
Citation: Park, J.; Lee, D.H. Parallelly

Running and Privacy-Preserving

k-Nearest Neighbor Classification in

Outsourced Cloud Computing

Environments. Electronics 2022, 11,

4132. https://doi.org/10.3390/

electronics11244132

Academic Editors: Sabrine Kheriji,

Olfa Kanoun and Faouzi Derbel

Received: 8 November 2022

Accepted: 6 December 2022

Published: 11 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Parallelly Running and Privacy-Preserving k-Nearest Neighbor
Classification in Outsourced Cloud Computing Environments
Jeongsu Park and Dong Hoon Lee *

Graduate School of Information Security, Korea University, Seoul 02841, Republic of Korea
* Correspondence: donghlee@korea.ac.kr

Abstract: Classification is used in various areas where k-nearest neighbor classification is the most
popular as it produces efficient results. Cloud computing with powerful resources is one reliable
option for handling large-scale data efficiently, but many companies are reluctant to outsource data
due to privacy concerns. This paper aims to implement a privacy-preserving k-nearest neighbor
classification (PkNC) in an outsourced environment. Existing work proposed a secure protocol
(SkLE/SkSE) to compute k data with the largest/smallest value privately, but this work discloses
information. Moreover, SkLE/SkSE requires a secure comparison protocol, and the existing protocols
also contain information disclosure problems. In this paper, we propose a new secure comparison and
SkLE/SkSE protocols to solve the abovementioned information disclosure problems and implement
PkNC with these novel protocols. Our proposed protocols disclose no information and we prove the
security formally. Then, through extensive experiments, we demonstrate that the PkNC applying the
proposed protocols is also efficient. Especially, the PkNC is suitable for big data analysis to handle
large amounts of data, since our SkLE/SkSE is executed for each dataset in parallel. Although the
proposed protocols do require efficiency sacrifices to improve security, the running time of our PkNC
is still significantly more efficient compared with previously proposed PkNCs.

Keywords: cloud computing; big data analysis; k-nearest neighbor classification; privacy-preserving
computation

1. Introduction

In the era of big data, data mining and machine learning are important tools used to
extract valuable information and predict outcomes, and these tools need to be able to analyze
large-scale data [1,2]. For the sake of efficiency, large volumes of data are typically analyzed
by cloud computing services at large IT companies, such as Amazon and Google [3], where
there is ample and easy access to powerful resources for analyzing the plethora of data from
a massive number of data owners. From the standpoint of data owners, it is more efficient
to have the cloud handle analysis and return the results than attempt to analyze their own
data. These days, as parallelly processing utilities, such as Hadoop, are becoming more widely
disseminated, it is becoming easier to utilize cloud computing.

Although cloud computing for big data analysis has significant advantages, many
companies and users are still reluctant to use these services due to privacy concerns
surrounding outsourced cloud computing environments [3] because cloud computing
service providers can access and reveal outsourced data, thus causing privacy problems.
Even though data owners encrypt their own data before transmission as a preventative
privacy-protecting measure, cloud service providers can obtain information regardless just
by analyzing access patterns, which are the access records for original data according to
computation results.

As for privacy protection techniques, there are secure multiparty computation and
homomorphic encryption currently in use. In order to facilitate privacy-preserving compu-
tation for secret values in secure multiparty computation, non-colluding parties perform

Electronics 2022, 11, 4132. https://doi.org/10.3390/electronics11244132 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11244132
https://doi.org/10.3390/electronics11244132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0514-165X
https://orcid.org/0000-0003-0692-2543
https://doi.org/10.3390/electronics11244132
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11244132?type=check_update&version=2

Electronics 2022, 11, 4132 2 of 31

computation with their shares generated from secret values in which the values or the
computation results cannot be obtained by any party as long as the parties do not collude.
However, since shared data are typically not encrypted, we focus on homomorphic encryp-
tion in this paper. Homomorphic encryption is an encryption scheme in which original
data can be computed in an encrypted form by a third party, such as a cloud. Partially
homomorphic encryption is a type of the homomorphic encryption and allows only one
type of operation with an unlimited number of times [4].

Classification is a major data analysis task that is used in a variety of areas, such
as medical diagnoses, spam mail detection, and credit evaluation [5–9]. In this vein, k-
nearest neighbor classification is popular since it produces efficient results and yields
high performance. Given a classified dataset and an unclassified input query, k-nearest
neighbor classification selects k data most similar to the input query, which is classified by
the majority class of the k data. The target of this present work is to implement a protocol
to compute k-nearest neighbor classification privately, which we call privacy-preserving
k-nearest neighbor classification (PkNC). Since k-nearest neighbor classification is used for
big data analysis wherein the largest parameter is the number of data, it is critical that the
communication round (i.e., running time) of PkNC is independent of the number of data.

As shown Figure 1, the proposed PkNC is executed in dual non-colluding cloud
servers: a data host (DH) and a cryptographic service provider (CSP). DH receives an
encrypted dataset from data owner and an encrypted input query from a querier, and CSP
has a decryption key. At a high level, DH runs PkNC with CSP and then it returns the class
of the input query based on the dataset in an encrypted form. Our PkNC does not disclose
any information about a dataset, an input query, and the resultant class to an adversary as
well as even DH and CSP to run PkNC.

Figure 1. System model of PkNC.

In order to compute k data that are most similar to an input query (i.e., k smallest
distances between the data and the input query) both privately and efficiently, one existing
work [10] proposed a secure k-largest/smallest element (SkLE/SkSE) protocol and applied
it to PkNC. The SkLE/SkSE executes at most l rounds where l is the length of an element,
meaning that if k elements (distances) with the largest/smallest value are found before
the last l-th round, it terminates for efficiency. The existence of different ending points
for each input dataset implies that SkLE/SkSE [10] discloses information about the input
dataset. In other words, starting from the (l ´ 1)-th bit of all input elements, the ending bit
of SkLE/SkSE contains the information about k largest/smallest elements. For example, if
SkLE to find k largest elements terminates in the first (l ´ 1)-th bit, the values of k largest
elements are more than 2l´1. (This case is realistic since l is the effective size to represent

Electronics 2022, 11, 4132 3 of 31

an element rather than the maximum size to support in a protocol.) Contrarily, if SkLE
terminates in the last 0-th bit, two values of the smallest one in the k largest elements
and the largest one in the other elements are equal or their difference is 1.Therefore, it is
necessary to protect the ending bit in existing SkLE/SkSE protocol [10]. Table 1 briefly
shows the security of our proposed protocols compared with existing protocols.

Table 1. Security comparison of our protocols and existing protocols.

Secure Comparison Protocol SkLE/SkSE Protocol

[11]
Ś

©
[10]

Ś Ś

rThis works © ©

Moreover, SkLE/SkSE requires a secure comparison protocol, but existing
works [10,11] result in information disclosure problems. Specifically, when two input
data are unequal, DH sends CSP a vector that consists of random values including 0 or
1. When two input data are equal, however, DH sends CSP a vector that consists of only
random values, therefore meaning that CSP learns information about whether two input
data are equal or not.

In addition, recently, researchers have proposed many PkNCs, but they are not formally
proven [12–14] or expose some information about input data. PkNCs that are formally
proven [11,15,16], unfortunately, are more inefficient as the volume of data increases,
making these unsuitable for big data analysis that must compute large-scale data.

Contributions

In this paper, we propose new secure comparison and SkLE/SkSE protocols that solve
the abovementioned information disclosure problems. We subsequently implement PkNC
using the proposed protocols and demonstrate through the experiments that our proposals
are practical. Firstly, we propose a secure comparison protocol that improves security by
solving the information disclosure problem. In short, regardless of whether two input data
are equal or unequal, DH sends CSP the similar vector that consists of either random values
including 0 or only random values according to a random coin. Our secure comparison
protocol guarantees privacy for the input data and results. We present this proposed secure
comparison protocol in Section 4.1 and formally prove its security in Section 4.2.

Secondly, we propose a new SkLE/SkSE that improves security by solving the informa-
tion disclosure problems in existing SkLE/SkSE [10]. To achieve this, the proposed SkLE/SkSE
consistently terminates in the last round regardless of the input dataset, meaning that it does
not disclose any information about the content of the input dataset. We denote the existing
SkLE/SkSE [10] focused on efficiency by the efficient version of SkLE/SkSE (SkLEE/SkSEE).
Similarly, we denote the proposed SkLE/SkSE to improve security by the secure version of
SkLE/SkSE (SkLES/SkSES), which we present in Section 4.3. The proposed SkLES/SkSES
secures the privacy regarding the input dataset including the results and hides data access
patterns even from DH and CSP. We formally prove its security in Section 4.4.

SkLES/SkSES is advantageous because it is highly efficient for large dataset as it
executes for each dataset in parallel. In other words, the communication round, which is
proportionate to running time, is independent of the number of data, which indicates that
it is suitable for big data analysis. It is additionally suitable for PkNC applications with a
large k of nearest neighbors since its communication round is independent of the parameter
k. In order for existing protocols [11,17] to privately compute k largest/smallest data in the
dataset, they must serially run a maximum/minimum protocol to compare all data k times.
This means that the communication rounds in these existing protocols grow linearly with
the number of data and parameter k. That is, existing works are unsuitable for both big
data analysis and PkNC application with a large k.

Electronics 2022, 11, 4132 4 of 31

In order to demonstrate that our proposed SkLES/SkSES and secure comparison proto-
cols are practical, we implement PkNC including them and conduct extensive experiments
with a real dataset. Figure 2 shows the ratio of the running time of PkNCs for the same
volume of data in which our PkNC is much more efficient than existing PkNCs. Specifically,
our PkNC takes 4.38 min for 1728 data and 28.95 min for 8124 data. Note that the features
of running time of our PkNC is comparable to those of SkLES/SkSES, since the running
time of SkLES/SkSES accounts for most running time of our PkNC. The performance of
our PkNC is greatly improved in the cloud computing environment, since SkLES/SkSES in
our PkNC is executed in parallel and the cloud enables numerous simultaneously running
parallel operations. In addition, the running time of our PkNC is also independent of k of
nearest neighbors like SkLES/SkSES. We present our PkNC and its experiment in Section 5,
where the experimental results support the above arguments.

[Sun 2020] [Haque 2020] [Samanthula 2014] [Thiswork]

0

10

20

30

40

R
a
ti
o
 o

f
ru

n
n
in

g
 t
im

e

1
2.7

32.1

35.5

Figure 2. Running time ratio of PkNCs. Refs. [11,15,16] and [This work] respectively.

However, it cannot be denied that our security-enhanced protocols do sacrifice some
efficiency. While the existing SkLEE/SkSEE [10] runs at most l rounds according to
input dataset, our SkLES/SkSES consistently runs l rounds regardless, meaning that
the number of communication rounds of SkLES/SkSES is equal to or more than that
of SkLEE/SkSEE. Our secure comparison protocol does require one more communica-
tion round than the existing comparison protocols [10,11]. Nevertheless, we emphasize
that the improved security benefits of our proposed protocols compared to the existing
protocols [10,11] outweigh this sacrifice, and our PkNC is undeniably more efficient than
existing PkNCs [11,15,16]. Lastly, we summarize the contributions of this paper as follows.

• We propose a secure comparison (SCI) protocol to solve the information disclosure
problem in existing works.

• Using the secure comparison, we propose new secure k-largest/smallest element
(SkLE/SkSE) protocols, which solve the information disclosure problem and hide data
access patterns.

• Using the proposed SkLE/SkSE, we implement a privacy-preserving k-nearest neigh-
bour classification (PkNC) protocol.

Electronics 2022, 11, 4132 5 of 31

• We prove the securities of the proposed protocols formally and demonstrate that the
proposed protocols are practical through PkNC experiments with real datasets. In
other words, PkNC is suitable for big data analysis to handle large-scale dataset and
have large k of nearest neighbors, since it is executed for each dataset in parallel.

The remainder of this paper is organized as follows. We briefly review existing works
in Section 2 and explain preliminary concepts necessary for understanding our work such as
system model and adversary model, performance evaluation measures, and functionalities
for our proposed protocols in Section 3. In Section 4, we present the proposed secure
comparison and SkLES/SkSES protocols along with formal proofs. Then, we explain the
implementation of PkNC using the proposed protocols and demonstrate their efficiency by
analyzing experimental results in Section 5. Lastly, we conclude this work in Section 6.

2. Related Works

Privacy-preserving data analysis was first proposed by Lindell and Pinkas in 2000. In
this protocol, there were two parties, each with their own confidential dataset, who wish to
extract valuable information in union of their datasets without disclosing information to
the other party. Since then, many researchers have become interested in privacy-preserving
data analysis, especially PkNC, and have proposed many protocols related to PkNC, which
became a hot issue.

The authors of [17] proposed a privacy-preserving k-nearest neighbor (PPkNN) us-
ing the Paillier cryptosystem with an additively homomorphic encryption property. The
PPkNN guarantees privacy for both a dataset and an input query, including PPkNN results,
and hides data access patterns. Once data owners outsource their datasets and a querier
sends its query (as with PkNC), cloud servers (i.e., DH and CSP) do not need to communi-
cate with the data owners or the querier. However, the PPkNN returns k data closest to an in-
put query rather than their majority class. The work of [11] improved on the PPkNN in [17]
by proposing PPkNN classification (PkNC) to return the majority class of k data closest to an
input query as a result, which formally proved its security. However, the comparison pro-
tocol in the PkNC discloses information about whether two input data are equal, which we
will explain in Section 4.1. We will also demonstrate that our PkNC is more efficient than the
PkNC in [11] in Section 5.2.

The work of [18] proposed PkNC in an environment with multiple keys and multiple
clouds. Similar to the existing works [11,17], this PkNC guarantees privacy of datasets and
an input query along with a result and hides data access pattern. In this use of the PkNC,
after data owners upload encrypted data to respective cloud server, they can download
and decrypt the encrypted data since they encrypt the data with their own key. In order
to run the PkNC, cloud servers first convert the data encrypted with their own key into
the data encrypted with the same key by proxy re-encryption, but in doing so, the PkNC
exposes class information of k data closest to a query.

The authors of [19] proposed a more efficient PkNC than the scheme in [17] using
Paillier and ElGamal cryptosystems. Similar to existing works, the PkNC returns the
majority class of k data closest to an input query as a result and provides privacy of a
dataset, an input query, a result, and data access patterns. However, the PkNC exposes
to a querier classes of the k data closest to an input query rather than only their majority
class. The authors in [20] proposed a very efficient PkNC for a large dataset, and this PkNC
provides dataset security, key confidentiality, and query privacy as well as hides data access
patterns. However, the PkNC does not provide semantic security for an outsourced dataset.

The authors of [21] proposed a very efficient PPkNN for a large dataset using an
improved secure protocol for top-k selection and proved its simulation-based security
formally. However, in order to improve efficiency, the top-k selection protocol returns an
approximate result. In other words, it clusters a dataset using k-means algorithm and then,
given a query, it selects several clusters that are closest to the query and computes the
closest k data in the clusters. Using the PPkNN to output an approximate result, though, is

Electronics 2022, 11, 4132 6 of 31

unsuitable for applications that require an accurate classification result, such as medical
diagnoses. The PPkNN also returns k data closest to a query rather than the majority class.

The PkNC in [16] provides not only privacy but also reliability of collected data. By
using Blockchain, it assures that a dataset collected by data owners is trustworthy. However,
there are efficiency concerns with this protocol as this PkNC requires almost one hour to
process only 760 data. In practice, our PkNC is much more efficient, which will be explained
in detail later in this paper. There is another PkNC that was presented in [15], which is
adaptable for a high-dimensional dataset. While most existing PkNCs deal only with
integers, this PkNC allows a dataset and an input query to exist as real numbers. Similar to
our PkNC, the running time of the PkNC is independent of k of the nearest neighbors, but
in contrast with our proposal, this PkNC requires huge memory to handle large volumes of
data. The authors conducted an experiment for only 60 data in a machine with 8 GB RAM.
This suggests that it requires large memory hardware, which is unsuitable for data analysis
in the era of big data. Finally, the running time is also inefficient compared with our PkNC.

The authors of [22] proposed an efficient and privacy-preserving medical pre-diagnosis
scheme based on multi-label k-nearest neighbors. Since a medical user can have multiple
diseases at the same time, the scheme is practical. For the sake of efficiency, the scheme
selects the dataset related to a medical user using k-means clustering and then performs the
diagnosis scheme for the specific dataset. In other words, the scheme exposes data access
patterns and cloud parties to run the scheme learn the information about a dataset or an
input query. The work of [23] proposed PPkNN for eHealthcare data that combine kd-tree
structure with homomorphic encryption. However, the PPkNN returns k data closest to a
query as a result rather than their majority class. Moreover, a user must be authorized by
data owners before sending an input query and therefore, the scheme is impractical. The
authors of [12] proposed PkNC using kd-tree technique and order-preserving encryption,
which protects data privacy as well as data access patterns. However, since the scheme
also assumes that data owners and users are honest, it is impractical and its application
is limited.

PPkNN is used for location-based services. The scheme of [13] that utilizes Moore
curve [24] protects the privacy of input data such as location information and ensures the
accuracy of a query result. The authors of [25] proposed a verifiable PPkNN that uses
network Voronoi diagram [26]. It not only ensures the confidentiality of input data but also
verifies the integrity of results. The mechanism in [27] protects the location privacy of the
Internet of Connected Vehicles using Intent-based Networking. Using the machine learning
ability of the network, it predicts the intent of location accesses and penalizes the malicious
access. The authors of [28] proposed a privacy-preserving data sharing scheme on the
edge computing service of IoT, which provides data service for IoT devices. The privacy-
preserving scheme based on attribute encryption scheme realizes anonymous data sharing
and access control. The authors of [29] proposed an online privacy-preserving on-chain
certificate status service based on the blockchain architecture, which ensures decentralized
trust and provides privacy protection. In other words, the efficient privacy-preserving
certificate status check protocol solves the problems of limited block size, high latency, and
privacy leakage in comparison to existing works based on the blockchain technology.The
work of [30] suggested a feature weighting algorithm to select an informative feature from
redundant data. The feature weight is measured with the margin between the sample and
its hyperplane, which is more robust to the noise and outliers than existing works.

3. Preliminaries

In this section, we introduce our system model, security definitions, and Paillier cryptosys-
tem as an additively homomorphic encryption scheme. We also explain how to evaluate the
performance of a protocol and briefly introduce the functionalities used in our protocols.

Electronics 2022, 11, 4132 7 of 31

3.1. System Model

Our proposed protocols are executed in dual non-colluding cloud servers (Figure 1):
data host (DH) and cryptographic service provider (CSP). CSP generates a public key for
encryption and a secret key for decryption, then sends the public key to DH. DH, which
already has encrypted input data, runs a protocol with CSP. After completing a protocol,
DH returns a result in an encrypted form.

In dual non-colluding cloud server model, neither DH nor CSP disclose any infor-
mation about input data or results. Specifically, since DH runs a protocol for data in an
encrypted form, it actually cannot obtain any information about input data or results. Even
though CSP decrypts encrypted intermediate results that it receives from DH, it cannot
obtain any information about input data or the results since the decrypted data are blinded
by a random value. Therefore, as long as DH does not collude with CSP, our protocols
ensure that no information about input data or computation results are revealed. The dual
non-colluding cloud server model is realistic and reasonable since large IT companies such
as Amazon and Google provide cloud computing services that prioritize reputation over
gains from collusion.

3.2. Adversary Model and Security Definitions

Semi-Honest Adversary Model: In this paper, we assume that DH and CSP operate
within a semi-honest adversary model, in which a compromised party follows a protocol
specification but tries to obtain information about an input data and results by analyzing
intermediate results. For example, in comparison protocols of existing works [10,11], CSP
obtains information about whether two input data are equal by decrypting and analyzing
intermediate results received from DH. In SkLEE/SkSEE [10], the information about an
input dataset is also exposed by its end point. Creating a protocol in a semi-honest adversary
model is a meaningful as the first step toward designing a protocol with stronger security.

Security Definition: In order to formally prove the security of our proposed proto-
cols, we use the security definition of a semi-honest adversary model in terms of two-
party computation [31]. Loosely speaking, we demonstrate that a simulator can generate
the view of a corrupted party in real protocol execution when given only the input and
output [32]. The view of a corrupted party consists of inputs, internal coin tosses, and
received messages. If a simulator can generate indistinguishable values from the view of a
corrupted party in real execution, then the definition states that the protocol is secure. The
definition is as follows [31].

Let f : t0, 1u˚ ˆ t0, 1u˚ Ñ t0, 1u˚ ˆ t0, 1u˚ be a functionality, and fDHpx, yq (resp.,
fCSPpx, yq) denote DH’s (resp., CSP’s) element of f px, yq. Let π be a two-party protocol
for computing f . DH’s (resp., CSP’s) view during an execution of π on px, yq, denoted
VIEWπ

DHpx, yq (resp., VIEWπ
CSPpx, yq), is px, r, m1, . . . , mtq (resp., py, r, m1, . . . , mtq), where r

represents the outcome of DH’s (resp., CSP’s) internal coin tosses, and mi represents the
i-th message it has received. DH’s (resp., CSP’s) output after an execution of π on px, yq,
denoted OUTPUTπ

DHpx, yq (resp., OUTPUTπ
CSPpx, yq), is implicit in the party’s own view of

the execution, and OUTPUTπpx, yq “ pOUTPUTπ
DHpx, yq,OUTPUTπ

CSPpx, yqq.

Definition 1 (Privacy with respect to semi-honest behavior—general case). We say that π
privately computes f if there exist probabilistic polynomial-time algorithms, denoted SDH and SCSP
such that

tpSDHpx, fDHpx, yqq, f px, yqqux,y ”c tpVIEWπ
DHpx, yq, OUTPUTπpx, yqqux,y (1)

tpSCSPpy, fCSPpx, yqq, f px, yqqux,y ”c tpVIEWπ
CSPpx, yq, OUTPUTπpx, yqqux,y (2)

”c means that two distributions are computationally indistinguishable. Since the func-
tionalities of our proposed protocols are probabilistic, we use the above general case
security definition, with which we prove the security of our secure comparison protocol in
Section 4.2 and that of SkLES in Section 4.4.

Electronics 2022, 11, 4132 8 of 31

Sequential Modular Composition Theorem: The sequential modular composition
theorem [33] is a tool used to analyze the security of a protocol in a modular way [32]. We
assume that π f is a protocol that computes a functionality f , which calls a subprotocol
πg to compute a functionality g. The theorem states that, in order to analyze the secu-
rity of π f , it suffices to consider executing π f in a hybrid model where there is a third
party to compute functionality g ideally instead of a party that executes a real subprotocol
πg [32]. Therefore, in order to analyze the security of a protocol in a modular way, one
first proves the security of πg and then proves the security of π f in a model that allows a
party to compute functionality g ideally [32]. One denotes a model to analyze π f to call
an ideal functionality g instead of πg by g-hybrid model. We prove the security of our
secure comparison protocol in the FSZP-hybrid model in Section 4.2 and that of SkLES in
the pFSM, FSBD, FSCIq-hybrid model in Section 4.4.

3.3. Paillier Cryptosystem

As a partially homomorphic encryption scheme, we use the Paillier cryptosystem [34]
in this paper. The Paillier cryptosystem is a probabilistic asymmetric encryption scheme
with semantical security, which means that an adversary cannot learn any information
about original data when given its encrypted data. Let Epkp¨q “ Ep¨q be the encryption
function with a public key pk, and let Dskp¨q “ Dp¨q be the decryption function with a
secret key sk, for which we drop the pk and sk for succinctness in this paper. The Paillier
cryptosystem also holds additively homomorphic property which allows the addition of
original data to be locally computed in an encryption form. In other words, given any two
data a, b P ZN , the following equations [10] are satisfied.

DpEpaq ˚ EpbqmodN2q “ a` bmodN (3)

DpEpaqbmodN2q “ a ¨ bmodN (4)

For succinctness, we drop the modN2 and the modN terms in the remainder of this
paper. We stress that alternative additively homomorphic schemes can also be applied to
our proposed protocols in lieu of the Paillier cryptosystem.

3.4. Performance Evaluation

We analyze the performance of a protocol in terms of computational costs (i.e., the
number of encryptions/decryptions and exponentiations where we assume that encryption
and decryption take the same amount of time) and communication costs (i.e., the amount
of communication and the number of communication rounds) [10]. Since other operations
other than encryption/decryption and exponentiation, such as homomorphic addition,
have little influence on efficiency, we do not consider these in computational costs. The
amount of communication means the total amount of transmitted data to complete a
protocol, which we denote as a multiple of C that is the size of a ciphertext. The number of
communication rounds means the communication count executed in parallel [10].

3.5. Notation

For data x with 0 ĺ x ă 2l , we let xxyB “ xxl´1, . . . , x1, x0y by the binary representation
of the data x, where x0 (resp., xl´1) is the least significant bit, denoted by LSB (resp., the
most significant bit, denoted by MSB) and x “

řl´1
j“0 xj ¨ 2j for xj P t0, 1u [10]. Similarly, for a

ciphertext Epxqwith 0 ĺ x ă 2l , we let xEpxqyB “ xEpxl´1q, . . . , Epx1q, Epx0qy by ciphertexts
for individual bits of corresponding data x, where x “

řl´1
j“0 xj ¨ 2j for xj P t0, 1u [10]. Let x

by 1’s complement of data x, which is computed by toggling all bits of data. For example,
1’s complement of binary number 1010 is 0101. Similarly, for a bit xi, we let the complement
of xi by xi, which is computed by xi “ 1´ xi for xi P t0, 1u [10].

rns for n ľ 1 means a set t1, 2, . . . , nu. For a set I “ ti1, i2, . . . , inu, tdiuiPI means
tdi1 , di2 , . . . , dinu. tdiuiPrls can be called a vector d. For a set S, r PR S means that a value r is
chosen in the set S uniformly at random. DH Ñ CSP : Epxqmeans that DH sends CSP a

Electronics 2022, 11, 4132 9 of 31

ciphertext Epxq. a ¨ b means a multiplication operation in an integer and Epaq ˚ Epbqmeans a
homomorphic addition mentioned in Section 3.3. Throughout this paper, we let the number
of data by n, the size of the Paillier ciphertext by C, and the upper-bound number of bits
required to represent data by l, which is less than or equal to the modulus size |N| of the
Paillier cryptosystem (i.e., l ĺ |N|) [10].

3.6. Referenced Functionalities

In our protocols, calling a subprotocol to compute a functionality is presented as DH
and CSP run an interactive protocol with a third party that computes the functionality ideally.
Our proposed protocols call multiplication and bit decomposition protocols, for which we
introduce secure multiplication functionality FSM and secure bit decomposition functionality
FSBD in this subsection. The existing works [17,35] proposed the real protocols that privately
compute FSM and FSBD in the dual non-colluding cloud server model mentioned in Section 3.1
and formally proved their security under semi-honest adversary model.

Secure Multiplication functionality FSM: FSM receives tEpaq, Epbqu from DH and a secret
key SK from CSP, and then it sends Epcq to DH where c “ a ¨ b. We define FSM as follows.

FSMptEpaq, Epbqu, SKq Ñ pEpcq,Kq (5)

The real protocol that privately computes functionality FSM was proposed in [17]. It requires
6 encryptions/decryptions and 2 exponentiations, and 3 ¨ C bits are transmitted in 1 round.

Secure Bit Decomposition functionality FSBD: FSBD receives Epsq from DH and a secret
key SK from CSP, and then it sends S1 to DH where S1 “ txEpsqyB, xEpsqyBu. Recall that
xEpsqyB “ xEpsl´1q, . . . , Eps1q, Eps0qy and s is 1’s complement of the data s. We define FSBD
as follows.

FSBDpEpsq, SKq Ñ pS1,Kq (6)

The real protocol that privately computes functionality FSBD is implemented by adding
Epsiq “ Ep1q ˚ Epsiq

N´1 to the secure bit decomposition protocol proposed in [35]. We omit
discussion about the detailed algorithm in this paper as it is trivial. This protocol requires
p3l ` 1q encryptions/decryptions and p4l ` 2q exponentiations, and p2l ` 2q ¨ C bits are
transmitted in pl ` 1q rounds.

4. Proposed Secure Comparison and SkLE/SkSE Protocols

As mentioned earlier, if the existing SkLEE [10] finds k largest elements before the last
l-th round, then it terminates. In other words, the existing SkLEE [10] exposes information
about input dataset because the end points vary according to input data. In this section,
we solve this information disclosure problem with our proposed SkLES/SkSES, whose end
point is consistently the same regardless of input dataset, such that SkLES/SkSES does
not expose any information about the input dataset. In order to construct SkLES/SkSES,
we first propose a secure comparison and inequality (SCI) protocol that does not disclose
any information.

4.1. Secure Comparison and Inequality (SCI) Protocol

In this section, we propose an SCI protocol to compare two input data privately. The
proposed SCI protocol solves the information disclosure problem that occurred in existing
comparison protocols (SMIN of [11] and SCP of [10]), in which at a high level, when two
input data are unequal (i.e., one input dataset is larger or smaller than the other), DH sends
CSP a vector that consists of random values including 0 or 1. However, when two input
data are equal, DH sends CSP a vector that consists of only random values; thus, CSP can
learn information about whether the two input data are equal or not. Our proposed SCI
protocol does not disclose any information about two input data since DH sends CSP a
vector that consists of either random values including 0 or only random values according
to a random coin when the two input data are equal as well as when the two input data
are unequal.

Electronics 2022, 11, 4132 10 of 31

The secure comparison and inequality functionality FSCI receives tS1, k1u from DH and
a secret key SK from CSP where S1 “ txEpsqyB, xEpsqyBu and k1 “ txkyB, xkyBu. Recall that
xEpsqyB “ xEpsl´1q, . . . , Eps1q, Eps0qy and s is 1’s complement of the data s as mentioned in
Section 3.5. Then, FSCI sends tEpMq, EpDqu to DH where EpMq “ Ep1q if s ă k; otherwise,
EpMq “ Ep0q and EpDq “ Ep1q if s ‰ k or else EpDq “ Ep0q. We define FSCI as follows.

FSCIptS1, k1u, SKq Ñ ptEpMq, EpDqu,Kq (7)

We present a real protocol to privately compute functionality FSCI in Algorithm 1
and provide an example in Table 2 for easy understanding. Our SCI returns not only a
comparison result (EpMq) but also an inequality result (EpDq), and one of two input datasets
is in plaintext form (k1). However, by modifying the SCI protocol slightly, it is possible to
construct a common secure comparison protocol that returns only the comparison result
without the inequality result, as well as ensuring that the two input data are all in an
encrypted form. We omit discussion about the detailed algorithm because it is out of scope
of this paper.

Table 2. Example of Algorithm 1 for SCI protocol (l “ 5).

Input Functionality j Epsjq kj Epwjq Epxjq Epyjq Epγq Epy0q Epzjq Epujq Epβq EpMq EpDq

(Case 1)
s ă k

s “ 26
k “ 29

F : s ă k
pα “ 0q

4 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
3 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
2 Ep0q 1 Eprq Ep1q Ep1q Ep0q Eprq Ep1q Ep1q Ep1q
1 Ep1q 0 Ep0q Ep1q Eprq Eprq Eprq
0 Ep0q 1 Eprq Ep1q Eprq Ep0q Eprq Eprq Eprq

F : s ľ k
pα “ 1q

4 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
3 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
2 Ep0q 1 Ep0q Ep1q Ep1q Ep0q Ep0q Ep0q Ep1q Ep1q
1 Ep1q 0 Eprq Ep1q Eprq Eprq Eprq
0 Ep0q 1 Ep0q Ep1q Eprq Ep0q Eprq Eprq

(Case 2)
s ą k

s “ 29
k “ 26

F : s ă k
pα “ 0q

4 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
3 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
2 Ep1q 0 Ep0q Ep1q Ep1q Ep0q Ep0q Ep0q Ep0q Ep1q
1 Ep0q 1 Eprq Ep1q Eprq Eprq Eprq
0 Ep1q 0 Ep0q Ep1q Eprq Ep0q Eprq Eprq Eprq

F : s ľ k
pα “ 1q

4 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
3 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
2 Ep1q 0 Eprq Ep1q Ep1q Ep0q Eprq Ep1q Ep0q Ep1q
1 Ep0q 1 Ep0q Ep1q Eprq Eprq Eprq
0 Ep1q 0 Eprq Ep1q Eprq Ep0q Eprq Eprq

(Case 3)
s “ k

s “ 26
k “ 26

F : s ă k
pα “ 0q

4 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
3 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
2 Ep0q 0 Ep0q Ep0q Ep0q Ep´1q Eprq Ep0q Ep0q Ep0q
1 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
0 Ep0q 0 Ep0q Ep0q Ep0q Ep1q Ep1q Ep0q Ep0q

F : s ľ k
pα “ 1q

4 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
3 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
2 Ep0q 0 Ep0q Ep0q Ep0q Ep´1q Eprq Ep1q Ep0q Ep0q
1 Ep1q 1 Ep0q Ep0q Ep0q Ep´1q Eprq
0 Ep0q 0 Ep0q Ep0q Ep0q Ep1q Ep´1q Eprq

r: random value.

Electronics 2022, 11, 4132 11 of 31

Algorithm 1: Secure Comparison and Inequality (SCI)

DH input :tS1, k1uwhere S1 “ txEpsqyB, xEpsqyBu and k1 “ txkyB, xkyBu

CSP input : secret key SK

DH output :tEpMq, EpDquwhere EpMq “

#

Ep1q, if S ă k
Ep0q, otherwise

and

EpDq “

#

Ep1q, if S ‰ k
Ep0q, otherwise

1 DH:
2 toss a random coin α PR t0, 1u
3 for j Ð l ´ 1, . . . , 0 do
4 if α “ 0 then
5 Epwjq Ð Epsjq

kj

6 else
7 Epwjq Ð Epsjq

kj

8 end
9 Epwjq Ð Epwjq

rj where rj ‰ 0 PR ZN

10 Epxjq Ð Epsj ‘ k jq

11 Epyjq Ð Epyj`1q
r1

j ˚ Epxjqwhere r1j ‰ 0 PR ZN and Epylq “ Ep0q
12 end
13 DH, CSP:
14 pEpγq,Kq Ð FSZPptEpxjqujPt0,...,l´1u, SKq
15 DH:
16 if α “ 0 then
17 Epy0q Ð Epy0q ˚ Epγq
18 end
19 for j Ð l ´ 1, . . . , 0 do
20 Epzjq Ð Epyjq ˚ EpN ´ 1q

21 Epujq Ð Epzjq
r2

j ˚ Epwjqwhere r2j PR ZN

22 end
23 tv1jujPt0,...,l´1u Ð σptEpujqujPt0,...,l´1uq

24 DH Ñ CSP : tv1jujPt0,...,l´1u

25 CSP:
26 tvjujPt0,...,l´1u Ð tDpv1jqujPt0,...,l´1u

27 if Dvj “ 0 in tvjujPt0,...,l´1u then
28 Epβq Ð Ep0q
29 else
30 Epβq Ð Ep1q
31 end
32 CSP Ñ DH : Epβq
33 DH:
34 if α “ 0 then
35 EpMq Ð Epβq
36 else
37 EpMq Ð Ep1q ˚ EpβqN´1

38 end
39 EpDq Ð Ep1q ˚ EpγqN´1

40 return tEpMq, EpDqu

Electronics 2022, 11, 4132 12 of 31

Intuitively, DH selects functionality FpF : s ă k or F : s ľ kq by a random coin α and
computes the functionality on two input data. CSP converts the computation result and
returns the converted value (β) back to DH. Then, DH outputs result based on the converted
value according to the random coin α (functionality F) selected by DH. As an idea for the
SCI protocol, we modified the existing comparison protocol [10,11] so that an intermediate
result of DH would be a vector that consists of either random values including 0 or only
random values according to a random coin. We mentioned earlier that the intermediate
result of DH in the existing comparison protocols [10,11] is either a vector that consists
of random values including 0 or 1 if two input data are unequal or a vector that consists
of only random values if two input data are equal. Therefore, when two input data are
unequal, we modify 1 in a vector to be a random value. When two input data are equal, we
modify one of the random values in a vector to 0 according to a random coin.

In order to avoid the scenario in which the intermediate result of DH becomes a vector
that consists of only random values regardless of a random coin α when two input data
are equal, we use functionality FSZP, which privately computes whether all input data are
0 or not. Functionality FSZP receives tEpxiquiPrls from DH and a secret key SK from CSP,
and then it sends Epγq to DH where Epγq “ Ep1q if all xi “ 0; otherwise, Epγq “ Ep0q. We
define FSZP as follows.

FSZPptEpxiquiPrls, SKq Ñ pEpγq,Kq (8)

We present a real protocol to privately compute functionality FSZP in Algorithm A1 of
Appendix A. The protocol requires l encryptions/decryptions and pl ` 1q exponentiations,
and pl ` 1q ¨ C bits are transmitted in 1 round.

For easier understanding of Algorithm 1, we intuitively explain data without encryp-
tion. DH selects functionality F by tossing a random coin α (line 2), where F : s ă k if α “ 0;
otherwise, F : s ľ k. When DH selects functionality F : s ă k (resp., F : s ľ k), wj is random
if psj, k jq “ p0, 1q (resp., psj, k jq “ p1, 0q); otherwise, wj “ 0 (lines 4–9). xj “ 1 if sj ‰ k j;
otherwise, xj “ 0 (line 10). yj “ 1 is in the first bit with sj ‰ k j from the pl ´ 1q-th bit and
the other yj are either 0 or a random value (line 11). Let the first bit with sj ‰ k j from the
pl ´ 1q-th bit be the t-th bit. Then yt “ 1, yj “ 0 for j “ t` 1, . . . l ´ 1, and yj is the random
value for j “ 0 . . . t´ 1.

If s is equal to k, then γ “ 1; otherwise γ “ 0 (line 14), since xj “ 0 if sj “ k j; otherwise,
xj “ 1 in line 10. If DH selects F : s ă k (α “ 0), it adds γ to y0 so that it can send CSP
a vector that consists of random values including 0 when s “ k and CSP returns β “ 0
back to DH (lines 14–18). Note that, even though γ is added to the fixed 0-th position of y,
CSP cannot know the position since the information about the position is removed by a
permutation σ (line 23). If DH selects F : S ľ k (α “ 1), it does not add γ so that it can send
CSP a vector that consists of only random values and CSP returns β “ 1 back to DH.

Let the position with yj “ 1 be the t-th bit. When the selected functionality F is
different from the relation of the two input data, i.e., either when DH selects F : s ă k, the
relation of two input datasets is s ą k or when DH selects F : s ľ k, the relation of two input
datasets is s ă k—ut “ 0 and the other uj are random (lines 19–22). Conversely, when the
selected functionality F is same as the relation of two input data, i.e., either when DH selects
F : s ă k, the relation of two input datasets is s ă k or when DH selects F : s ľ k, the relation
of two input datasets is s ą k—all uj are random by adding wj in line 21. In addition, when
two input data are equal (s “ k) and the selected functionality is F : s ă k, i.e., if the selected
functionality F is different from the relation of two input data—u is a vector that consists of
random values including u0 “ 0 since DH adds γ “ 1 to y0 in lines 16–18. If the selected
functionality is F : s ľ k, i.e., when the selected functionality F is same as the relation of
two input data—u is a vector that consists of only random values. After permutation σ of
tujujPt0,...,l´1u, DH sends CSP the permutated vector v (lines 23–24).

CSP returns β “ 0 (resp., β “ 1) back to DH if it receives a vector that consists of
random values including 0 (resp., a vector that consists of only random values). Specifically,
CSP decrypts v1j and obtains vj (line 26). If there is an element with 0 in the vector v, CSP
sends β “ 0 to DH. If the vector v consists of only random values, CSP sends β “ 1 to DH

Electronics 2022, 11, 4132 13 of 31

(lines 27-32). Even though the position of an element with 0 in a vector u (line 21) includes
information about the first position with sj ‰ k j or the 0-th bit when s “ k, CSP cannot learn
any information since it is removed by a permutation in line 23. DH privately computes
the result M based on the β and according to the α selected by DH. Specifically, DH sets the
result M to β (M Ð β) if α “ 0 and the complement of β (M Ð 1´ β) if α “ 1 (lines 34–38).
In conclusion, the result M satisfies the condition M “ ps ă kq “ pα‘ β) for input data s
and k. DH privately computes inequality result D for input data s and k (line 39).

Computation and communication costs: SCI protocol requires 2l encryptions/ decryptions
and p4l ` 3q exponential computations, and 2pl ` 1q ¨ C bits are transmitted in two rounds.
Specifically, SZP requires l encryptions/decryptions in line 14, and CSP decrypts v1j for
j “ 0, . . . , l´ 1 in line 26. Exponential computations are executed 3l times in lines 9, 11, and
21, and two times in lines 37 and 39. Exponential computations in lines 5 and 7 are excluded
since k j is a public value in t0, 1u. Therefore, the total exponential computations of SCI are
p4l ` 3q including pl ` 1q times in line 14. The amount of communication is 2pl ` 1q ¨ C bits
including pl ` 1q ¨ C bits in line 14. There are two communication rounds including once in
line 14.

4.2. Proof of SCI Protocol

In this section, we denote SCI protocol (Algorithm 1) by πSCI and prove that πSCI
privately computes FSCI in the FSZP-hybrid model. In other words, we demonstrate that
πSCI privately computes FSCI given access to functionality FSZP. Intuitively, πSCI does not
disclose any information about the comparison result including the input data to DH and
CSP. In other words, the output M of πSCI satisfies the condition M “ ps ă kq “ pα‘ βq
where DH knows a random coin α and not β since it receives the β from CSP in an
encrypted form. Therefore, DH cannot learn any information about the computation result.
On the contrary, CSP knows β and not α since CSP cannot learn any information about
functionality F selected by α. This functionality is chosen uniformly at random by DH,
and thus, CSP cannot learn any information about the computation result. In terms of
proof, the DH simulator can generate the view of DH since DH only sees a random coin
and data encrypted with semantically secure encryption scheme. The CSP simulator can
also generate the view of CSP, which sees a vector that consists of either random values
including 0 or only random values according to a random coin α which is selected uniformly
at random.

Theorem 1. πSCI privately computes FSCI in the FSZP-hybrid model in the presence of a semi-
honest adversary.

Proof of Theorem 1. We demonstrate that joint distribution of the view and the output
of the real protocol πSCI is computationally indistinguishable from that of the outputs of
simulators and functionality FSCI . Specifically, we demonstrate that (1) the view of DH
is computationally indistinguishable from the output of the DH simulator, (2) the view
of CSP is computationally indistinguishable from the output of the CSP simulator, and
(3) the output of the real execution πSCI is computationally indistinguishable from that of
functionality FSCI .

(1) The view of DH in the real protocol πSCI is as follows.

VIEWSCI
DH ptS

1, k1u, SKq “ ttS1, k1u, α, Epγq, Epβqu (9)

In πSCI , α is a random coin that DH tosses (line 2), Epγq is a ciphertext returned
from FSZP (line 14), and Epβq is a ciphertext received from CSP (line 32). Intuitively, since
Epγq and Epβq are in an encrypted form, the DH simulator can generate the view as
random values.

Electronics 2022, 11, 4132 14 of 31

DH simulator SDH
Input: The simulator SDH receives input tS1, k1u and output tEpMq, EpDqu of DH.
‚ Simulation

- The simulator chooses values r1, r2 and r3 uniformly at random, where r1 PR t0, 1u
and r2, r3 PR ZN2 .

- The simulator defines ttS1, k1u, r1, r2, r3u as the view of DH.
- The simulator outputs the view of DH and halts.

Random coin α PR t0, 1u is indistinguishable from random r1 PR t0, 1u. Since the
Paillier cryptosystem is semantically secure and the ciphertext is less than N2, Epγq and
Epβq are computationally indistinguishable from r2 and r3. Therefore, the view of DH and
the output of SDH are computationally indistinguishable.

(2) The view of CSP in the real protocol πSCI is as follows.

VIEWSCI
CSPptS

1, k1u, SKq “ tSK, tv1jujPt0,...,l´1u, tvjujPt0,...,l´1uu (10)

In πSCI , tv1jujPt0,...,l´1u is a vector that consists of ciphertexts received from DH (line 24)
and tvjujPt0,...,l´1u is obtained by decrypting the tv1jujPt0,...,l´1u (line 26). Intuitively, the
CSP simulator can generate tvjujPt0,...,l´1u, which is a vector that consists of either random
values including 0 or only random values according to a random coin, and it can generate
tv1jujPt0,...,l´1u by encrypting the tvjujPt0,...,l´1u.

CSP simulator SCSP
Input: The simulator SCSP receives a secret key SK as CSP input.
‚ Simulation

- The simulator tosses a random coin c P t0, 1u.
- If a random coin c is 0, the simulator sets r4

0 to 0 and chooses tr4
j ujPt1,...,l´1u uniformly

at random where r4
j PR ZN .

- If a random coin c is 1, the simulator chooses tr4
j ujPt0,...,l´1u uniformly at random

where r4
j PR ZN .

- The simulator permutes tr4
j ujPt0,...,l´1u uniformly at random and sets them to

tr5
j ujPt0,...,l´1u.

- The simulator computes tEpr5
j qujPt0,...,l´1u.

- The simulator defines tSK, tEpr5
j qujPt0,...,l´1u,

tr5
j ujPt0,...,l´1uu as the view of CSP.

- The simulator outputs the view of CSP and halts.

As presented in Algorithm 1 (πSCI), tvjujPt0,...,l´1u is a vector that consists of ei-
ther random values including 0 or only random values according to a random coin α.
Therefore, tvjujPt0,...,l´1u is indistinguishable from tr5

j ujPt0,...,l´1u. tv1jujPt0,...,l´1u to encrypt

tvjujPt0,...,l´1u is indistinguishable from tEpr5
j qujPt0,...,l´1u.

(3) As explained earlier, the result of πSCI satisfies the condition M “ pα‘ βq “ ps ă kq. As
shown in Table 2, when s ă k (M “ 1) and DH chooses a random coin α “ 0 (resp., α “ 1),
then CSP returns β “ 1 (resp., β “ 0). On the contrary, when s ľ k (M “ 0) and DH chooses
a random coin α “ 0 (resp., α “ 1), CSP returns β “ 0 (resp., β “ 1). Therefore, the result
EpMq of πSCI is the same as that of FSCI . As for EpDq, xj “ 0 if sj “ k j; otherwise, xj “ 1
(line 10). If s is equal to k (i.e., all xj is 0), FSZP returns γ “ 1 (line 14) and D “ 0 (line 39);
otherwise if s is unequal to k (i.e., there is an element with 1 in a vector x), FSZP returns
γ “ 0 (line 14) and D “ 1 (line 39). In other words, the result EpDq of πSCI is the same

Electronics 2022, 11, 4132 15 of 31

as that of FSCI . Therefore, the output of πSCI is computationally indistinguishable from
that of FSCI .

4.3. Secure Version of SkLE/SkSE (SkLES/SkSES)

Secure version of SkLE (SkLES): In this subsection, we propose SkLES to privately com-
pute k largest elements in an array (i.e., k largest data in a dataset) in which no information
is disclosed. The merit of SkLES is that it is very efficient since it is executed for each element
in parallel. In order to compute k largest elements privately, the communication rounds of
existing protocols [11,17] are proportional to the number of elements and parameter k of
nearest neighbors since they serially repeat maximum protocol k times where the maximum
protocol serially compares all elements. However, since our SkLES is executed for each ele-
ment in parallel and computes k largest elements in only one execution, the communication
rounds are independent of the number of elements and the parameter k. Therefore, it is
suitable for both big data analysis that handles a large volume of data (elements) and PkNC
applications with large k of nearest neighbors. Since, for best performance, SkLES needs
to simultaneously execute as many operations as the number of elements, performance is
greatly improved in the cloud computing environment, which enables numerous parallel
operations. In addition, our SkLES solves the information disclosure problem occurring
in SkLEE [10]. The SkLEE [10] varies the end points running at most l rounds according
to input array where l is the length of an element. This ultimately means that it discloses
information about the input array. However, SkLES consistently runs l rounds regardless
of input array, and therefore, it does not disclose any information about input array.

FSkLES receives a set of encrypted elements txEpeiqyBuiPrns from DH and a secret key
SK from CSP, and then it sends tEpKiquiPrns to DH where Ki “ 1 if an element ei is included
in the set of k largest elements; otherwise, Ki “ 0. We define FSkLES as follows.

FSkLESptxEpeiqyBuiPrns, SKq Ñ ptEpKiquiPrns,Kq (11)

An element ei in an input dataset has auxiliary data that consists of tKi, Pi, Ciu P

t0, 1u3, and SkLES privately computes the set of k largest elements by computing the
auxiliary data for each round. Ki is the output of SkLES, which indicates whether or not the
corresponding element ei is included in the set of k largest elements. Pi means whether or
not the corresponding element ei is a predicted k-largest element in corresponding round.
SkLES finds k largest elements and a predicted k-largest element in the set of candidate
elements, where Ci indicates whether or not the corresponding element ei is included in the
set of candidate elements. Once an element ei is included in the set of k largest elements, it
is irreversible. (i.e., Ki “ 0 Ñ 1 but 1 Û 0). Similarly, once an element ei is excluded from
the set of candidate elements, it is irreversible. (i.e., Ci “ 1 Ñ 0 but 0 Û 1).

In each round, SkLES privately computes auxiliary data for 1 bit of all elements from
the pl ´ 1q-th bit (MSB) to the 0-th bit (LSB) where l is the length of an element. Resultant
k largest elements in an array are the elements ei with Ki “ 1, which means the elements
included in the set of k largest elements. We present a real protocol to privately compute
functionality FSkLES in Algorithm 2 and show an example in Table 3 for easy understanding.
Note that DH locally performs all computations in Algorithm 2 except for the interactive
protocols for functionalities FSM, FSBD, and FSCI . Recall that n is the number of all elements
and l is the upper-bound number of bits required to represent an element ei.

The idea of SkLES is to remove all elements from the set of candidate elements after
it finds k largest elements so that it keeps the results equal. Since the existing SkLEE [10]
terminates after it finds k largest elements, it does not need to consider computation of
auxiliary data for k largest elements. Since our SkLES does not terminate after finding k
largest elements so that it is consistently executed l rounds, it needs a method to keep the
results of the k largest elements equal even though it perform the same computation as
before finding them. For this, when SkLES finds k largest elements, it removes all elements
from the set of candidate elements (Ci Ð 0) since k largest elements are found in the set of
candidate elements.

Electronics 2022, 11, 4132 16 of 31

Table 3. Example of Algorithm 2 for SkLES protocol.

j
txEpeiqyBuiPr5s

1 tEpPiquiPr5s EpMq

tEpKiquiPr5s tEpCiquiPr5s EpDq

¨

¨ ¨ ¨

Ep0q, Ep0q, Ep0q, Ep0q, Ep0q Ep1q, Ep1q, Ep1q, Ep1q, Ep1q ¨

7
Ep0q, Ep0q, Ep0q, Ep0q, Ep0q Ep0q, Ep0q, Ep0q, Ep0q, Ep0q Ep1q

Ep0q, Ep0q, Ep0q, Ep0q, Ep0q Ep1q, Ep1q, Ep1q, Ep1q, Ep1q Ep1q

6
Ep1q, Ep0q, Ep0q, Ep0q, Ep0q Ep1q, Ep0q, Ep0q, Ep0q, Ep0q Ep1q

Ep1q, Ep0q, Ep0q, Ep0q, Ep0q Ep0q, Ep1q, Ep1q, Ep1q, Ep1q Ep1q

5
Ep0q, Ep1q, Ep1q, Ep1q, Ep1q Ep1q, Ep1q, Ep1q, Ep1q, Ep1q Ep0q

Ep1q, Ep0q, Ep0q, Ep0q, Ep0q Ep0q, Ep1q, Ep1q, Ep1q, Ep1q Ep1q

4
Ep0q, Ep1q, Ep0q, Ep0q, Ep0q Ep1q, Ep1q, Ep0q, Ep0q, Ep0q Ep1q

Ep1q, Ep1q, Ep0q, Ep0q, Ep0q Ep0q, Ep0q, Ep1q, Ep1q, Ep1q Ep1q

3
Ep1q, Ep0q, Ep1q, Ep1q, Ep0q Ep1q, Ep1q, Ep1q, Ep1q, Ep0q Ep0q

Ep1q, Ep1q, Ep0q, Ep0q, Ep0q Ep0q, Ep0q, Ep1q, Ep1q, Ep0q Ep1q

2
Ep0q, Ep1q, Ep1q, Ep0q, Ep1q Ep1q, Ep1q, Ep1q, Ep0q, Ep0q Ep0q

Ep1q, Ep1q, Ep1q, Ep0q, Ep0q Ep0q, Ep0q, Ep0q, Ep0q, Ep0q Ep0q

1
Ep0q, Ep1q, Ep0q, Ep0q, Ep1q Ep1q, Ep1q, Ep1q, Ep0q, Ep0q Ep0q

Ep1q, Ep1q, Ep1q, Ep0q, Ep0q Ep0q, Ep0q, Ep0q, Ep0q, Ep0q Ep0q

0
Ep1q, Ep0q, Ep1q, Ep1q, Ep0q Ep1q, Ep1q, Ep1q, Ep0q, Ep0q Ep0q

Ep1q, Ep1q, Ep1q, Ep0q, Ep0q 2 Ep0q, Ep0q, Ep0q, Ep0q, Ep0q Ep0q
Parameters : k “ 3, l “ 8; 1 input: txEpeiqyBuiPr5s “ txEp73qyB, xEp54qyB, xEp45qyB, xEp41qyB, xEp38qyBu;
2 output tEpKiquiPr5s “ tEp1q, Ep1q, Ep1q, Ep0q, Ep0qu means t73, 54, 45u are the three largest elements in array
t73, 54, 45, 41, 38u.

For easy understanding of Algorithm 2, we intuitively explain the data without
encryption. First, DH initializes auxiliary data Ki and Ci for all elements ei so that there
are no elements in the set of k largest elements (i.e., Ki Ð 0), and all elements are included
in the set of candidate elements (i.e., Ci Ð 1) (lines 2–5). For 1 bit of an element ei, DH
and CSP privately compute auxiliary data Pi, Ki, and Ci P t0, 1u3 in each round (lines 6–24),
which consists of the following four steps. We assume DH and CSP compute auxiliary data
for the j-th bit of all elements in the pl ´ jq-th round (j “ l ´ 1, . . . , 0).

Electronics 2022, 11, 4132 17 of 31

Algorithm 2: Secure version of SkLE (SkLES)
DH input : set of encrypted elements txEpeiqyBuiPrns
CSP input : secret key SK
DH output :tEpKiquiPrns where Ki “ 1 if an element ei is included in the set of k

largest elements; otherwise, Ki “ 0.

1 DH locally performs all computations besides the interactive protocols for
functionalities FSM, FSBD, and FSCI .

2 for i Ð 1, . . . , n do
3 EpKiq Ð Ep0q
4 EpCiq Ð Ep1q
5 end
6 for j Ð l ´ 1, . . . , 0 do
7 for i Ð 1, . . . , n do
8 pEpuiq,Kq Ð FSMptEpei,jq, EpCiqu, SKq
9 EpPiq Ð EpKiq ˚ Epuiq

10 end
11 Epsq Ð

śn
i“1 EpPiq

12 pS1,Kq Ð FSBDpEpsq, SKq
13 ptEpMq, EpDqu,Kq Ð FSCIptS1, k1u, SKq
14 pEpαq,Kq Ð FSMptEpDq, EpMqu, SKq
15 Epβq Ð Ep1q ˚ EpDqN´1 ˚ Epαq
16 Epγq Ð EpDq ˚ EpαqN´2

17 for i Ð 1, . . . , n do
18 pEpviq,Kq Ð FSMptEpuiq, Epβqu, SKq
19 EpKiq Ð EpKiq ˚ Epviq

20 pEpwiq,Kq Ð FSMptEpei,j, Epγqu, SKq
21 Epxiq Ð EpMq ˚ Epwiq

22 pEpCiq,Kq Ð FSMptEpCiq, Epxiqu, SKq
23 end
24 end
25 for i Ð 1, . . . , n do
26 EpKiq Ð EpKiq ˚ EpCiq

27 end
28 return tEpKiquiPrns

(Step 1: lines 7–10) privately computing predicted k-largest element (Pi): A predicted k-
largest element for the j-th bit is an element ei where bit 1 exists at least once from the
pl ´ 1q-th bit to the j-th bit. In other words, a predicted k-largest element for the j-th bit is
either a candidate element (Ci “ 1) whose j-th bit is 1 (ei,j “ 1) or a k-largest element (Ki “ 1)
in the previous round, which means that ei,j “ 1 exists at least once for j “ l ´ 1, . . . , j` 1.
Therefore, EpPiq is computed as follows.

EpPiq Ð Epei,j ¨ Ci ` Kiq (12)

(Step 2: line 11) privately computing the number of all predicted k-largest elements (s):
Since the value of the auxiliary data for a predicted k-largest element is either 0 or 1 (i.e.,
Pi P t0, 1u), the number s of all predicted k-largest elements is computed by adding up all
of the values as follow.

Epsq Ð Ep
ÿn

i“1
Piq “

źn

i“1
EpPiq (13)

(Step 3: lines 12–13) privately comparing the number s of all predicated k-largest elements to
parameter k of nearest neighbors: For the comparison of s and k, DH and CSP run an interactive
protocol with a party to ideally compute functionality FSCI mentioned in Section 4.1. In

Electronics 2022, 11, 4132 18 of 31

order to compute S1 for input of FSCI , DH and CSP also run an interactive protocol with
a party to ideally compute secure bit decomposition functionality FSBD, as mentioned in
Section 3.6. We do not present how to compute k1 “ txkyB, xkyBu in this paper because k is a
public parameter and k1 can be computed easily.

(Step 4: lines 14–23) privately computing k largest elements (Ki) and candidate elements (Ci):
As mentioned earlier, a predicted k-largest element is a candidate element whose bit is 1
in the corresponding round. Similarly, let unpredicted k-largest element be a candidate
element whose bit is 0 in the corresponding round. DH and CSP privately compute whether
or not an element (ei) is included in the set of k largest elements (Ki) and the set of candidate
elements (Ci) according to comparison results (M and D) of the number s of predicted k-
largest elements and parameter k. The idea to compute Ki and Ci is to include the predicted
k-largest elements to the set of k largest elements if s ă k and to exclude the unpredicted
k-largest elements from the set of candidate elements if s ą k. If s “ k, all predicted k-largest
elements are included in the set of k largest elements, and the other candidate elements
(i.e., unpredicted k-largest elements) are excluded from the set of candidate elements in
order to keep the set of k largest elements as a result since k largest elements are found in
the set of candidate elements.

Table 4 shows values of Ci and Ki for an element ei according to each case. (case 1)
When s ă k (i.e., the number of predicted k-largest elements is less than parameter k), a
predicted k-largest element (i.e., an element ei with ei,j “ 1 and in the set of candidate
elements) is included in the set of k largest elements (Ki Ð 1) and is excluded from the set
of candidate elements (Ci Ð 0). (case 2) When s ą k, an unpredicted k-largest element (i.e.,
an element ei with ei,j “ 0 that is in the set of candidate elements) is excluded from the
set of candidate elements (Ci Ð 0). (case 3) When s “ k, a predicted k-largest element is
included in the set of k largest elements (Ki Ð 1) and is excluded from the set of candidate
elements (Ci Ð 0). (case 4) Then, the other elements in the set of candidate elements (i.e.,
unpredicted k-largest elements) are excluded from the set (Ci Ð 0). (case 5) Since there is
no element in the set of candidate elements, the values of Ki and Ci for all elements (i.e.,
the set of k largest elements and the set of candidate elements) are kept equal for the same
computation of Ki and Ci. According to Table 4, EpKiq and EpCiq are computed as follows.

EpKiq Ð EpKi ` ei,j ¨ Ci ¨ p1´D`D ¨Mqq (14)

EpCiq Ð EpCi ¨ pM` ei,j ¨D ¨ p1´ 2Mqqq (15)

Table 4. Values of Ki and Ci according to the cases in SkLES.

Candidate
(Ki “ 0, Ci “ 1)

Non-Candidate
(Ci “ 0)

Predicted
(ei,j “ 1)

Unpredicted
(ei,j “ 0) ei,j “ 1 ei,j “ 0

s ą k Ki Ñ Ki
Ci Ñ Ci

(case 2)
Ki Ñ Ki
Ci Ñ 0

(case 5)
Ki Ñ Ki
Ci Ñ Ci

s ă k
(case 1)
Ki Ñ 1
Ci Ñ 0

Ki Ñ Ki
Ci Ñ Ci

s “ k
(case 3)
Ki Ñ 1
Ci Ñ 0

(case 4)
Ki Ñ Ki
Ci Ñ 0

When SkLES cannot determine k largest elements due to the presence of multiple
elements with the same value, it returns as a result the elements in the set of candidate
elements as well as the set of k largest elements (lines 25–27). For example, when SkLES

Electronics 2022, 11, 4132 19 of 31

finds the three largest elements (k = 3) in array t1, 2, 3, 3, 4, 5u, it returns the four largest
elements t3, 3, 4, 5u as a result.

Parallelism: In each round, the proposed SkLES performs computation either for each
element in parallel or all elements in common. Therefore, the communication rounds regarding
running time is independent of the number of elements. The operations in lines 7–10 and
lines 17–23 are computed for each element independently and in parallel. The operations in
lines 12–16 are computed once in common regardless of the number of elements. Although
just as many homomorphic additions are serially computed as the number of elements in line
11, we do not consider them as computation and communication costs since homomorphic
addition has little influence on efficiency, as mentioned in Section 3.4.

Computation and communication costs: SkLES requires p24n` 5l1 ` 7q ¨ l encryptions/
decryptions and p8n` 8l1` 9q ¨ l exponential computations, and p12n` 4l1` 7q ¨ l ¨C bits are
transmitted in pl1` 8q ¨ l rounds where l represents the size of an element ei, and l1 represents
the size of the number of elements. Recall that SM requires six encryptions/decryptions and
two exponential computations, and 3 ¨ C bits are transmitted in one round, as mentioned
in Section 3.6. Specifically, SM in line 8 requires 6nl encryptions/decryptions and 2nl
exponential computations, and 3nl ¨ C bits are transmitted since SMs for n elements are
repeated l times. However, the number of communication rounds is l since SMs for n
elements are executed in parallel. Likewise, SM operations in lines 18–22 are executed nl
times and the operations in lines 11–16 are executed l times, respectively.

Secure version of SkSE (SkSES): SkSES privately computes k smallest elements without
disclosing information about an input array or results. In conclusion, SkSES is constructed
by inputting 1’s complement of an input array to SkLES as follows.

SkSEptxEpeiqyBuiPrnsq “ SkLEptxEpeiqyBuiPrnsq (16)

In order to construct SkSES, we followed a similar process to SkLES in this section, and
then reached the above conclusion. For more details, please refer to [10].

4.4. Proof of SkLE Protocol

In this section, we denote SkLES protocol (Algorithm 2) by πSkLES and prove that
πSkLES privately computes FSkLES in the pFSM, FSBD, FSCIq-hybrid model. Since SkSES is
constructed by SkLES, we do not prove the security of SkSES. We demonstrate that πSkLES
privately computes FSkLES given access to the functionalities FSM, FSBD, and FSCI . Intuitively,
πSkLES does not disclose any information about an input array and results to DH and CSP
since DH receives randomized ciphertexts from functionalities and CSP does not receive
any data.

Theorem 2. πSkLES privately computes FSkLES in the pFSM, FSBD, FSCIq-hybrid model in the
presence of a semi-honest adversary.

Proof of Theorem 2. We demonstrate that joint distribution of the view and the output of
the real protocol πSkLES is computationally indistinguishable from that of the outputs of
simulators and functionality FSkLES . Specifically, we demonstrate that (1) the view of DH is
computationally indistinguishable from the output of the DH simulator and (2) the output
of DH in πSkLES is computationally indistinguishable from output of DH in FSkLES . We do
not consider the view and output of CSP because it does not receive any messages.

(1) We define DH’s view of the real protocol πSkLES as follows.

VIEWSkLES
DH ptxEpeiqyBuiPrns, SKq “ ttxEpeiqyBuiPrns, tEpuiquiPrns, txEpsqyB, xEpsqyBu,

tEpMq, EpDqu, Epαq, tEpviquiPrns, tEpwiquiPrns, tEpCiquiPrnsu (17)

Electronics 2022, 11, 4132 20 of 31

All data in DH’s view are received from functionalities except for input txEpeiqyBuiPrns.
Specifically, txEpsqyB, xEpsqyBu are received from FSBD in line 12, tEpMq, EpDqu are received
from FSCI in line 13, and the other data are received from FSM. Intuitively, since DH sees
the only data encrypted with a semantically secure encryption scheme, we can simulate
DH’s view.

DH simulator SDH
Input: The simulator SDH receives input txEpeiqyBuiPrns and output tEpKiquiPrns of DH.
‚ Simulation

- The simulator SDH chooses values tr1
i uiPrns, tr2

i uiPt0,...,l´1u, tr3
i uiPt0,...,l´1u, r4, r5, r6,

tr7
i uiPrns, tr8

i uiPrns, tr9
i uiPrns uniformly at random where the values are in ZN2 .

- The simulator defines ttxEpeiqyBuiPrns, tr1
i uiPrns, ttr2

i uiPt0,...,l´1u, tr3
i uiPt0,...,l´1uu, tr4, r5u,

r6, tr7
i uiPrns, tr8

i uiPrns, tr9
i uiPrnsu as the view of DH.

- The simulator outputs DH’s view and halts.

tEpuiquiPrns are computationally indistinguishable from tr1
i uiPrns since the Paillier

cryptosystem is semantically secure and its ciphertext is less than N2. Similarly, the other
data in the view of DH are computationally indistinguishable from the simulator’s outputs.
Therefore, the distribution of DH’s view is computationally indistinguishable from outputs
of the simulator SDH .

(2) Let πSkLES compute auxiliary data for the j-th bit of all elements in the (l ´ j)-th round
(j “ l ´ 1, . . . , 0). It is clear that a predicted k-largest element will be larger than other
elements for the j-th bit because, from (l ´ 1)-th bit to j-th bit, a predicted k-largest element
has bit 1 at least once but the other elements are all 0. Predicted k-largest elements include
k largest elements in the corresponding round. As shown in case 1 of Table 4, when s ă k,
predicted k-largest elements are included to the set of k largest elements (Ki Ð 1). The
prior k-largest elements remain the same since the predicted k-largest elements include
them. When s “ k, predicted k-largest elements are included in the set of k largest elements
(Ki Ð 1) as shown in Case 3. In addition, the other candidate elements (i.e., unpredicted
k-largest elements) are excluded from the set of candidate elements (Ci Ð 0) as shown in
Case 4, so that k largest elements remain the same as in case 5. Since all elements in the set
of k largest elements are larger than the other elements, output of πSkLES is computationally
indistinguishable from that of functionality FSkLES .

Hiding data access patterns: SkLES hides data access patterns for k largest ones of all
elements. Informally, SkLES performs either the same computation for each element or a
common computation for all elements. Specifically, auxiliary data Pi, Ki, and Ci regarding k
largest elements are computed by the same equations regardless of result (lines 7–10 and
lines 17–23). The other computations in lines 11–16 are executed for all common elements.
Since all data are encrypted with semantically secure encryption schemes, and therefore no
information is disclosed, SkLES is secure against data access pattern attacks.

5. Implementation and Experimental Results of Privacy-Preserving k-Nearest
Neighbor Classification

In order to demonstrate the efficiency, we implemented a privacy-preserving k-nearest
neighbor classification (PkNC) using the proposed SkLES/SkSES and SCI protocols. Our
extensive experiments contained real datasets, and we compared the experimental results
with the results from existing PkNC experiments [11].

5.1. Privacy-Preserving k-Nearest Neighbor Classification

Given an unclassfied input query and a classified dataset, k-nearest neighbor classifi-
cation selects k data most similar to the input query and classifies the unclassified input
query by the majority class of the k selected data. Typically, PkNC algorithm consists of the
following three steps.

Electronics 2022, 11, 4132 21 of 31

‚ Step 1: computing distances between an input query and data in a dataset.
‚ Step 2: selecting k smallest distances.
‚ Step 3: computing the majority class of k data corresponding to the k smallest distances.

Table 5 shows the ratio of running time broken down by steps in our PkNC when
applying SkLES/SkSES. Since the running time of SkLES/SkSES accounts for most of the
PkNC running time, the features of SkLES/SkSES lead to those of PkNC in terms of running
time. In order to improve the efficiency of PkNC, it is significant to compute step 2 efficiently.
For more details about our PkNC algorithm, refer to Algorithm A2 in Appendix B.

Table 5. Running time ratio by steps in our PkNC

Step 1
Step 2

Step 3 Total
SBD SkLES

Ratio 5 % 9 % 75 % 11 % 100 %

As mentioned earlier, SkLE/SkSE has an efficient version (SkLEE/SkSEE) that focuses
on efficiency and a secure version (SkLES/SkSES) that improves security. When comparing
the secure version and the efficient version in terms of communication rounds related to
running time, the secure version requires 2l communication rounds more than the efficient
version in the worst case scenario. Despite this, we emphasize again that the security of the
secure version is much improved.

5.2. Implementation and Experimental Results

We implemented PkNC to apply SkLES/SkSES and SCI using the Paillier cryptosystem [36]
as an additively homomorphic encryption scheme in C++. Then, we conducted an experiment
on two Linux machines for DH and CSP. The Linux system features an Intel Core i7-4790 CPU
3.60 GHz processor and 15 GB RAM running Ubuntu 18.04 LTS. In particular, the machine has
four cores and runs eight parallel operations via hyper-threading technology [37].

In order to show performance of our PkNC applying the proposed SkLES/SkSES
clearly, we conducted experiments with the Car Evaluation dataset used in existing
work [11] and the Mushroom dataset from the UCI machine learning repository [38].
The Car Evaluation dataset [39] consists of 1728 data with six attributes and four classes,
and the Mushroom dataset [40] consists of 8124 data with twenty-two attributes and
two classes.

We first ran our PkNC for k = 1000 with the Car Evaluation dataset, which took 4 min
23 s when the key size is 1024 bits and the number of threads is 8. Table 6 compares running
times of our PkNC and existing PkNCs. These results verify that our PkNC, when utilizing
SkLES/SkSES and SCI protocols, is very efficient. Starting the above experiment, we varied
the parameters such as the k of nearest neighbors, key size, the number of data, and the
number of threads for parallel operations. At last, we compared and analyzed the resultant
running times to that of existing PkNC [11], which is the most efficient of the previous
protocols in Table 6.

Table 6. Running time comparison of our PkNC and the existing PkNCs.

Number of Data Running Time

[16] 760 61.8 min
[15] 60 5.4 min
[11] 1728 12 min

rThis works 1728 4.38 min

Figure 3 shows the running times of our PkNC applying SkLES/SkSES and an existing
PkNC [11] for the k of nearest neighbors. It shows that the running time of our PkNC is
independent of k as SkLES/SkSES. Since the existing PkNC runs a minimum protocol k

Electronics 2022, 11, 4132 22 of 31

times in order to privately compute k data with the smallest value, its running time rapidly
increases for parameter k, but since SkLES/SkSES in our PkNC privately computes k
smallest data via only one execution regardless of k, our PkNC is independent of parameter
k. Specifically, the existing PkNC took 12.02 min to 55.5 min as k increases from 5 to 25, and
we expect that it would take more than one hour for k values exceeding 25. However, our
PkNC took roughly 4.4 min regardless of parameter k. Therefore, our PkNC is much more
efficient for k than the existing PkNC thanks to the efficiency of SkLES/SkSES.

5 1525 100 400 700 1000

Number of nearest neighbors (k)

0

10

20

30

40

50

60

T
im

e
 (

m
in

)

 Existing PkNC O

 This work X

Figure 3. Running time comparison of our PkNC and the existing PkNC [11] for the number of
nearest neighbors (k).

Figure 4 shows the running time of our PkNC applying SkLES/SkSES and the existing
PkNC [11] for key size. It shows that the running time of our PkNC gradually increases
in comparison with the existing PkNC. As the key size increases from 512 bits to 1024 bits,
while running time of the existing PkNC rapidly increases 9.98 min to 66.97 min, our PkNC
increases 1.2 min to 4.38 min. For 2048 bits of key size, our PkNC took only 27.2 min.
Therefore, our PkNC is more efficient than the existing PkNC for key size.

Electronics 2022, 11, 4132 23 of 31

512 1024 2048

Key size (bit)

0

10

20

30

40

50

60

70

T
im

e
 (

m
in

)

 Existing PkNC O

 This work X

Figure 4. Running time comparison of our PkNC and the existing PkNC [11] for key size (bit).

Table 7 illustrates the amount of communication for our PkNC versus an existing
PkNC [11] when key size is 1024 bits. It shows that the communication amount of our
PkNC is roughly one-third of that of the existing PkNC. Specifically, while the existing PkNC
needs to transmit data of 154.78 megabytes, our PkNC transmits only 54.72 megabytes. By
assuming a common 10 Mbps LAN environment, while the network delay for the existing
PkNC was 123.82 s, the delay for our PkNC is only 44 s.

Table 7. Communication amount and network delay of our PkNC and the existing PkNC [11] in
10 Mbps LAN.

Communication Amount
(Megabytes) Network Delay (s)

[11] 154.78 123.82
rThis works 54.72 43.77

We also conducted an experiment for much more data than the Car Evaluation dataset
(n = 1728) used in existing PkNC [11]. Even though the number of data in the Mushroom
dataset (n = 8124) is more than the Car Evaluation dataset by 4.7 times, the running time of
our PkNC is less than 30 min, which is more efficient than the existing PkNC with k “ 15.
Therefore, our PkNC is more efficient than the existing PkNC for the number of data.

Figure 5 shows the running time of our PkNC for the number of threads (parallel
operations). It implies that the performance of our PkNC is highly improved in the cloud
computing environment to enable numerous parallel operations. This is because the
proposed SkLES/SkSES is executed for each dataset in parallel, as mentioned in Section 4.3.
In other words, the figure shows that the running time decreased by half as the number
of threads doubled. Specifically, our PkNC took 23.5 min for only one thread without
parallel operations. When the number of threads doubled, its running time decreased

Electronics 2022, 11, 4132 24 of 31

roughly by half. That is, for our experiment, it took 11.4 min for two threads. Likewise,
when the number of threads doubled, it took 5.3 min for four threads. However, when the
number of threads reached eight, its running time decreased by slightly less than half since
our machines used in the experiment have four cores and allow eight parallel operations
via hyper threading technology. For more than eight threads, the running time ceased to
decrease since our machines allow for at most eight parallel operations. This implies that
performance of our PkNC, including SkLES/SkSES, can be improved greatly if it is executed
in the cloud, where more parallel operations are allowed and supported.

1 2 4 8 12 16

Number of threads

0

5

10

15

20

25

T
im

e
 (

m
in

)

Figure 5. Running time for the number of threads.

However, our PkNC with SkLES/SkSES applied requires a little more running time
than the existing PkNC [10] with SkLEE/SkSEE, which focuses on efficiency but reveals
some information. By our observations, the running time of our PkNC roughly increased by
11% in comparison with the existing PkNC [10]. The first reason for this is that SkLES/SkSES
requires 2l communication rounds more than SkLEE/SkSEE as mentioned in Section 5.1. The
second reason is that our SkLES/SkSES consistently terminates in the last round regardless
of an input dataset, while the earlier SkLEE/SkSEE can terminate before the last round, or
in the worst case scenario, it terminates in the last round according to an input dataset. In
other words, the number of rounds for the proposed SkLES/SkSES is more than or equal
to that of the earlier SkLEE/SkSEE. The last reason is that our SCI protocol requires one
more communication round than the existing comparison protocols [10,11]. However, we
emphasize that the security of our SkLES/SkSES is improved in comparison to that of
SkLEE/SkSEE. Therefore, SkLES/SkSES and SkLEE/SkSEE should be selected in regards to
the trade-off between security and efficiency. Nevertheless, we emphasize that the running
time of our PkNC with SkLES/SkSES applied is even more efficient than that of the existing
PkNCs [11,15,16].

Electronics 2022, 11, 4132 25 of 31

6. Conclusions

Data mining and machine learning are highly significant tools necessary for the
analysis of large-scale data to return meaningful information. In order to handle large
volumes of data efficiently, using outsourced cloud computing services has emerged as a
viable option but that can lead to privacy problems, which is a pressing concern to resolve.
Therefore, we focused on a privacy-preserving k-nearest neighbor classification (PkNC) in
outsourced cloud computing environment. To this end, we proposed SkLES/SkSES and
SCI protocols to solve the information disclosure problems of SkLEE/SkSEE and secure
comparison protocols in the existing works [10,11]. We formally proved the securities of our
SkLES/SkSES and SCI protocols via the simulation paradigm. Then, we implemented PkNC
to apply the proposed protocols in C++ and conducted extensive experiments with real
datasets. Although the proposed SkLES/SkSES and SCI protocols sacrifice some efficiency
to improve security, our PkNC with the relevant protocols applied is still more efficient
than the existing PkNCs.

The efficient and private algorithms, such as SkLES/SkSES that are executed parallelly
and disclose no information in outsourced cloud computing environments, will play an
important role in improving the efficiency of big data analysis. We will continue, therefore, to
study privacy-preserving big data analysis techniques in our future work with specific regard
to improving SkLE/SkSE and proposing a privacy-preserving secure maximum/minimum
protocol. By applying these protocols to big data analysis techniques like clustering, we will
to contribute research on efficient and privacy-preserving big data analysis.

Author Contributions: Conceptualization, J.P.; Methodology, J.P.; Software, J.P.; Validation, D.H.L.;
Formal analysis, J.P.; Writing—original draft, J.P.; Writing—review & editing, D.H.L.; Project admin-
istration, D.H.L.; Funding acquisition, D.H.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partly supported by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2022R1A6A3A01087466)
and Institute of Information & communications Technology Planning & Evaluation(IITP) grant
funded by the Korea government(MSIT) (No.2021-0-00518, Blockchain privacy preserving techniques
based on data encryption).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Secure Zero Protocol (SZP)

In this section, we explain secure zero protocol (SZP) to privately compute whether
all input data are zero or not. SZP is a real protocol to privately compute FSZP defined in
Section 4.1, and it is constructed based on the idea of the existing equality protocol. We
present SZP in Algorithm A1 and provide an example in Table A1 for easy understanding.

Electronics 2022, 11, 4132 26 of 31

Algorithm A1: Secure Zero Protocol (SZP)
DH input :tEpxiquiPrls
CSP input : secret key SK

DH output : Epγq “

#

Ep1q, if xi= 0 for all i P rls
Ep0q, otherwise

1 DH:
2 toss a random coin α PR t0, 1u
3 if α “ 0 then
4 for i Ð 1, . . . , l do
5 Epsiq Ð Ep´1q ˚ Epxiq ˚ p

śl
j“i`1 Epxjqq

2

6 Epciq Ð Epsiq
ri where ri ‰ 0 PR ZN

7 end
8 else
9 Eps1q Ð

śl
i“1 Epxiq

10 Epc1q Ð Eps1q
r1 where r1 ‰ 0 PR ZN

11 for i Ð 2, . . . , l do
12 Epciq Ð Epriqwhere ri ‰ 0 PR ZN
13 end
14 end
15 td1iuiPrls Ð σptEpciquiPrlsq

16 DH Ñ CSP : td1iuiPrls
17 CSP:
18 tdiuiPrls Ð tDpd1iquiPrls
19 if Ddi “ 0 in tdiuiPrls then
20 Epβq Ð Ep0q
21 else
22 Epβq Ð Ep1q
23 end
24 CSP Ñ DH : Epβq
25 DH:
26 if α “ 0 then
27 Epγq Ð Epβq
28 else
29 Epγq Ð Ep1q ˚ EpβqN´1

30 end
31 return Epγq

Electronics 2022, 11, 4132 27 of 31

Table A1. Example of Algorithm A1 for SZP (l “ 6).

Input
F : @xi “ 0 (α “ 0) F : Dxi ‰ 0 (α “ 1)

i 1 2 3 4 5 6 i 1 2 3 4 5 6

(Case 1)
@xi “ 0

Epxiq Ep0q Ep0q Ep0q Ep0q Ep0q Ep0q Epxiq Ep0q Ep0q Ep0q Ep0q Ep0q Ep0q

Epsiq Ep´1q Ep´1q Ep´1q Ep´1q Ep´1q Ep´1q Eps1q, Epc1q Ep0q, Ep0q

Epciq Eprq Eprq Eprq Eprq Eprq Eprq Epciq Ep0q Eprq Eprq Eprq Eprq Eprq

Epβq Ep1q Epβq Ep0q

Epγq Ep1q Epγq Ep1q

(Case 2)
Dxi “ 1

Epxiq Ep0q Ep0q Ep1q Ep0q Ep1q Ep0q Epxiq Ep0q Ep0q Ep1q Ep0q Ep1q Ep0q

Epsiq Ep3q Ep3q Ep2q Ep1q Ep0q Ep´1q Eps1q, Epc1q Ep2q, Eprq

Epciq Eprq Eprq Eprq Eprq Ep0q Eprq Epciq Eprq Eprq Eprq Eprq Eprq Eprq

Epβq Ep0q Epβq Ep1q

Epγq Ep0q Epγq Ep0q

(Case 3)
@xi “ 1

Epxiq Ep1q Ep1q Ep1q Ep1q Ep1q Ep1q Epxiq Ep1q Ep1q Ep1q Ep1q Ep1q Ep1q

Epsiq Ep10q Ep8q Ep6q Ep4q Ep2q Ep0q Eps1q, Epc1q Ep6q, Eprq

Epciq Eprq Eprq Eprq Eprq Eprq Ep0q Epciq Eprq Eprq Eprq Eprq Eprq Eprq

Epβq Ep0q Epβq Ep1q

Epγq Ep0q Epγq Ep0q

r: random value.

Intuitively, DH selects functionality F (F : @xi “ 0 or F : Dxi ‰ 0) by a random
coin α where F : @xi “ 0 computes whether or not all input data txiuiPrls are 0, and
F : Dxi ‰ 0 computes whether or not there are any non-zero xi at least once in an input
dataset txiuiPrls. DH computes the selected functionality F on an input dataset and sends
CSP the computation result, which is a vector with either random values including 0 or
only random values. CSP converts the vector and returns the converted value (β) back to
DH. Then, DH outputs the result (γ) based on the converted value according to the random
coin α (functionality F) selected by DH.

For easy understanding of Algorithm A1, we intuitively explain the data without
encryption. DH selects functionality F by tossing a random coin α (line 2) where F : @xi “ 0
if α “ 0; otherwise, F : Dxi ‰ 0. When DH selects α “ 0 (resp., α “ 1), if all input data
txiuiPrls are 0, DH sends CSP a vector c that consists of only random values (resp., random
values including 0) so that CSP returns β “ 1 (resp., β “ 0) back to DH. If xi “ 1 exists
at least once in an input dataset txiuiPrls, DH sends CSP a vector c with random values
including 0 (resp., only random values) so that CSP returns β “ 0 (resp., β “ 1) back to DH.
Specifically, when DH selects a random coin α “ 0 (F : @xi “ 0), it computes si on an input
data xi for i “ 1, . . . , l as follows.

si Ð ´1` xi ` 2
ÿl

j“i`1
xj (A1)

If all input data txiuiPrls are 0, c is a vector with only random values since all si “ ´1.
When xi “ 1 exists at least once in an input dataset txiuiPrls, let the last position with xi “ 1
be the t-th bit. ct “ 0 since st “ 0 and the other ci for i ‰ t are all random since the other
si ‰ 0 for i ‰ t, and therefore, c is a vector that consists of random values including 0
(lines 4–7). When DH selects a random coin α “ 1 (F : Dxi ‰ 0), s1 is the sum of all input
data txiuiPrls (line 9). If all input data txiuiPrls are 0, both s1 and c1 are 0 (lines 9–10), and
therefore c is a vector that consists of random values including 0 (lines 11–13). If xi “ 1
exists at least once in an input dataset txiuiPrls, c is a vector with only random values since
c1 is random (lines 9–13). After permutation σ of tciuiPrls, DH sends CSP the permutated

Electronics 2022, 11, 4132 28 of 31

vector d (lines 15–16). The subsequent process is the same as Algorithm 1 of SCI protocol.
CSP then sends DH β “ 0 (resp., β “ 1) if a vector received from DH contains random
values including 0 (resp., only random values) (lines 18–24). Then, the result γ is β if α “ 0;
otherwise, the complement of β (lines 26–30).

Similar to the Algorithm 1 of the SCI protocol, the result γ of SZP satisfies the condition
γ “ p@xi “ 0q “ pα‘ βq for an input dataset txiuiPrls. Since DH cannot know β and CSP
cannot learn information about α, SZP does not disclose any information about the result.
Specifically, DH knows a random coin α but cannot learn information about β since the
value β is encrypted with a semantically secure encryption scheme. Likewise, CSP learns β
by decryption but cannot learn information about α since the intermediate result from DH
is blinded by a random value and the value α is chosen uniformly at random. In this paper,
we do not include a proof for SZP security.

Computation and communication costs: SZP requires l encryptions/decryptions and at
most pl ` 1q exponential computations, and pl ` 1q ¨ C bits are transmitted in one round.
Specifically, CSP decrypts d1i for i “ 1, . . . , l in line 18. Encryption for Epβq in line 20 and
22 is excluded since it can be executed by precomputation. According to α, exponential
computations are executed l or one times in lines 3–14, and at most one time in lines 26–30.

Appendix B. Privacy-Preserving k-Nearest Neighbor Classification (PkNC)

In this section, we present PkNC in Algorithm A2, which privately classifies an un-
classified input query based on a classified dataset. In order to construct PkNC, additional
functionalities are required. For information on the detailed protocols, refer to [10].

Algorithm A2: Privacy-preserving k-Nearest Neighbor Classification (PkNC)
DH input : dataset tEpdi,jq, EpciquiPrns,jPrms

input query tEpqjqujPrms
CSP input : secret key SK
DH output : input query q is classified into the α-th class if K1α “ 1 in tEpK1jqujPrts.

1 DH and CSP run interactive protocols with third parties to ideally compute
functionalities.

2 for i Ð 1, . . . , n do
3 pEpeiq,Kq Ð FSSEDptEpdi,jq, EpqjqujPrms, SKq
4 pxEpeiyB,Kq Ð FSBD2pEpeiq, SKq
5 end
6 ptEpKiquiPrns,Kq Ð FSkLESptxEpeiqyBuiPrns, SKq
7 ptEp f jqujPrts,Kq Ð FSCFptEpciq, EpKiquiPrns, SKq
8 for j Ð 1, . . . , t do
9 pxEp f jqyB,Kq Ð FSBD1pEp f jq, SKq

10 end
11 ptEpK1jqujPrts,Kq Ð FS1LESptxEp f jqyBujPrts, SKq
12 return tEpK1jqujPrts

Secure Squared Euclidean Distance functionality FSSED: FSSED privately computes the
squared Euclidean distance for two input data with m attributes. FSSED receives
tEpajq, EpbjqujPrms from DH and a secret key SK from CSP, and then it sends Epeq to DH
where e “

řm
j“1paj ´ bjq

2.
Secure Class Frequency functionality FSCF: Given the class information (ci) of k data

most similar to an input query, FSCF privately computes the number for each class of the k
data. FSCF receives tEpciq, EpKiquiPrns from DH and a secret key SK from CSP, and then it
sends tEp f jqujPrts to DH where f j is the number of j-th classes in k data most similar to an
input query.

Electronics 2022, 11, 4132 29 of 31

Other functionalities FSBD1 , FSBD2 , and FS1LE: We introduced FSBD in Section 3.6 where,
given an encrypted data Epxq, FSBD returns ciphertexts for the individual bits and their 1’s
complement of corresponding data x (i.e., xEpxqyB, xEpxqyB). Similarly, FSBD1 (with single
quotation mark) returns ciphertexts xEpxqyB for the individual bits of corresponding data x,
and FSBD2 (with double quotation mark) returns ciphertexts xEpxqyB for 1’s complements
of corresponding data x. FS1LE means FSkLE with k “ 1, which privately computes the
maximum data in a dataset. In other words, data ei with Ki “ 1 is the maximum.

We assume that a classified dataset consists of n data, and their classes tdi, ciuiPrns
where data di consists of m attributes (i.e., di “ tdi,jujPrms). Similar to data, we assume that
an input query q consists of m attributes (i.e., q “ tqjujPrms). We assume that DH has an
encrypted dataset tEpdi,jq, EpciquiPrns,jPrms and an encrypted input query tEpqjqujPrms. After
PkNC, DH returns the class information of the input query based on the dataset in an
encrypted form. Specifically, DH returns tEpK1jqujPrts after PkNC, and if K1α “ 1, the input
query is classified into the α-th class. Recall that n is the number of data, m is the number
of attributes, and t is the number of class types. For easy understanding of Algorithm A2,
we intuitively explain the data without encryption.

(Step 1: line 3) privately computing distances between an input query and data in a dataset:
FSSED privately computes the squared Euclidean distance ei between an unclassified input
query q and the data di in a dataset.

(Step 2: lines 4–6) privately selecting k smallest distances: In line 6, FSkLES , whose input
is 1’s complement of distances, privately computes k data closest to an input query as
mentioned in Section 4.3. In other words, it privately computes k smallest distances
between an input query and data in a dataset. FSBD2 is used to comply with the input
format of FSkLES .

(Step 3: lines 7–11): privately computing the majority class of k data corresponding to the
k smallest distances: FSCF privately computes the number of each class of k data closest
to an input query. FS1LE privately computes the majority class of the k data by comput-
ing the maximum number of the classes where FSBD1 is used to comply with the input
format of FS1LE.

PkNC discloses no information since DH receives only semantically secure ciphertexts
from third parties to ideally compute functionalities. Similar to the formal proof for
SkLES in Section 4.4, we can simulate DH’s view in random values since DH receives only
randomized ciphertexts from third parties for functionalities. Since CSP does not receive
any messages, we do not consider CSP’s view. We do not include a formal proof of PkNC
security in this paper.

References
1. Wu, X.; Zhu, X.; Wu, G.Q.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2013, 26, 97–107.
2. Beam, A.L.; Kohane, I.S. Big data and machine learning in health care. JAMA 2018, 319, 1317–1318. [CrossRef] [PubMed]
3. Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Khan, S.U. The rise of “big data” on cloud computing: Review and

open research issues. Inf. Syst. 2015, 47, 98–115. [CrossRef]
4. Acar, A.; Aksu, H.; Uluagac, A.S.; Conti, M. A survey on homomorphic encryption schemes: Theory and implementation. ACM

Comput. Surv. (CSUR) 2018, 51, 1–35. [CrossRef]
5. Price, W.N.; Cohen, I.G. Privacy in the age of medical big data. Nat. Med. 2019, 25, 37–43. [CrossRef]
6. Mehmood, A.; Natgunanathan, I.; Xiang, Y.; Hua, G.; Guo, S. Protection of big data privacy. IEEE Access 2016, 4, 1821–1834.

[CrossRef]
7. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things: A survey. Future Gener.

Comput. Syst. 2016, 56, 684–700. [CrossRef]
8. Li, F.; Shin, R.; Paxson, V. Exploring privacy preservation in outsourced k-nearest neighbors with multiple data owners. In

Proceedings of the 2015 ACM Workshop on Cloud Computing Security Workshop, New York, NY, USA, 16 October 2015;
pp. 53–64.

9. Bost, R.; Popa, R.A.; Tu, S.; Goldwasser, S. Machine learning classification over encrypted data. In Proceedings of the NDSS,
San Diego, CA, USA, 8–11 February 2015; Volume 4324, p. 4325.

10. Park, J.; Lee, D.H. Parallelly running k-nearest neighbor classification over semantically secure encrypted data in outsourced
environments. IEEE Access 2020, 8, 64617–64633. [CrossRef]

http://doi.org/10.1001/jama.2017.18391
http://www.ncbi.nlm.nih.gov/pubmed/29532063
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1145/3214303
http://dx.doi.org/10.1038/s41591-018-0272-7
http://dx.doi.org/10.1109/ACCESS.2016.2558446
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1109/ACCESS.2020.2984579

Electronics 2022, 11, 4132 30 of 31

11. Samanthula, B.K.; Elmehdwi, Y.; Jiang, W. K-nearest neighbor classification over semantically secure encrypted relational data.
IEEE Trans. Knowl. Data Eng. 2014, 27, 1261–1273. [CrossRef]

12. Du, J.; Bian, F. A Privacy-Preserving and Efficient k-nearest neighbor query and classification scheme based on k-dimensional
tree for outsourced data. IEEE Access 2020, 8, 69333–69345. [CrossRef]

13. Lian, H.; Qiu, W.; Yan, D.; Huang, Z.; Tang, P. Efficient and secure k-nearest neighbor query on outsourced data. Peer-to-Peer
Netw. Appl. 2020, 13, 2324–2333. [CrossRef]

14. Song, F.; Qin, Z.; Liu, Q.; Liang, J.; Ou, L. Efficient and Secure k-Nearest Neighbor Search Over Encrypted Data in Public Cloud.
In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May
2019; pp. 1–6.

15. Sun, M.; Yang, R. An efficient secure k nearest neighbor classification protocol with high-dimensional features. Int. J. Intell. Syst.
2020, 35, 1791–1813. [CrossRef]

16. Haque, R.U.; Hasan, A.; Jiang, Q.; Qu, Q. Privacy-preserving K-nearest neighbors training over blockchain-based encrypted
health data. Electronics 2020, 9, 2096.

17. Elmehdwi, Y.; Samanthula, B.K.; Jiang, W. Secure k-nearest neighbor query over encrypted data in outsourced environments.
In Proceedings of the 2014 IEEE 30th International Conference on Data Engineering, Chicago, IL, USA, 31 March–4 April 2014;
pp. 664–675.

18. Rong, H.; Wang, H.M.; Liu, J.; Xian, M. Privacy-preserving k-nearest neighbor computation in multiple cloud environments.
IEEE Access 2016, 4, 9589–9603. [CrossRef]

19. Wu, W.; Liu, J.; Rong, H.; Wang, H.; Xian, M. Efficient k-nearest neighbor classification over semantically secure hybrid encrypted
cloud database. IEEE Access 2018, 6, 41771–41784. [CrossRef]

20. Wu, W.; Parampalli, U.; Liu, J.; Xian, M. Privacy preserving k-nearest neighbor classification over encrypted database in
outsourced cloud environments. World Wide Web 2019, 22, 101–123. [CrossRef]

21. Chen, H.; Chillotti, I.; Dong, Y.; Poburinnaya, O.; Razenshteyn, I.; Riazi, M.S. SANNS: Scaling up secure approximate k-nearest
neighbors search. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Berkeley, CA, USA, 12–14
August 2020; pp. 2111–2128.

22. Zhu, D.; Zhu, H.; Liu, X.; Li, H.; Wang, F.; Li, H.; Feng, D. CREDO: Efficient and privacy-preserving multi-level medical
pre-diagnosis based on ML-kNN. Inf. Sci. 2020, 514, 244–262.

23. Zheng, Y.; Lu, R.; Shao, J. Achieving efficient and privacy-preserving k-nn query for outsourced ehealthcare data. J. Med. Syst.
2019, 43, 1–13.

24. Jagadish, H.V. Linear clustering of objects with multiple attributes. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 23–26 May 1990; pp. 332–342.

25. Yang, S.; Tang, S.; Zhang, X. Privacy-preserving k nearest neighbor query with authentication on road networks. J. Parallel Distrib.
Comput. 2019, 134, 25–36.

26. Kolahdouzan, M.; Shahabi, C. Voronoi-based k nearest neighbor search for spatial network databases. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases, Toronto, ON, Canada, 31 August–3 September 2004; Volume 30,
pp. 840–851.

27. Wang, Y.; Tian, Z.; Sun, Y.; Du, X.; Guizani, N. LocJury: An IBN-based location privacy preserving scheme for IoCV. IEEE Trans.
Intell. Transp. Syst. 2020, 22, 5028–5037.

28. Sun, Y.; Yin, L.; Sun, Z.; Tian, Z.; Du, X. An IoT data sharing privacy preserving scheme. In Proceedings of the IEEE INFOCOM
2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020;
pp. 984–990.

29. Jia, M.; He, K.; Chen, J.; Du, R.; Chen, W.; Tian, Z.; Ji, S. PROCESS: Privacy-Preserving On-Chain Certificate Status Service. In
Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Virtual, 10–13 May 2021; pp. 1–10.

30. Raj, D.; Mohanasundaram, R. An efficient filter-based feature selection model to identify significant features from high-
dimensional microarray data. Arab. J. Sci. Eng. 2020, 45, 2619–2630. [CrossRef]

31. Goldreich, O. Foundations of Cryptography: Volume 2, Basic Applications; Cambridge University Press: Cambridge, UK, 2009.
32. Asharov, G.; Lindell, Y. A full proof of the BGW protocol for perfectly secure multiparty computation. J. Cryptol. 2017, 30, 58–151.

[CrossRef]
33. Canetti, R. Security and composition of multiparty cryptographic protocols. J. Cryptol. 2000, 13, 143–202. [CrossRef]
34. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International

Conference on the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; Springer:
Berlin/Heidelberg, Germany, 1999; pp. 223–238.

35. Samanthula, B.K.; Chun, H.; Jiang, W. An efficient and probabilistic secure bit-decomposition. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security, Hangzhou, China, 8–10 May 2013; pp. 541–546.

36. Bethencourt, J. Paillier Library. 2010. Available online : https://acsc.cs.utexas.edu/libpaillier/ (accessed on 11 December 2022).
37. Intel. Intel Core i7-4790 Processor Specification. 2014 . Available online: https://ark.intel.com/content/www/us/en/ark/

products/80806/intel-core-i74790-processor-8m-cache-up-to-4-00-ghz.html (accessed on 11 December 2022).
38. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ml/index.php (accessed

on 11 December 2022).

http://dx.doi.org/10.1109/TKDE.2014.2364027
http://dx.doi.org/10.1109/ACCESS.2020.2986245
http://dx.doi.org/10.1007/s12083-020-00909-2
http://dx.doi.org/10.1002/int.22272
http://dx.doi.org/10.1109/ACCESS.2016.2633544
http://dx.doi.org/10.1109/ACCESS.2018.2859758
http://dx.doi.org/10.1007/s11280-018-0539-4
http://dx.doi.org/10.1007/s13369-020-04380-2
http://dx.doi.org/10.1007/s00145-015-9214-4
http://dx.doi.org/10.1007/s001459910006
https://acsc.cs.utexas.edu/libpaillier/
https://ark.intel.com/content/www/us/en/ark/products/80806/intel-core-i74790-processor-8m-cache-up-to-4-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/80806/intel-core-i74790-processor-8m-cache-up-to-4-00-ghz.html
https://archive.ics.uci.edu/ml/index.php

Electronics 2022, 11, 4132 31 of 31

39. Marko Bohanec, B.Z. Car Evaluation Data Set. UCI Machine Learning Repository. 1997. Available online : https://archive.ics.uci.
edu/ml/datasets/Car+Evaluation (accessed on 11 December 2022).

40. Schlimmer, J. Mushroom Data Set. UCI Machine Learning Repository. 1987. Available online : https://archive.ics.uci.edu/ml/
datasets/Mushroom (accessed on 11 December 2022).

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
https://archive.ics.uci.edu/ml/datasets/Mushroom
https://archive.ics.uci.edu/ml/datasets/Mushroom

	Introduction
	Related Works
	Preliminaries
	System Model
	Adversary Model and Security Definitions
	Paillier Cryptosystem
	Performance Evaluation
	Notation
	Referenced Functionalities

	Proposed Secure Comparison and SkLE/SkSE Protocols
	Secure Comparison and Inequality (SCI) Protocol
	Proof of SCI Protocol
	Secure Version of SkLE/SkSE (SkLES/SkSES)
	Proof of SkLE Protocol

	Implementation and Experimental Results of Privacy-Preserving k-Nearest Neighbor Classification
	Privacy-Preserving k-Nearest Neighbor Classification
	Implementation and Experimental Results

	Conclusions
	Secure Zero Protocol (SZP)
	Privacy-Preserving k-Nearest Neighbor Classification (PkNC)
	References

