s)

HPSOBA 0.2780 5.2388 161.4206 0.0210 2.11 0.2347 87.243028
MHPSO‑BAAC 0.2480 5.3828 167.1207 0.0112 1.12 0.0577 105.136166
MHPSO‑BAAC‑χ 0.3542 5.6785 146.2933 0.0895 8.95 0.2171 88.137496

PSO 0.6022 4.8238 164.1206 0.0876 8.76 0.3534 85.756344

Table 3 presents the calculated values of the objective function, MAE, MAPE, and
RMSE, along with the mean estimated wind speed and power using the CFNN trained by
thementioned algorithms and in the time elapsed. Table 3 shows the superior performance
with the lower value of the objective function, along with the error values of the MHPSO‑
BAAC designed of the algorithm compared to the PSO andHPSOBA, andMHPSO‑BAAC‑
χ in the case of the MAE.

The performance comparison of both considered NNs clearly shows that the FFNN
presents better results for similar training techniques and the input parameter and values.
The obtained results can help in improving the contribution of wind‑based power produc‑
tion networks in developing countries such as Pakistan that are still behind in terms of
its employment, despite having huge potential. This enhanced integration can provide in‑
expensive electric power in the system and can reduce emissions, resulting in improved
environmental conditions.

7. Conclusions and Future Work
The forecasting of wind power is a challenging task; the accurate modeling of wind

speed and its generated power is intermittent as it is highly dependent on the weather,
location, season, etc. Therefore, machine learning and deep learning algorithms that work
on historical datasets are used in the forecasting of wind power generation.

Thepaper presents the forecasting ofwind speed andpower using FFNNs andCFNNs
trained through a HPSOBA, MHPSO‑BAAC, MHPSO‑BAAC‑χ, and PSO for June to Oc‑
tober 2019 in the Jhimpir region in Sindh, Pakistan. Historical data from the one and half
years (January 2018 to May 2019) is provided as input to the multilayer NN. The perfor‑
mance is analyzed through the assessment of forecastedwind speed and power against the
actual values in the same period, and accuracy‑testing error computational techniques us‑
ing theMAE,MAPE, andRMSE. The analysis considers the comparison of the performance
of the training techniques, where the HPSOBA outperforms the other training algorithms,
followed by the MHPSO‑BAAC. However, the overall comparative analysis validates the
superior performance of the designed metaheuristic optimization algorithms of HPSOBA
and MHPSO‑BAACs for the forecasting mechanisms. Thus, the versatility, flexibility, and
applicability of the developed algorithms is justified. The presented system predicts the
daily wind speed for the mentioned period of months. As aforementioned, the presented
work in this paper provides wind speed forecasting which helps in creating awareness
among the government and private authorities where the location of wind‑based power
farms ismore suitable. This will eventually result in efficient power generation, therefore a
better energy output and the saving of costs. Due to the mentioned reasons, this work also
acts as a guideline for the adoption of such technologies for wind‑based efficient power
production in developing countries that have similar climatic conditions such as the con‑
sidered region in this paper. Another indirect benefit of installing this type of project is the
reduction of carbon emissions in the environment. The presented work, if implemented,
can help in identifying and calculating the design parameters of wind turbines for a suit‑
able region. Furthermore, at the operational stage of the wind turbine, it can help identify
the amount of electric power that can be collected from wind‑based system during a par‑
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ticular period, hence optimizing the scheduling of the grid and reducing the operational
costs of power plants by lowering the reserve capacity demand.

For future research, this model can be extended with a larger data set as training data
and more accurate and long‑term forecasting can also be made. The authors also plan
to perform wind speed predictions using the BPNN, LSTM, and N‑beats, with possible
implementation of the presented optimization techniques for the training of the considered
NNs, with emphasis on interpretable wind speed prediction. Wind speed modelling with
interpretable physics‑informed machine learning, multivariate time series, and temporal
fusion transformers can be explored and evaluated with the results of this study.
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Appendix A

Table A1. Description of the Considered Wind Farm [46].

Sr. No. Parameters Values Set

1 Wind Plant Rating 49.5 MW
2 No. of Turbines 31
3 Wind Turbine Rating 1.6 MW
4 Air Density (p) 1.225 kg/m3

5 Performance Coefficient (Cp) 1
6 Wind Speed (v) Available and Predicted Values (m/s)
7 Swept Area (A) 5346 m2

8 Hub Height 80 m
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