
Citation: Sadhu, P.K.; Yanambaka,

V.P.; Abdelgawad, A. Physical

Unclonable Function and Machine

Learning Based Group

Authentication and Data Masking for

In-Hospital Segments. Electronics

2022, 11, 4155. https://doi.org/

10.3390/electronics11244155

Academic Editors: Sabrine Kheriji,

Olfa Kanoun, Faouzi Derbel and

Suleiman Yerima

Received: 31 October 2022

Accepted: 12 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Physical Unclonable Function and Machine Learning Based
Group Authentication and Data Masking for
In-Hospital Segments
Pintu Kumar Sadhu 1,* , Venkata P. Yanambaka 2 and Ahmed Abdelgawad 1

1 College of Science and Engineering, Central Michigan University, Mount Pleasant, MI 48858, USA
2 Department of Mathematics and Computer Science, Texas Woman’s University, Denton, TX 76204, USA
* Correspondence: sadhu1pk@cmich.edu

Abstract: The involvement of the Internet of things (IoT) in the development of technology makes
systems automated and peoples’ lives easier. The IoT is taking part in many applications, from
smart homes to smart industries, in order to make a city smart. One of the major applications of
the IoT is the Internet of medical things (IoMT) which deals with patients’ sensitive information.
This confidential information needs to be properly transferred and securely authenticated. For
successful data protection and preserving privacy, this paper proposes multidevice authentication for
the in-hospital segment using a physical unclonable function (PUF) and machine learning (ML). The
proposed method authenticates multiple devices using a single message. Most of the protocols require
PUF keys to be stored at the server, which is not required in the proposed framework. Moreover,
authentication, as well as data, is sent to the server in the same message, which results in faster
processing. Furthermore, a single ML model authenticates a group of devices at the same time. The
proposed method shows 99.54% accuracy in identifying the group of devices. Moreover, the proposed
method takes 2.6 ms and 104 bytes to complete the authentication of a device and takes less time with
the increment of devices in the group. The proposed algorithm is analyzed using a formal analysis to
show its resistance against various vulnerabilities.

Keywords: Internet of Things; Internet of Medical Things; smart city; security and privacy; authentication
framework; group device authentication; physical unclonable function; machine learning

1. Introduction

Industry 4.0, or the fourth industrial revolution, was coined in 2011 by the German
Federal Government to emphasize its high-tech approach [1]. Industry 4.0 aimed to inte-
grate the physical components or devices for manufacturing (i.e., various machines, sensors,
complex tools) and communication parts (i.e., advanced software) through wired/wireless
networks to predict, control, maintain, and integrate the manufacturing process [2]. IoT,
cyberphysical systems, cloud computing, edge computing, Big Data analytics, robotics,
virtual reality, etc., are the categories of industry 4.0 [3]. The smart city is a major application
to make industry 4.0 successful. Many countries are adopting smart cities to provide a
better quality of life [4]. Since the smart city generates a network where all connected
devices can communicate with one another, enabling the creation of a device-to-device
or machine-to-machine network, it is imperative to develop an omnipresent computing
system [5]. To provide seamless support and better health service, the IoMT system is
developing in the smart city. The IoMT is a system where people with both wearable or
implantable medical devices (MD) suffering from diseases, for example, blood pressure,
cardiac, and diabetes, are connected to a network to transfer health data to health experts.
Experts check the data and prescribe the patients accordingly [6]. The environment of the
IoMT can be classified into five categories.
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1. On-body segment: consumer health wearables (used for fitness or health data mon-
itoring such as fitness bands, smartwatches, smart shoes, smart clothes, etc.) and
clinical-grade wearables (for example, elders can wear smart belts for identifying
any risks and providing safety support, Halo Sport headset to activate specific brain
regions, etc.) [7].

2. In-home segment: For making a healthy home, wearable devices for monitoring
patients at home use health data collection using sensors [8]. For example, a per-
sonal emergency response system can be used by older people to get live service;
telemedicine and digital tests are part of the in-home IoMT segment.

3. Community segment: The MDs and health stations of a particular area develop this
segment [9]. This segment considers mobility, emergency response intelligence, kiosks,
point-of-care devices, and logistics as components.

4. In-clinic segment: the MDs that help to gather necessary data and device suggestions
regarding administrative and clinical operations build this segment [10].

5. In-hospital segment: This segment manages the system of a hospital using MDs’ data.
This can provide solutions in the area of patient management, personnel management,
environment, etc., in the hospital [11].

Figure 1 shows the IoMT ecosystem in a hospital environment in a smart city [12].
In the IoMT system, all the MDs are connected to the cloud server through the internet
(wired or wireless). MDs collect data from the human body, and the data are passed to
the cloud server. Doctors or experts access the data to take further action. Doctors do not
need to visit in person to check the condition of patients. The advantages of the IoMT are
attracting the healthcare sector to adopt it.
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Figure 1. IoMT ecosystem of in-hospital segment in smart city.

According to Deloitte’s report, the market value of the IoMT will reach around USD 158
billion by 2022 [13]. The IoMT is bringing advantages not only to the doctors and patients’
management but is also becoming a blessing economically. It is expected that the healthcare
industry will be able to save approximately USD 300 billion per year. Nevertheless, the
IoMT is also bringing severe challenges in the area of security and privacy.

1.1. Security and Privacy Concerns in the IoMT

Security and privacy concerns are rising in the IoMT system. Different adversarial
impacts, such as data breach, identity theft, data modification, denial of service, etc., could
pose threats to the IoMT network [14]. A report from Cynerio in August 2022 stated that in
88% of cases of cyberattacks, an MD was involved. Moreover, healthcare had to pay around
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USD 1 million for average data breach cases, and it increased the mortality rate by 24% [15].
A total of 2.9 million subscribers were affected in the cyberattack on Health South-East
RHF in Norway. Approximately 19,000 appointments were canceled in the WannaCry
ransomware attack on England’s National Health Service. Moreover, they had to spend
92 million to recover from the threat. Since the IoMT deals with sensitive information, it
is required to preserve the security of the system and preserve user privacy to avoid data
loss, unauthorized access, or malicious attackers.

IoMT systems need to implement a robust and secure authentication and data commu-
nication mechanism [16]. Authentication systems can be developed using a decentralized
system, such as the blockchain, and also using a centralized server system. In the blockchain,
a number of transactions make a block and connect with the previous blocks to build a
chain. In the centralized server system, the server is responsible for making decisions.
Different encryption methods, such as advanced encryption standard (AES), message au-
thentication code (MAC), attribute-based encryption (ABE), elliptic curve cryptography
(ECC), etc., are used to develop authentication mechanisms. A PUF is another method to
develop an authentication method that does not need to store a cryptographic key in the
system. To build a robust and secure authentication framework as well as data masking,
this paper used a PUF and ML.

A PUF is a one-way function that provides a unique Boolean mapping between the
input of the PUF and the output of the PUF. The manufacturing process differences of the
chips create statistical process variations that define the PUF working principle [17]. PUF
can also be called a chip fingerprint. It is a useful tool for applications such as authentication,
validation, identification, etc. Unlike conventional methods to store secret keys, such as
encryption and password, a PUF generates secret keys instantly using a semiconductor
chip’s complex characteristics [18]. Due to imperfections in the manufacturing process, a
PUF generates different secret keys when a different input is provided. The combination
of input (challenge) and output (response) of the PUF is the signature of the PUF, which
is referred to as a challenge–response pair (CRP) [19]. Figure 2 shows the CRP relations
among different PUFs. It can be seen that n sets of challenges are sent to n PUFs where each
PUF generates different responses due to different process variations of the chips. Recently,
mathematical models was used against PUFs to exploit it. The attack was called a modeling
attack. A successful tool for performing modeling attacks is ML [20]. By protecting CRP
interfaces, it is possible to resist modeling attacks.

PUF1

PUF2

PUF3

PUFn

𝐶
1
,𝐶
2
,𝐶
3
,…

,𝐶
𝑛

𝑅11, 𝑅12, 𝑅13, … , 𝑅1𝑛

𝑅21, 𝑅22, 𝑅23, … , 𝑅2𝑛

𝑅31, 𝑅32, 𝑅33, … , 𝑅3𝑛

𝑅𝑛1, 𝑅𝑛2, 𝑅𝑛3, … , 𝑅𝑛𝑛

Figure 2. CRP characteristics of PUFs.
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On the other hand, ML is mainly driven by data [21]. ML is a powerful tool that is
making life easier and providing faster solutions to complex systems. In healthcare, ML
is a blessing by identifying diseases using images and data, scheduling appointments,
and creating a better relationship between patients and doctors [22]. ML is a method that
tries to learn outputs using input data through mathematical models. There could be a
number of input features and a number of output features. Supervised, unsupervised,
and reinforcement learning are the three types of ML [23]. In supervised learning, a training
dataset is required. During training, a decision rule is trained, and a classifier is constructed.
The learning process runs till the desired goal is achieved with a proper optimization of
weights and other parameters [24]. Supervised ML is divided into segments such as binary
classification, multiclass classification, regression, etc. In binary classification, there are two
kinds of output classes, and a sigmoid is used in the last layer of the modeling. In multiclass
classification, there are a number of classes in the output feature. There are three types of
layers which are the input layer, the hidden layer, and the output layer. The input features
map with the output class to learn properly. Figure 3 shows an example of multiclass
classification. The first layer is the input layer, where the size of the layer depends on the
features of the dataset. The next layer is the hidden layer, which is a layer of mathematical
functions, each designed to produce an output specific to an intended result. There could
be more than one hidden layer. The last layer is the output layer, where the size is the
classes/labels of the dataset. In this kind of supervised learning, a softmax function with
the number of classes as unit size is in the last layer of the model. An explanation of the
relationships among input features and one or more responses or target output features is
provided by a regression model.
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Figure 3. Multiclass classification model.

1.2. Contributions

Researchers in both academia and the industry are working continuously to develop
authentication methods to secure IoMT applications. The developed methods need to
be robust enough to provide security against known security threats. Moreover, it is
required to avoid complex calculations and make the framework lightweight as the IoMT
devices are resource-constrained and cannot allocate a lot of resources for authentication
purposes. Furthermore, the authentication process should not raise a burden on the
communication network. Most of the existing methods use single device authentication
and need to perform several steps of communication to validate the devices. This type of
method consumes the transmission resources and device resources to perform operations
at different times. Moreover, the device needs to send data separately after completing
the authentication. To resist known security attacks, validate multiple devices, and send
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data in the authentication request, simple and lightweight operations along with a low
communication cost are required; this paper proposes an authentication framework using
a PUF and ML to validate a group of medical devices and send data at the same time. The
contributions of the proposed framework are as follows.

• It is the general norm for PUF-based methods to transmit challenges to the device
and/or the cloud. The proposed framework incorporates machine learning to control
the PUF. It eliminates the requirement of transmitting challenges from the cloud server.

• Usually, CRPs are stored on the cloud server to verify the devices. The proposed
method removes the requirement of CRP storage in the cloud server, which reduces
the storage cost in the secure database.

• A group of devices are authenticated at a time instead of a single device.
• A single message transfer is adequate to complete the authentication of the group of

medical devices.
• A single machine learning model identifies a group of medical devices. The proposed

method eliminates the requirement of storing multiple models for multiple devices.
• No need to transfer data separately after authentication. Health data are sent at the

same time with the authentication request.
• The secret encryption key in the edge router is updated periodically, which removes

prevents key guessing attacks.
• The method involves each device’s authentication separately, it follows a linear rela-

tion for communication overhead. Communication overhead is decreased with the
increment of devices in the proposed method.

• Less computation cost is involved. The cost is also decreased with the number of devices.

The rest of the paper consists of related work in Section 2, the proposed framework in
Section 3, results in Section 4, a security proof in Section 5, and the conclusion and future
work in Section 6.

2. Related Work

Li et al. [25] proposed a lightweight authentication mechanism using a secret key.
The method required a trusted gateway to register the node using the secret key. The secret
key helped to establish the session key. The method was lightweight; however, the storage
cost was high in the developed scheme. Amintoosi et al. [26] developed another lightweight
scheme using identity (ID), a password, and a smart card. This scheme used operations such
as hash, XOR, concatenation, etc., to make it lightweight. A MAC-based authentication
scheme was developed by Siddiqi et al. [27]. In the method, the server used the key
where K-bit was missing, and the sensor device needed to identify the hash of the missing
bits. The method saved energy but did not preserve user anonymity. Hwang et al. [28]
developed a CP-ABE-based framework for the IoMT environment. The ciphertext length
was the same and it was independent of other parameters. The method identified the root
cause by finding the first receiver of the key. The proposed method needed significant
computations to identify devices. If an attacker received the delegated key, there could be a
chance of health data leakage. Liu et al. [29] proposed a multikeyword searchable method
using the ABE mechanism. The proposed method used ABE to encrypt the symmetric
key. The method performed most of the decryption calculations on the server, which
reduced the calculations on the user side. A combination of boolean attributes and a
weighted comparison of attributes was used to develop a new method called ciphertext
policy weighted-attribute-based encryption (CP-WABE) by Li et al. [30]. The storage
cost was comparatively high due to the storage of a set of weights. An ECG- based
IoMT device authentication scheme was developed by Huang et al. [31]. The method
removed the noise from the ECG signal to operate. Depending on the saved attributes
and patients’ movement, noise interference was changed. Angular distances dues to
different movements, such as running and walking, could impact the proposed method.
The method needed to improve to preserve user anonymity and reduce computation cost.
Another method developed by Ying et al. used ECG templates as user biometrics [32].
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The framework used ECC and a smart card. Different nonces and hash functions were
written in the smart card for verification purposes. The method needed to cater to ECG-
related problems and server impersonation attacks. Moreover, the method needed to
optimize communication overhead. Ryu et al. also proposed an ECC based authentication
framework [33]. The proposed method also used the user’s biometrics, but it kept the
features separate to avoid attacks due to theft parameters. The proposed method could
optimize storage costs due to unused parameters in the authentication process. Moreover,
the cost of the framework was high comparatively. Al-Zubaidie et al. [34] developed an
authentication method using ECC and the PHOTON hash function. The method used
information from the user and device for the successful completion of the authentication.
Moreover, information related to physical address, a one-time password, etc., was part
of the authentication framework. Gopalan et al. [35] proposed an ECC based mechanism
for secure data transfer when the initial authentication is completed. The method used
log-of-round-value-based elliptic curve cryptography (LR-ECC) for securing the data
transfer. De-Marcos et al. [36] developed a continuous authentication method to avoid the
security issue of one-time authentication. They used seven different classifiers where the
ensemble algorithm showed better performance for classification. Wazid et al. developed
an authentication mechanism for secure communication between a device and a personal
server using a secret key [37]. They also used artificial intelligence for data analysis.
The method used a decision tree, a support vector machine, and logistic regression, and the
accuracy was below 88%. The above methods used different cryptographic keys, which are
required to be stored in the device.

To avoid key storage, a PUF-based authentication mechanism was developed by
Alladi et al. [38]. The method used two factors to complete the authentication. Moreover,
instead of using a complete response, the method used a segmented response. However,
the method required complex computations. Moreover, the method needed to store the
challenge, and after completing authentication, the device needed to select the challenge in
random order. If the PUF of the device could not produce a stable response for the challenge,
there was authentication failure. Gope et al. [39] also developed a PUF-based authentication
framework for the IoMT system. Both server and client devices verified one CRP to
identify each other. Two CRPs were required to transfer over the communication channel.
The process of updating reserve CRPs was not mentioned in the method. Lee et al. [40] also
used a PUF to develop an authentication mechanism for a dynamic group key agreement.
A key agreement between two devices was initiated by a register center. After that, CRPs
from both devices, stored parameters, and different operations were used for mutual
agreement. Both devices broadcast the keys to update the group key by other devices of
the group. One of the devices for mutual agreement was required to be an existing device
for a successful update. Moreover, the method needed to state the procedure for getting
the existing group key for the new devices.

To avoid using a centralized server, blockchain-based authentication mechanisms have
been used. Abdellatif et al. [41] developed a blockchain-based authentication mechanism
which integrated edge computing to process health data. The method created three different
channels for different kinds of data. The work focused on prioritizing different levels of
data. Another blockchain-based authentication system was developed by Lin et al. [42].
They used reinforcement learning to allocate resources. In the method, a 360◦ video was
captured using virtual reality. The method could identify the common view of similar
patients, but a comparatively high computing capacity was required. Egala et al. [43]
developed a novel blockchain-based system. The method introduced selective ring-based
access control and ECC to authenticate the device. The method also maintained a gray list
to record unauthorized devices. Wang et al. [44] developed an authentication mechanism
using a PUF. They applied fuzzy extraction to handle users’ biometric data. Table 1 shows
a comparison of existing authentication schemes.
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Table 1. Comparative analysis of related works.

Author Objective Technique Used Pros Cons

Li et al. [25] Reduce complexity and
secure communication PKI Lightweight scheme Much time and

storage required

Siddiqi et al. [27] Security protocol for IMD
ecosystem MAC 7% energy consumption No user anonymity

Hwang et al. [28] Improve CP-ABE-based
scheme CP-ABE Resolves key abuse problem PHI leakage

Liu et al. [29] Achieve data SNP
preservation ABE Major decryption on server

side Complex

Huang et al. [31] Protection from
unauthorized entity ECG Remove noise, light

algorithm
No
anonymous identity

Ying et al. [32] Secure communication ECC Low computational time High communica-
tion overhead

Ryu et al. [33] Robust authentication ECC Used biometrics along with
stored parameter Unused parameters

Wazid et al. [37]
Secure communication
among devices, personal
server, and cloud server

AI Low end-to-end delay Low accuracy

Alladi et al. [38] To achieve physical security PUF Low computation time Unstable CRP can
cause failure

Gope et al. [39] Secure and efficient
authentication PUF Less computation at server Two CRPs

per transaction

Lee et al. [40] Establish group key
agreement PUF Simple

Two new devices
cannot take part at a
time

Abdellatif et al. [41] Process large quantities of
medical data Blockchain Remote monitoring, different

actions for different data
Security is not
focused

Egala et al. [43] Efficient secure exchange for
decentralized network

Blockchain and
ECC Low energy, fast response

Ring tamper
resistance instead
of device

Wang et al. [44]
To build a reliable
communication channel for
healthcare

Blockchain (PoW)
and PUF Low cost Storage cost

3. Proposed Group Medical Devices Authentication and Data Masking Framework

In the proposed method, a group of MDs are authenticated, and their data are masked.
The cloud server (CS) authenticates and retrieves the original data with the help of an edge
router (ER). A group of MDs are connected to the ER through a wired/wireless medium.
The below elements are used in the proposed framework. Figure 4 shows the overview of
the proposed mechanism. Table 2 shows the acronyms used in the proposed section.

• Medical Devices: The MDs are wearable devices used by patients on hospital premises.
These MDs collect data from patients’ bodies for further analysis by doctors or other
experts. Each MD is equipped with a PUF and also stores a unique challenge. The MDs
are connected to the hospital network.

• Edge Router: The ER is the gateway of the hospital, which has enough processing
power to handle multiple requests and perform many tasks at the same time. It is
not a limited-resources device like an MD. It is responsible for network handling,
maintaining MDs’ authentication processes, data masking, etc. Like MDs, it is also
equipped with a PUF. Moreover, an ML model is stored in the ER to control the PUF.
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• Cloud Server: The CS is the central element for making the decision and storing any
kind of data. The CS stores the authentication parameters of the MDs. It is the only
trusted element in the network. It is the most powerful device in the IoMT network.
It is responsible for authenticating MDs and retrieving data. After the extraction of
data, it stores the data in a secure database (SDB) through a secure channel. Moreover,
the SDB stores the pseudoidentity (PID) of each MD and ERs. Furthermore, two ML
models are stored in the SDB for authentication purposes.

1. PUF controlling model: The PUF used in the method is a controlled PUF or
MC-PUF [45]. PID and timestamp (Tst) are used as the input features, and the
partial challenge is the output feature of the model. This ML model is stored in
both the EG and the SDB. The model is called MCmodel .

2. Device prediction model: This model is responsible for identifying the MDs.
The CRPs of the group of MDs are collected and trained. The CRPs are the input
features of the model and the MDs identity are the output feature. This model
is stored in the SDB for identifying the PIDs of the MDs. The model is named
MLmodel .

Table 2. Acronyms used in the proposed section.

Acronym Full Form Acronym Full Form

MD IoMT device PUF Physical unclonable function
ER Edge router CS Cloud server
SDB Secure database PID, PID1, PID2, PIDn Pseudoidentity
MCmodel PUF controlling model MLmodel Device prediction model
C, C1, C2, C3, Cn Challenge of MDs R, R1, R2, R3, Rn Response of MDs
C1n, C2n, C3n, Cnn Stored challenge in MDs R1n, R2n, R3n, Rnn Stored response in MDs
CER Stored challenge in ER RER Stored response in ER
C1(p), C2(p), Cn(p) Partial challenge Res1, Res2, Resn MD’s generated response
Tst Timestamp DT1, DT2, DTn Health data
(Y)E Y encrypted using E E(Y) Y decrypted using E
→ CRP generation −→ Data transfer
7→ ML model prediction |= Model training
H Hash operation ⊕ XOR operation
∈ Store operation ? Validation checking
|| Concatenation operation × Delete operation

In-Hospital 

Premise

Edge Router
Medical Devices

Cloud Server

MD1

MD2

MD3

MDn

Figure 4. Overview of the proposed framework.
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3.1. Assumptions

The following assumptions need to be considered for the successful deployment of
the proposed group device authentication and data masking/retrieving operations.

• Each MD and the ER of the group need to be incorporated in the PUF module.
• The model which is stored in the ER for partially controlling the group of MDs is not

modified.
• The ER is already authenticated prior to the MD group validation process.
• The stored challenge in the ER is updated periodically.
• The PUFs used are strong and reliable PUFs. The PUFs are not affected by noise and

external parameters.
• The secure connection between the CS and the SDB is uninterrupted.
• No impact on CS and SDB is considered in the method.
• IDs, PIDs, CRPs, and models are stored in the trusted SDB only.
• The group of MDs are enrolled at the same time. If any modification in the group

is required, the model of the CS is updated. Moreover, the ER is updated with the
required data of the new MD. After successful updating, the MD is included in
the group.

The group of MDs’ authentication process is divided into two phases which are the
enrollment phase and the authentication with data masking/retrieving phase. In the
enrollment phase, both the group of MDs and the ER are enrolled in the network and
necessary information is stored in the MDs, ER, and SDB. The successful training of ML
models is done in the enrollment phase.

3.2. Edge Router Enrollment

Before placing the ER in the network of the hospital, it is registered to the IoMT
network. The enrollment process of the ER is shown in Figure 5. The enrollment process is
completed in a secure environment. The total enrollment phase is divided into two steps as
shown in Algorithm 1.

1. MCmodel training: The CS trains the MCmodel stored in the SDB. Moreover, it shares
the model with the ER. After that, the ER receives the PID and a secret response for
each MD.

2. Encryption of credentials: The ER first selects a secret challenge CER and stores it.
The incorporated PUF of the ER generates RER using the challenge CER. The RER is
used as the encryption key to encrypt the PIDs and the secret responses of the MDs.
After encryption, the ER transfers the RER to the CS for storing purposes in the SDB.

𝑀𝐶𝑚𝑜𝑑𝑒𝑙

𝑃𝐼𝐷1, 𝑅1𝑛, 𝑃𝐼𝐷𝑛, 𝑅𝑛𝑛

𝐶𝐸𝑅 𝑅𝐸𝑅 𝑀𝐶𝑚𝑜𝑑𝑒𝑙𝑅𝐸𝑅

Edge Router Cloud Server

𝑃𝐼𝐷1, 𝑅1𝑛,
𝑃𝐼𝐷𝑛, 𝑅𝑛𝑛 𝑅𝐸𝑅

Figure 5. Edge router enrollment for a group of devices.
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Algorithm 1 Edge router secure registration process.
Step 1: MCmodel training
Server:
PID, Tst, C |= MCmodel
Server −→ edge router {(PID1, PID2, . . . , PIDn), (R1n, R2n, . . . , Rnn), MCmodel}
Step 2: Encryption of credentials
Edge router:
∈ MCmodel
PUF:

CER → RER
(PID1, R1n, PID2, R2n, . . . , PIDn, Rnn)RER =SecKyER
∈ SecKyER

Edge router −→ server {RER}
Server −→ database {RER}
Database:
∈ RER

3.3. Group of Medical Devices Enrollment

The group of MDs are enrolled at the same time and in a secure environment. Like
the ER enrollment process, the group of MDs’ registration is also divided into two steps as
shown in Algorithm 2. The whole enrollment process is presented in Figure 6.

1. MCmodel Prediction and challenge collection: The stored MCmodel uses different times-
tamps and PIDs to generate challenges for each MD. The different sets of challenges
are sent to the different MDs.

2. PUF response generation and MLmodel training: Each MD generates responses using
the received set of challenges using the incorporated PUF in each MD. Each MD
shares the set of CRPs with the CS. After receiving all the CRPs from each MD, the CS
trains MLmodel and stores it in the SDB.

𝐶1

𝐶2

𝐶3

𝐶𝑛

𝐶1, 𝑅1

𝐶2, 𝑅2

𝐶3, 𝑅3

𝐶𝑛, 𝑅𝑛

𝑀𝐿_𝑚𝑜𝑑𝑒𝑙

Figure 6. A group of medical devices enrollment.
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Algorithm 2 Secure registration process of a group of medical devices.
Step 1: MCmodel prediction and challenge collection
Server:

MCmodel :
PID, Tst 7→ C

Server −→ device {C}
Step 2: PUF response generation and MLmodel training
IoMT device:

PUF:
C→ R

Device −→ server {C, R}
Server:

C, R, PID |= MLmodel
Server −→ database {MLmodel}
Database:
∈ MLmodel

3.4. Proposed Group Devices Authentication and Data Masking

Figure 7 shows the proposed method regarding group of MDs’ authentication and
data masking/retrieving process. The total mechanism is divided into four steps as shown
in Algorithm 3.

1. Request for response generation: Authentication starts in the ER with the secret
response generation by sending the stored challenge to the incorporated PUF in the
ER. The ER uses the response to decrypt the stored secret message to find out the
PIDs of the group of MDs and the secret response of each MD. After this, the ER
uses MCmodel to generate a partial challenge. PID and Tst act as input features of the
model. A random nonce is concatenated with the partial challenge, then an XOR
operation is performed with each secret response of each MD. The output of each
XOR operation is shared with the corresponding MD.

2. Response sharing by MDs: Each MD generates its secret response using the stored
challenge. By performing an XOR operation, MDs get the partial challenge and
random nonce. Each MD finds out the complete challenge by combining the received
partial challenge from the ER and its own PID. The MDs generate the response using
the PUF to validate the identity of the MD. The collected data and the random nonce
are concatenated and an XOR operation is performed.

3. Authentication request and data masking: The ER separates the responses and data
using concatenation and an XOR operation using the nonce. The ER calculates DT
using PIDs, completed challenges, and data. Here, XOR operations are performed to
mask all the information. HD is calculated by performing hash operations of partial
challenges, the response of the ER, and data. Moreover, responses are concatenated to
define Res and the PIDs of all the MDs and the ER are calculated and a hash is made
to find out HPID. DT, HD, Res, and HPID are sent to the CS.

4. Device authentication and retrieving data: After receiving a request from the ER,
the CS runs the MCmodel to predict partial challenges like the ER and also calculates
the complete challenges. Both challenges and responses act as input features of
the MLmodel to predict the PIDs to verify the identity. HPID is verified to complete
the initial verification of the MDs and the ER. Using the challenges, PIDs, and DT,
the data of the MDs are extracted. The retrieved data are verified if the calculated
HD

′
matches the received HD. This completes the group of MDs’ authentication and

data retrieving process.
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Algorithm 3 Group of devices’ authentication and secure data transfer.
Step 1: Request for response generation
Edge router:

PUF:
CER → RER

(PID1, R1n, PID2, R2n, . . . , PIDn, Rnn)=RER(SecKyER)
MCmodel :

PID, Tst 7→ C1(p), C2(p), . . . , Cn(p)
{(R1n ⊕ (C1(p)||N1)), (R2n ⊕ (C2(p)||N1)), . . . , (Rnn ⊕ (Cn(p)||N1))}

Edge router −→ IoMT device 1 {(R1n ⊕ (C1(p)||N1))}
Edge router −→ IoMT device 2 {(R2n ⊕ (C2(p)||N1))}
...........................................
Edge router −→ IoMT device n {(Rnn ⊕ (Cn(p)||N1))}
Step 2: Response sharing by MDs
IoMT Device 1:

PUF:
C1n → R1n

(R1n ⊕ (C1(p)||N1))⊕ R1n = C1(p)||N1
C1(p)||PID1 = Cn1
PUF:

Cn1 → Res1
IoMT device 1 −→ edge router {(Res1||DT1)⊕ N1}
Step-3: Authentication request and data masking
Edge router:
((PID1||PID2|| . . . ||PIDn)⊕ (Cn1||Cn2|| . . . ||Cnn)⊕ (DT1||DT2|| . . . ||DTn)) = DT
H(C1(p)||C2(p)|| . . . ||Cn(p)||RER||DT1||DT2|| . . . ||DTn) = HD
(Res1||Res2|| . . . ||Resn)⊕ RER = Res
H(PIDER||PID1||PID2|| . . . ||PIDn) = HPID

Edge router −→ Server {DT, HD, Res, HPID}
Step 4: Device authentication and retrieving data
Server:

MCmodel :
PID, Tst 7→ C1(p), C2(p), . . . , Cn(p)

MLmodel :
C, Res 7→ PID

if H(PIDER||PID1||PID2|| . . . ||PIDn) == HPID then
Initial verification of IoMT devices and edge router

else
Invalid IoMT device and edge router

end if
((PID1||PID2|| . . . ||PIDn)⊕ (Cn1||Cn2|| . . . ||Cnn)⊕ DT) = (DT1||DT2|| . . . ||DTn)

H(C1(p)||C2(p)|| . . . ||Cn(p)||RER||DT1||DT2|| . . . ||DTn) = HD
′

if HD == HD
′

then
(DT1||DT2|| . . . ||DTn) is actual IoMT data

else
Invalid IoMT data

end if
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Figure 7. The proposed authentication and data masking framework.

3.5. Encryption Key Update Process of the Edge Router

To avoid exposure to the secret response, the proposed framework uses periodic
updates of the secret key. The encryption key update process is shown in Figure 8. The key-
changing process is divided into two steps which are presented in Algorithm 4.

1. New secret key generation: The ER selects a new challenge CER(new) and generates
response RER(new) using the PUF. It decrypts the stored message using the previous
secret response and encrypts it again using the new generated response.

2. Updating secret key: The ER uses the XOR operation between RER(new) and RER and
transfers the result to the CS using a public channel. After receiving the message,
the CS uses the XOR operation to get the new secret key of the ER and stores it in
the SDB.
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Figure 8. Edge router CRP update process.

Algorithm 4 Edge router encryption key update process.
Step 1: New secret key generation
Edge router:

CER(new) → RER(new)

(PID1, R1n, PID2, R2n, . . . , PIDn, Rnn)=RER(SecKyER)
(PID1, R1n, PID2, R2n, . . . , PIDn, Rnn)RER(new)

=SecKyER(new)

∈ SecKyER(new)
Step 2: Updating secret key
Edge router:

RER ⊕ RER(new) = Rnew
Edge router −→ server {Rnew}
Server:

Rnew ⊕ RER = RER(new)
Server −→ database {RER(new)}
Database:
× RER
∈ RER(new)

4. Results

The proposed framework used a Raspberry Pi 4 model B, Xilinx PYNQ Z2 FPGA,
Xilinx BASYS 3 FPGA, and a Jupyter notebook. The scheme used a 64-bit arbiter PUF which
was deployed in both FPGAs. Figure 9 shows the experimental setup of the proposed
framework. In the experimental setup, one FPGA was connected to a Raspberry Pi to
make an MD or an ER. On the other hand, a standalone Raspberry Pi acted as a CS.
At first, the model MCmodel was trained and predicted the challenges of PUFs of MDs [45].
The challenges were used in the PUFs of the FPGAs and the connected Raspberry Pis
collected the responses. For example, if the predicted challenges were received for MD1,
the challenges were placed in the Raspberry Pi. Tx/Rx ports were connected to the Rx/Tx
ports of the FPGA, which were defined in the constraints file of the PUF. The baud rate in
the Raspberry Pi should be selected as the baud rate used in the PUF to define clocks per bit.
By sending challenges to the FPGA from the Raspberry Pi, the PUF generated responses
and the Raspberry Pi collected the responses from the Rx port. Following these steps, the
responses from the group of MDs and the ER were collected. Using the CRPs, the model
MLmodel was generated.
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Figure 9. Experimental setup of the proposed framework.

4.1. Machine Learning Performance

In the proposed framework, five MDs were used in the group. From each MD’s
PUF, 487,940 CRPs were collected. All the CRPs from five MDs were used to prepare the
dataset. In the dataset, a total of 2,439,700 CRPs were present. To train the model, 80%
of the dataset was used as training data, and 20% of the data were used for validation.
No separate data were kept for testing as there were no novel data for testing. The whole
dataset was used for testing when the training was done. In the training, 16 input features
were considered and one output feature. Each byte of the CRP acted as an input feature,
and the PID was used as the output feature. It was a multiclass classification as there were
five categories (PID) in the output feature; categorical cross-entropy was the loss function,
and the regularizer L2 (0.1) was also applied. For the optimizers AdaDelta and AdaGrad,
the model did not show good performance. Optimizer Nadam showed better results than
AdaDelta, but the accuracy was not as good as the Adam optimizer. Table 3 shows the
performance of the MLmodel for different combinations. Each model was run for 50 epochs
with batch size 5000. A few models also showed some fluctuations in their accuracy.

Table 3. MLmodel performance of different models.

Units Z-Score Activation Function Optimizer Validation Accuracy

512-4096-4096-2048-1204 7 ReLU Adam 81.39
512-4096-4096-2048-1204 3 ReLU RMSProp 97.35
512-1024-1024-512-248 7 ReLU RMSProp 96.55
512-1024-1024-512-248 3 ReLU RMSProp 96.7
512-1024-1024-512-248 3 ReLU Adam 98.2
512-1024-1024-512-248 3 ReLU Nadam 96.65
512-4096-4096-2048-1204 3 tanh RMSProp 97.35
512-2048-1024-512 3 ReLU RMSProp 97.58
512-2048-1024-512 3 ReLU Adam 94.97
512-2048-1024-512 3 tanh Adam 97.9
512-2048-1024-512 3 tanh RMSProp 97.48

The best performance was found for 512-4096-4096-2048-1204 units, a ReLU activation
function, and the Adam optimizer as shown in Figure 10. Moreover, a Z-score was applied
to the model. The training accuracy was 99.46%, and the validation accuracy was 98.55%.
While testing the whole dataset using the model, it showed 99.54% accuracy.
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Figure 10. Performance of MLmodel .

4.2. Computation Cost

The proposed framework is for medical devices which are resource-constrained de-
vices. Complexity or much time consumed in operations will raise the burden on such
devices. The operations performed during the authentication are lightweight and not
resource hungry. The time required for completing XOR and concatenation operations is
negligible and can be avoided [32]. The standard time for performing operations that are
required in the proposed framework is presented in Table 4. In the proposed scheme, four
hash operations, four PUF responses, one message decryption, and three model predictions
are required. Among these operations, the MD is required to perform the PUF response
generation twice, which is negligible, as shown in Table 4. If there is a single MD in a group,
the computation time to complete the process is 2.6 ms (4 ∗ Th + 4 ∗ TR + 1 ∗ TD + 3 ∗ TM).

Table 4. Computation cost of the proposed framework for single MD in a group.

Notation Description Computation
Time MD Times ER

Times
CS
Times Total Total Time

Th Hash operation [46] 0.0234 ms 0 2 2 4 0.0936 ms
TR PUF response [46] 0.4 µs 2 2 0 4 0.0016 ms
TD Decryption [47] 0.14 ms 0 1 0 1 0.14 ms
TM Model prediction [48] 0.75 ms 0 1 2 3 2.25 ms

In Figure 11, it can be seen that the computational cost decreases comparatively if the
number of devices is increased in the group. For the addition of an MD in a group, only
the server needs to additionally predict MLmodel one more time. Each MD’s addition only
adds 0.75 ms of computation time and the equation of the computation cost for n number
of MDs is TComputation = (1.85 + n × 0.75) ms.

In the CRP update process in the ER, the computation cost is approximately 0.37 ms
(1 × TE + 1 × TD) [47].
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Figure 11. Computation cost trend of a group.

4.3. Communication Overhead

A single message to the CS is required to complete the authentication and data-sharing
process. The CS needs not send any information in the proposed framework. Figure 12
shows the total communication cost of the proposed framework for an MD in a group.
The communication overhead of an MD in a group is 104 bytes. For calculating the
communication overhead, C, R, and PID are considered as having 64 bits. The hash output
has 256 bits. The communication overhead is changed based on the selection of the lengths
of the parameters. It can be seen that step 3 is having more overhead compared to the other
steps as the step is sending multiple data after performing hash operations.

Figure 13 shows the trend of communication overhead with the increment of MDs in
the group. It can be seen that only 40 bytes are required to transmit for the addition of each
MD, and the equation of the communication cost is BCommunication = (64 + 40 × n).

Figure 12. Communication overhead for single MD in a group.

Figure 13. Communication overhead trend of a group.
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The communication overhead in the CRP update process in the ER is eight bytes,
as the ER only sends the response after performing an XOR operation.

4.4. Performance Comparison

Figure 14 shows the performance comparison of the proposed framework with respect
to computation cost. The figure shows that the proposed method needs less computational
resources than other methods. Moreover, other authentication frameworks follow a linear
pattern to complete the authentication of more than one device. However, the proposed
framework takes less time onward.

Figure 14. Computation cost comparison [25,29,32,33,37] of the proposed framework for a single
device in a group.

Communication overhead comparison is presented by Figure 15. The figure depicts
that the proposed framework puts less burden to the transmission medium than other
existing methods. Moreover, the proposed mechanism will not follow a linear pattern like
others for multiple devices authentication.

Figure 15. Communication cost comparison [25,29,32,33,37,44] of the proposed framework for a
single device in a group.

5. Security Proof

In this section, how the proposed authentication is comparatively more feasible than
other existing methods for an IoMT application is presented. Security resistance against
known attacks is discussed using both formal and informal ways.

5.1. Formal Security Proof

In this part, the Burrows–Abadi–Needham (BAN) logic is used to show the proposed
group MDs’ authentication method’s formal security proof [49].
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5.1.1. Notations

Each interference presented by the BAN logic is organized in accordance with its rele-
vance using the basic notations and corresponding descriptions. The following expressions
are used:

• P believes X (P |≡ X ): P either believes or has the ability to think that the formula X
is true.

• P sees X (P / X): P either already believes or has a substantial basis for believing that
the phrase X is true.

• P once sent X (P |∼ X): Although object P has already sent a message containing
statement X, it is unclear if the information was sent there at the time of the process or
in the past. However, in this instance, it is clear that P believes X.

• Fresh X (#(X)): communication X is regarded as new because it has not been addressed
before the current transmission period.

• P has complete control over X (P /
⇒X): this happens when P has entire authority over

function X and it is used in accordance with the authority’s instructions.
• Secret key between P and Q (P X


 Q): this implies that only P and Q are aware of the
secret code or methods X.

5.1.2. Inference Rules

In the BAN logic, there are several sets of inference rules with the preceding remarks:

◦ IR1: <Nonce-Verification Rule>

P| ≡ #(X), P| ≡ Q| ≡ | ∼ X
P| ≡ Q| ≡ X

◦ IR2: <Jurisdiction Rule>

P| ≡ P⇒ X, P| ≡ Q| ≡ X
P| ≡ X

◦ IR3: <Key Freshness Rule>

P| ≡ #(X)

P| ≡ #(X, Y)

◦ IR4: <Shared Key Rule>

P| ≡ Q K↔ P, P/{X}K
P| ≡ Q|∼X

◦ IR5: <Secret Key Sharing Rule>

P| ≡ Q| ≡ R
K

 R

′

P| ≡ Q| ≡ R′
K

 R

5.1.3. Initial Assumptions

The following propositions are taken into consideration when evaluating the security
attribute of mutual authentication:

◦ A1: CS |≡ CS MCmodel

 ER

◦ A2: MD1 |≡ CS MCmodel

 ER

◦ A3: CS |≡ CS MLmodel

 MD1

◦ A4: MD1 |≡ CS MLmodel

 MD1
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◦ A5: ER |≡ ER R1n

 MD1

◦ A6: MD1 |≡ ER R1n

 MD1

◦ A7: CS |≡ CS RER

 ER

◦ A8: ER |≡ CS RER

 ER

5.1.4. Idealized Form

The idealized structure of the presented framework’s messages is as follows:

◦ I1: ER→MD1: {R1n, C1(p), N1 #(N1, C1(p))}
◦ I2: MD1→ ER: {Res1, DT1, N1 #(Res1, DT1)}
◦ I1: ER→ CS: {Res1, RER, PID1, PIDER, C1(p), Cn1, DT1, #(RER, Res1, Cn1, C1(p))}

5.1.5. Goals of Proposed Framework

In order to have successful authentication, the following requirements must be met:

◦ G1: ER |≡MD1 |≡ <ER R1n←→ MD1>
◦ G2: CS |≡MD1 |≡ <CS Res1←→ MD1>

5.1.6. Formal Verification Proof

We now use the preceding inference techniques, idealized form, and objectives to
evaluate the framework’s MD authentication procedure.

◦ FV1: from I1 and by practicing IR1, IR2 and IR3, it is desired to obtain (1) and achieve
goal G1:

MD1| ≡ # < N1, C1(p) >, MD1| ≡ ER| ≡ #(N1, C1(p)), MD1| ≡ ER⇒ (R1n), MD1| ≡ ER| ≡ (R1n)

MD1| ≡ #(N1, C1(p), R1n), MD1| ≡ (R1n)
(1)

◦ FV2: from I1 and by practicing IR1, IR3 and IR5, it is desired to obtain (2):

ER| ≡ #(Res1, DT1), ER| ≡ MD1Res1

 CS, ER| ≡∼ (N1)

ER| ≡ #(Res1, DT1, N1), ER| ≡ CS| ∼ Res1
(2)

◦ FV3: from I3 and by practicing IR1, IR3, and IR5, it is desired to obtain (3) and achieve
goal G2:

CS| ≡ #(RER, Cn1, DT1), CS| ≡ MDRes1

 CS, CS| ≡ MDRER


 CS, CS| ≡ ER| ≡∼ (PID1, PIDER)

CS| ≡ #(PID1, PIDER, DT1, RER, Res1, Cn1, C1(p)), CS| ≡ MDRER

 CS, CS| ≡ MDRes1


 CS
(3)

5.2. Informal Security Proof

This section demonstrates how the developed authentication system can implement
security measures when taking into account the capacity of an adversary to alter and listen
in on the sent data through public networks.

5.2.1. Impersonation Attacks

The proposed framework can resist MD, ER, and CS impersonation attacks. An adver-
sary can try to act as an MD to alter or provide false data. To act as a valid MD, an attacker
needs to generate the correct response of a challenge. However, the ER is responsible for
providing a partial challenge. Therefore, it is not possible to impersonate an MD. To im-
personate the ER, an attacker needs to get the secret responses of the MDs. An attacker
can only get the secret response if they can get the decryption key. Moreover, the secret
encryption key is updated periodically, which defends against the theft of the encryption
key. Furthermore, the information of the MDs is not stored in plaintext but rather formed in
a model. Moreover, the server is not requested to provide data in the framework. Therefore,
it can be said that the proposed framework can resist impersonation attacks.
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5.2.2. Side-Channel Attacks

Side-channel attacks are usually performed by measuring computation time, power
analysis, etc., operations. Moreover, secret keys stored in the memory of the devices raise
the chance to be affected by side-channel attacks [27]. To avoid this, a PUF was used to
generate the responses. In the proposed method, an XOR operation was used to fabricate
the response using random health data and a random nonce, which was not stored in the
memory of the device nor used further by the MD.

5.2.3. Modeling Attacks

In modeling attacks, an adversary tries to grab the pattern of secret keys to build a
model to predict the next keys/responses of the MD to disrupt the system. It is possible
to resist modeling attacks to protect the CRP interface. By providing an additional block,
hash function, etc., it is also possible to mask the interface [50]. The proposed method
used MCmodel to generate a partial response which was completed by the MD itself and the
challenge was not going out. Furthermore, the generated response was also masked before
sending to the ER. Thus, the proposed scheme is able to resist modeling attacks. Figure 16
shows the process of hiding the challenge.
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Figure 16. Hiding CRP interfaces to resist modeling attack.

5.2.4. Physical Attacks

Physical attacks can be conducted by accessing the secret keys from the devices’
memory. If there is any attempt by an adversary to tamper with the PUF-based device, then
the device will be damaged, and it will generate incorrect responses [39]. Moreover, neither
challenges nor responses are stored in the devices. Thus, it can be said the framework is
not affected by physical attacks.

5.2.5. Dos Attacks

An attacker can try to perform a DoS attack so that the regular service of the node
is interrupted, and the device could go out of service. In this attack, the adversary tries
to consume the limited resources of the device. To avoid this attack, the MD is able to
understand whether the authentication request is from the legitimate ER by checking R1n.
If it does not match, it does not process the authentication request, and the PUF response
generation is not a time- or resource-consuming operation. The proposed method manages
a gray list for such kinds of requests to avoid DoS attacks.

5.2.6. Replay Attack

A replay attack is when an attacker sends repeated or falsely delayed lawful data
transmission. Replay attacks can be resisted by using clock synchronization or a random
nonce method. Li et al. [51] stated that clock synchronization is still an open research area
for communication in a wireless sensor network. This paper adopted a random nonce N1,
a random challenge, a random response, etc., in each message to defend against replay
attacks. When all of these factors are taken into account, it can be said that the proposed
solution can block replay attacks by employing random numbers, and its effectiveness is
unaffected by clock synchronization issues.
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5.2.7. Eavesdropping Attack

Due to the distinctive characteristics of each PUF, the CRP ensures that only the
legitimate device and server can interact with one another. Because the server stores only
the model throughout the enrollment process, and the server has no information about
the responses, eavesdroppers cannot replicate it without having access to the model and
CRPs [52].

5.2.8. Man-in-the-Middle Attack

Each time, different responses are generated based on masked or partial challenges
from the ER. The generated response is also masked using DT and nonce. Moreover, the ER
uses hash operations to mask all the collected responses and data from all the MDs of the
group. Both the MDs and the ER generate random messages to prevent man-in-the-middle
(MITM) attacks. Therefore, inside intruders do not have a chance to execute a MITM assault
unless they are familiar with CRPs, XOR functions, and random nonces [52].

5.2.9. Anonymous Identity

To avoid exposing the real identity of a node, pseudoidentity is used instead of the
original ID. The uses of PID are resistant to attackers who try to identify the original owner
of the device. Furthermore, it is not shared in plaintext. The proposed framework can
preserve privacy by maintaining an anonymous identity.

5.2.10. Forward Secrecy

Forward secrecy’s primary goal is to guarantee that previously established transaction
keys remain safe in the event that the keys are compromised. In the proposed framework,
MDs do not use any prestored key to authenticate the device. The MDs generate responses
where challenges are decided by the partial challenge and PIDs by steps 1 and 2. Moreover,
the response is masked using nonce and MD data, which are random as shown in step 2.
Therefore, the secret key cannot be identified without the random numbers. Furthermore,
for the next time authentication and data masking, different challenges, responses, nonce,
data, etc., will be used, which keeps the forward secrecy.

The discussion has illustrated that the proposed group of medical devices’ authentica-
tion framework is resilient to known security threats.

6. Conclusions and Future Directions

Patients in a hospital pass a crucial time in their life. The diagnosis and treatment
should be provided in an accurate manner as per the direction of doctors and experts. The
IoMT is making the treatment process timelier, which helps patients, doctors, nurses, etc.
However, the process could backfire and even could cause the death of patients if the IoMT
data were fabricated. To ensure patients’ safety, secure communication is a must for the
IoMT system. To protect the security of the IoMT system in a hospital environment in a
smart city, the paper proposed an authentication framework where a group of devices were
authenticated in a single message transmission. Moreover, the devices did not need to send
health data separately; the data could be sent in the authentication request. The proposed
framework showed a better resistance against security attacks compared to the state-of-
the-art methods. The proposed framework is lightweight, and a low communication
cost is required with respect to other works. In the future, federated learning along
with blockchain will be incorporated to introduce more security features. Furthermore,
group key agreement will be considered to make the proposed framework feasible for
mobile applications.



Electronics 2022, 11, 4155 23 of 25

Author Contributions: Conceptualization, P.K.S.; methodology, P.K.S.; software, P.K.S. and V.P.Y.;
validation, P.K.S., V.P.Y. and A.A.; formal analysis, P.K.S.; investigation, P.K.S.; resources, P.K.S.; data
curation, P.K.S. and V.P.Y.; writing—original draft preparation, P.K.S.; writing—review and editing,
P.K.S., V.P.Y. and A.A.; visualization, P.K.S.; supervision, P.K.S. and A.A.; project administration, P.K.S.
and A.A.; funding acquisition, A.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bajic, B.; Rikalovic, A.; Suzic, N.; Piuri, V. Industry 4.0 implementation challenges and opportunities: A managerial perspective.

IEEE Syst. J. 2021, 15, 546–559. [CrossRef]
2. Rikalovic, A.; Suzic, N.; Bajic, B.; Piuri, V. Industry 4.0 implementation challenges and opportunities: A technological perspective.

IEEE Syst. J. 2022, 16, 2797–2810. [CrossRef]
3. Sadhu, P.K.; Yanambaka, V.P.; Mohanty, S.P.; Kougianos, E. Easy-Sec: PUF-based rapid and robust authentication framework for

the internet of vehicles. arXiv 2022, arXiv:2204.07709.
4. Khan, M.A.; Siddiqui, M.S.; Rahmani, M.K.I.; Husain, S. Investigation of big data analytics for sustainable smart city development:

An emerging country. IEEE Access 2022, 10, 16028–16036. [CrossRef]
5. Khalil, U.; Mueen-Uddin; Malik, O.A.; Hussain, S. A blockchain footprint for authentication of IoT-enabled smart devices in smart

cities: State-of-the-art advancements, challenges and future research directions. IEEE Access 2022, 10, 76805–76823. [CrossRef]
6. Sadhu, P.; Yanambaka, V.P.; Abdelgawad, A.; Yelamarthi, K. NAHAP: PUF-based three factor authentication system for internet

of medical things. IEEE Consum. Electron. Mag. 2022. [CrossRef]
7. Hernandez, S.; Raison, M.; Torres, A.; Gaudet, G.; Achiche, S. From on-body sensors to in-body data for health monitoring

and medical robotics: A survey. In Proceedings of the Global Information Infrastructure and Networking Symposium (GIIS),
Montreal, QC, Canada, 15–19 September 2014; pp. 1–5.

8. Noguchi, H.; Mori, T.; Sato, T. Framework for search application based on time segment of sensor data in home environment. In
Proceedings of the Seventh International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15–18 June 2010;
pp. 261–264.

9. Internet of Medical Things (IoMT) Market by Component, Platform, Connectivity Devices, Application and Is Expected to Reach
USD 1,84,592.31 Million by 2028. Available online: https://www.marketwatch.com/press-release/internet-of-medical-things-
iomt-market-by-component-platform-connectivity-devices-application-and-is-expected-to-reach-usd-18459231-million-by-20
28-2022-04-26 (accessed on 22 June 2022).

10. Internet of Medical Things Revolutionizing Healthcare. Available online: https://aabme.asme.org/posts/internet-of-medical-
things-revolutionizing-healthcare/ (accessed on 1 April 2021).

11. What Is the Internet of Medical Things (IoMT)? Available online: https://mobius.md/2019/03/06/what-is-the-iomt/ (accessed
on 22 June 2022).

12. Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A.; Yelamarthi, K. Prospect of internet of medical things: A review on security
requirements and solutions. Sensors 2022, 22, 5517. [CrossRef]

13. Meng, W.; Cai, Y.; Yang, L.T.; Chiu, W.Y. Hybrid emotion-aware monitoring system based on brainwaves for internet of medical
things. IEEE Internet Things J. 2021, 8, 16014–16022. [CrossRef]

14. Masud, M.; Gaba, G.S.; Alqahtani, S.; Muhammad, G.; Gupta, B.B.; Kumar, P.; Ghoneim, A. A lightweight and robust secure key
establishment protocol for internet of medical things in COVID-19 patients care. IEEE Internet Things J. 2021, 8, 15694–15703.
[CrossRef]

15. Healthcare IT sEcurity Budgets Aren’T Keeping Pace with IoMT Threats. Available online: https://www.ivanti.com/blog/
healthcare-it-security-budgets-aren-t-keeping-pace-with-iomt-threats (accessed on 10 October 2022).

16. Chen, C.M.; Chen, Z.; Kumari, S.; Lin, M.C. LAP-IoHT: A lightweight authentication protocol for the internet of health things.
Sensors 2022, 22, 5401. [CrossRef]

17. Elmitwalli, E.; Ni, K.; Köse, S. Machine learning attack resistant area-efficient reconfigurable Ising-PUF. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 2022, 30, 526–538. [CrossRef]

18. Wang, A.; Tan, W.; Wen, Y.; Lao, Y. NoPUF: A novel PUF design framework toward modeling attack resistant PUFs. IEEE Trans.
Circuits Syst. I Regul. Pap. 2021, 68, 2508–2521. [CrossRef]

19. Kroeger, T.; Cheng, W.; Guilley, S.; Danger, J.L.; Karimi, N. Assessment and mitigation of power side-channel-based cross-PUF
attacks on arbiter-PUFs and their derivatives. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 187–200. [CrossRef]

http://doi.org/10.1109/JSYST.2020.3023041
http://dx.doi.org/10.1109/JSYST.2021.3101673
http://dx.doi.org/10.1109/ACCESS.2021.3115987
http://dx.doi.org/10.1109/ACCESS.2022.3189998
http://dx.doi.org/10.1109/MCE.2022.3176420
https://www.marketwatch.com/press-release/internet-of-medical-things-iomt-market-by-component-platform-connectivity-devices-application-and-is-expected-to-reach-usd-18459231-million-by-2028-2022-04-26
https://www.marketwatch.com/press-release/internet-of-medical-things-iomt-market-by-component-platform-connectivity-devices-application-and-is-expected-to-reach-usd-18459231-million-by-2028-2022-04-26
https://www.marketwatch.com/press-release/internet-of-medical-things-iomt-market-by-component-platform-connectivity-devices-application-and-is-expected-to-reach-usd-18459231-million-by-2028-2022-04-26
https://aabme.asme.org/posts/internet-of-medical-things-revolutionizing-healthcare/
https://aabme.asme.org/posts/internet-of-medical-things-revolutionizing-healthcare/
https://mobius.md/2019/03/06/what-is-the-iomt/
http://dx.doi.org/10.3390/s22155517
http://dx.doi.org/10.1109/JIOT.2021.3079461
http://dx.doi.org/10.1109/JIOT.2020.3047662
https://www.ivanti.com/blog/healthcare-it-security-budgets-aren-t-keeping-pace-with-iomt-threats
https://www.ivanti.com/blog/healthcare-it-security-budgets-aren-t-keeping-pace-with-iomt-threats
http://dx.doi.org/10.3390/s22145401
http://dx.doi.org/10.1109/TVLSI.2022.3144236
http://dx.doi.org/10.1109/TCSI.2021.3067319
http://dx.doi.org/10.1109/TVLSI.2021.3129141


Electronics 2022, 11, 4155 24 of 25

20. Wisiol, N.; Thapaliya, B.; Mursi, K.T.; Seifert, J.P.; Zhuang, Y. Neural network modeling attacks on arbiter-PUF-based designs.
IEEE Trans. Inf. Forensics Secur. 2022, 17, 2719–2731. [CrossRef]

21. Olowononi, F.O.; Rawat, D.B.; Liu, C. Resilient machine learning for networked cyber physical systems: A survey for machine
learning security to securing machine learning for CPS. IEEE Commun. Surv. Tutor. 2021, 23, 524–552. [CrossRef]

22. Al-Dhief, F.T.; Latiff, N.M.A.; Malik, N.N.N.A.; Salim, N.S.; Baki, M.M.; Albadr, M.A.A.; Mohammed, M.A. A survey of voice
pathology surveillance systems based on internet of things and machine learning algorithms. IEEE Access 2020, 8, 64514–64533.
[CrossRef]

23. Habib, M.; Wang, Z.; Qiu, S.; Zhao, H.; Murthy, A.S. Machine learning based healthcare system for investigating the association
between depression and quality of life. IEEE J. Biomed. Health Inform. 2022, 26, 2008–2019. [CrossRef]

24. Guezzaz, A.; Asimi, Y.; Azrour, M.; Asimi, A. Mathematical validation of proposed machine learning classifier for heterogeneous
traffic and anomaly detection. Big Data Min. Anal. 2021, 4, 18–24. [CrossRef]

25. Li, J.; Su, Z.; Guo, D.; Choo, K.K.R.; Ji, Y. PSL-MAAKA: Provably secure and lightweight mutual authentication and key agreement
protocol for fully public channels in internet of medical things. IEEE Internet Things J. 2021, 8, 13183–13195. [CrossRef]

26. Amintoosi, H.; Nikooghadam, M.; Shojafar, M.; Kumari, S.; Alazab, M. Slight: A lightweight authentication scheme for smart
healthcare services. Comput. Electr. Eng. 2022, 99, 107803. [CrossRef]

27. Siddiqi, M.A.; Doerr, C.; Strydis, C. IMDfence: Architecting a secure protocol for implantable medical devices. IEEE Access 2020,
8, 147948–147964. [CrossRef]

28. Hwang, Y.W.; Lee, I.Y. A study on CP-ABE-based medical data sharing system with key abuse prevention and verifiable
outsourcing in the IoMT environment. Sensors 2020, 20, 4934. [CrossRef] [PubMed]

29. Liu, X.; Yang, X.; Luo, Y.; Zhang, Q. Verifiable multi-keyword Search encryption scheme with anonymous key generation for
medical internet of things. IEEE Internet Things J. 2021, 9, 22315–22326. [CrossRef]

30. Li, H.; Yu, K.; Liu, B.; Feng, C.; Qin, Z.; Srivastava, G. An efficient ciphertext-policy weighted attribute-based encryption for the
internet of health things. IEEE J. Biomed. Health Inform. 2022, 26, 1949–1960. [CrossRef] [PubMed]

31. Huang, P.; Guo, L.; Li, M.; Fang, Y. Practical privacy-preserving ECG-based authentication for IoT-based healthcare. IEEE Internet
Things J. 2019, 6, 9200–9210. [CrossRef]

32. Ying, B.; Mohsen, N.R.; Nayak, A.A. Efficient authentication protocol for continuous monitoring in medical sensor networks.
IEEE Open J. Comput. Soc. 2021, 2, 130–138. [CrossRef]

33. Ryu, J.; Oh, J.; Kwon, D.; Son, S.; Lee, J.; Park, Y.; Park, Y. Secure ECC-based three-factor mutual authentication protocol for
telecare medical information system. IEEE Access 2022, 10, 11511–11526. [CrossRef]

34. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. RAMHU: A new robust lightweight scheme for mutual users authentication in healthcare
applications. Secur. Commun. Netw. 2019, 2019, 3263902. [CrossRef]

35. Padinjappurathu Gopalan, S.; Chowdhary, C.L.; Iwendi, C.; Farid, M.A.; Ramasamy, L.K. An efficient and privacy-preserving
scheme for disease prediction in modern healthcare systems. Sensors 2022, 22, 5574. [CrossRef]

36. de Marcos, L.; Martínez-Herráiz, J.J.; Junquera-Sánchez, J.; Cilleruelo, C.; Pages-Arévalo, C. Comparing machine learning
classifiers for continuous authentication on mobile devices by keystroke dynamics. Electronics 2021, 10, 1622. [CrossRef]

37. Wazid, M.; Singh, J.; Das, A.K.; Shetty, S.; Khan, M.K.; Rodrigues, J.J. ASCP-IoMT: AI-enabled lightweight secure communication
protocol for internet of medical things. IEEE Access 2022, 10, 57990–58004. [CrossRef]

38. Alladi, T.; Chamola, V.; Naren. HARCI: A two-way authentication protocol for three entity healthcare IoT networks. IEEE J. Sel.
Areas Commun. 2021, 39, 361–369. [CrossRef]

39. Gope, P.; Gheraibia, Y.; Kabir, S.; Sikdar, B. A secure IoT-based modern healthcare system with fault-tolerant decision making
process. IEEE J. Biomed. Health Inform. 2021, 25, 862–873. [CrossRef] [PubMed]

40. Lee, T.F.; Ye, X.; Lin, S.H. Anonymous dynamic group authenticated key agreements using physical unclonable functions for
internet of medical things. IEEE Internet Things J. 2022, 9, 15336–15348. [CrossRef]

41. Awad Abdellatif, A.; Samara, L.; Mohamed, A.; Erbad, A.; Chiasserini, C.F.; Guizani, M.; O’Connor, M.D.; Laughton, J. MEdge-
Chain: Leveraging edge computing and blockchain for efficient medical data exchange. IEEE Internet Things J. 2021, 8, 15762–15775.
[CrossRef]

42. Lin, P.; Song, Q.; Yu, F.R.; Wang, D.; Guo, L. Task offloading for wireless VR-enabled medical treatment with blockchain security
using collective reinforcement learning. IEEE Internet Things J. 2021, 8, 15749–15761. [CrossRef]

43. Egala, B.S.; Pradhan, A.K.; Badarla, V.R.; Mohanty, S.P. Fortified-chain: A blockchain-based framework for security and
privacy-assured internet of medical things with effective access control. IEEE Internet Things J. 2021, 8, 11717–11731. [CrossRef]

44. Wang, W.; Chen, Q.; Yin, Z.; Srivastava, G.; Gadekallu, T.R.; Alsolami, F.; Su, C. Blockchain and PUF-based lightweight
authentication protocol for wireless medical sensor networks. IEEE Internet Things J. 2022, 9, 8883–8891. [CrossRef]

45. Sadhu, P.K.; Yanambaka, V.P. MC-PUF: A robust lightweight controlled physical unclonable function for resource constrained
environments. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Nicosia, Cyprus, 4–6 July
2022; pp. 452–453. [CrossRef]

46. Alladi, T.; Chakravarty, S.; Chamola, V.; Guizani, M. A lightweight authentication and attestation scheme for in-transit vehicles in
IoV scenario. IEEE Trans. Veh. Technol. 2020, 69, 14188–14197. [CrossRef]

http://dx.doi.org/10.1109/TIFS.2022.3189533
http://dx.doi.org/10.1109/COMST.2020.3036778
http://dx.doi.org/10.1109/ACCESS.2020.2984925
http://dx.doi.org/10.1109/JBHI.2022.3140433
http://dx.doi.org/10.26599/BDMA.2020.9020019
http://dx.doi.org/10.1109/JIOT.2021.3055827
http://dx.doi.org/10.1016/j.compeleceng.2022.107803
http://dx.doi.org/10.1109/ACCESS.2020.3015686
http://dx.doi.org/10.3390/s20174934
http://www.ncbi.nlm.nih.gov/pubmed/32878202
http://dx.doi.org/10.1109/JIOT.2021.3056116
http://dx.doi.org/10.1109/JBHI.2021.3075995
http://www.ncbi.nlm.nih.gov/pubmed/33905340
http://dx.doi.org/10.1109/JIOT.2019.2929087
http://dx.doi.org/10.1109/OJCS.2021.3055365
http://dx.doi.org/10.1109/ACCESS.2022.3145959
http://dx.doi.org/10.1155/2019/3263902
http://dx.doi.org/10.3390/s22155574
http://dx.doi.org/10.3390/electronics10141622
http://dx.doi.org/10.1109/ACCESS.2022.3179418
http://dx.doi.org/10.1109/JSAC.2020.3020605
http://dx.doi.org/10.1109/JBHI.2020.3007488
http://www.ncbi.nlm.nih.gov/pubmed/32749985
http://dx.doi.org/10.1109/JIOT.2022.3149117
http://dx.doi.org/10.1109/JIOT.2021.3052910
http://dx.doi.org/10.1109/JIOT.2021.3051419
http://dx.doi.org/10.1109/JIOT.2021.3058946
http://dx.doi.org/10.1109/JIOT.2021.3117762
http://dx.doi.org/10.1109/ISVLSI54635.2022.00102
http://dx.doi.org/10.1109/TVT.2020.3038834


Electronics 2022, 11, 4155 25 of 25

47. Pravinchandra, M.M.; Diwanji, H.M.; Shah, J.S.; Kotak, H. Performace analysis of encryption and decryption using genetic based
cancelable non-invertible fingerprint based key in MANET. In Proceedings of the International Conference on Communication
Systems and Network Technologies, Rajkot, India, 11–13 May 2012; pp. 357–361. [CrossRef]

48. Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A. MC-Multi PUF based lightweight authentication framework for internet of
medical things. In Proceedings of the IEEE 8th World Forum on Internet of Things (WF-IoT), Yokohama, Japan, 26 October–11
November 2022; pp. XX–YY.

49. Burrows, M.; Abadi, M.; Needham, R. A logic of authentication. ACM Trans. Comput. Syst. 1990, 8, 18–36. [CrossRef]
50. Yao, J.; Pang, L.; Su, Y.; Zhang, Z.; Yang, W.; Fu, A.; Gao, Y. Design and evaluate recomposited OR-AND-XOR-PUF. IEEE Trans.

Emerg. Top. Comput. 2022, 10, 662–677. [CrossRef]
51. Li, X.; Peng, J.; Obaidat, M.S.; Wu, F.; Khan, M.K.; Chen, C. A secure three-factor user authentication protocol with forward

secrecy for wireless medical sensor network systems. IEEE Syst. J. 2020, 14, 39–50. [CrossRef]
52. Yıldız, H.; Cenk, M.; Onur, E. PLGAKD: A PUF-based lightweight group authentication and key distribution protocol. IEEE

Internet Things J. 2021, 8, 5682–5696. [CrossRef]

http://dx.doi.org/10.1109/CSNT.2012.84
http://dx.doi.org/10.1145/77648.77649
http://dx.doi.org/10.1109/TETC.2022.3170320
http://dx.doi.org/10.1109/JSYST.2019.2899580
http://dx.doi.org/10.1109/JIOT.2020.3032757

	Introduction
	Security and Privacy Concerns in the IoMT
	Contributions

	Related Work
	Proposed Group Medical Devices Authentication and Data Masking Framework
	Assumptions
	Edge Router Enrollment
	Group of Medical Devices Enrollment
	Proposed Group Devices Authentication and Data Masking
	Encryption Key Update Process of the Edge Router

	Results
	Machine Learning Performance
	Computation Cost
	Communication Overhead
	Performance Comparison

	Security Proof
	Formal Security Proof
	Notations
	Inference Rules
	Initial Assumptions
	Idealized Form
	Goals of Proposed Framework
	Formal Verification Proof

	Informal Security Proof
	Impersonation Attacks
	Side-Channel Attacks
	Modeling Attacks
	Physical Attacks
	Dos Attacks
	Replay Attack
	Eavesdropping Attack
	Man-in-the-Middle Attack
	Anonymous Identity
	Forward Secrecy


	Conclusions and Future Directions
	References

