
����������
�������

Citation: Alwabisi, S.; Ouni, R.;

Saleem, K. Using Machine Learning

and Software-Defined Networking to

Detect and Mitigate DDoS Attacks in

Fiber-Optic Networks. Electronics

2022, 11, 4065. https://doi.org/

10.3390/electronics11234065

Academic Editors: Andrei Kelarev

and Gemma Piella

Received: 10 October 2022

Accepted: 30 November 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Using Machine Learning and Software-Defined Networking to
Detect and Mitigate DDoS Attacks in Fiber-Optic Networks
Sulaiman Alwabisi 1 , Ridha Ouni 1,* and Kashif Saleem 2

1 Department of Computer Engineering, College of Computer and Information Sciences (CCIS),
King Saud University, Riyadh 11461, Saudi Arabia

2 Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh 12372, Saudi Arabia
* Correspondence: rouni@ksu.edu.sa

Abstract: Fiber optic networks (FONs) are considered the backbone of telecom companies worldwide.
However, the network elements of FONs are scattered over a wide area and managed through a
centralized controller based on intelligent devices and the internet of things (IoT), with actuators
used to perform specific tasks at remote locations. During the COVID-19 pandemic, many telecom
companies advised their employees to manage the network using the public internet (e.g., working
from home while connected to an IoT network). Theses IoT devices mostly have weak security
algorithms that are easily taken-over by hackers, and therefore can generate Distributed Denial of
Service (DDoS) attacks in FONs. A DDoS attack is one of the most severe cyberattack types, and
can negatively affect the stability and quality of managing networks. Nowadays, software-defined
networks (SDN) constitute a new approach that simplifies how the network can be managed through
a centralized controller. Moreover, machine learning algorithms allow the detection of incoming
malicious traffic with high accuracy. Therefore, combining SDN and ML approaches can lead to
detecting and stopping DDoS attacks quickly and efficiently, especially compared to traditional
methods. In this paper, we evaluated six ML models: Logistic Regression, K-Nearest Neighbor,
Support Vector Machine, Naive Bayes, Decision Tree, and Random Forest. The accuracy reached 100%
while detecting DDoS attacks in FON with two approaches: (1) using SVM with three features (SOS,
SSIP, and RPF) and (2) using Random Forest with five features (SOS, SSIP, RPF, SDFP, and SDFB).
The training time for the first approach was 14.3 s, whereas the second approach only requires 0.18 s;
hence, the second approach was utilized for deployment.

Keywords: fiber optic networks; software defined networking; machine learning; distributed denial
of service; internet of things

1. Introduction

Currently, telecom fiber optic networks (FON) make up the backbone of most world-
wide telecom internet service providers (ISPs). Telecom networks enable analog or digital
information to be communicated between different sites using electromagnetic or opti-
cal signals, supported by fiber optic-based 4G and 5G networks [1]. However, telecom
networks are subject to distributed denial of service (DDoS) attacks (i.e., hacking); such
cyberattacks cause telecom users to suffer denied or delayed telecom services. According
to Corero Network Security [2], a distributed denial-of-service (DDoS) protection and
mitigation provider, organizations worldwide have independently experienced an average
of 270 DDoS attacks per month, averaging nine attacks daily, a 13% increase from 2019.

Corero Network Security elaborates that 86% of cyberattacks happen less than ten
minutes apart. Even a few minutes of network or server downtime can prove costly for
organizations in terms of lost revenue, reduced customer confidence, negative impacts
on network continuities, and most importantly, the overall consequences of reputation
damage. Therefore, protecting fiber optic telecom networks and ensuring business continu-
ity requires organizations to embed a traffic classification recognition system within their

Electronics 2022, 11, 4065. https://doi.org/10.3390/electronics11234065 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11234065
https://doi.org/10.3390/electronics11234065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6878-5276
https://orcid.org/0000-0002-5453-189X
https://orcid.org/0000-0001-8062-3301
https://doi.org/10.3390/electronics11234065
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11234065?type=check_update&version=3

Electronics 2022, 11, 4065 2 of 31

network functions and management systems that can instantaneously identify different
virtual traffic flow inputs and types and alert network operators when a network or server
occurrence is suspicious.

Traffic classification programs allow network operators to manage various services
and allocate network resources more efficiently. Widely used traffic classification tech-
niques include the port-based approach, deep packet inspection (DPI), and autonomous
machine learning. The port-based method uses transmission control protocol (TCP) and
user datagram program (UDP) port numbers to determine the incoming and outgoing
application or traffic types. On the one hand, modern applications use well-known ports,
such as TCP port 80, for hypertext transfer protocols (HTTP). On the other hand, most
modernized applications operate on dynamic ports, which makes the port-based approach
no longer efficient for organizations [3].

DPI compares the payload of traffic flows with predefined patterns embedded within
program databases, allowing systems to identify applications or locations using common
expressions from which traffic flows originate. Moreover, a DPI-based approach is noted to
have high classification accuracy. However, drawbacks of utilizing the DPI-based approach
are that DPI can only identify applications for which patterns are available. Another
concern with respect to DPI is the high computational cost of managing, monitoring, and
keeping the network online, as all traffic flows must be checked and DPI cannot classify
encrypted traffic on the internet. In light of these drawbacks of DPI, ML-based techniques
have been extensively studied for network security, as many traffic flows must be collected
first in order for ML techniques to be applied to extract knowledge from the steady traffic
flow. In this context, the most popular and efficient ML algorithms are Logistic Regression,
K-Nearest Neighbors, Support Vector Machine, Naive Bayes, Decision Tree, and Random
Forest. These ML algorithms have demonstrated high performance in different types of
applications [3–5].

Software-defined networking (SDN) is another emerging concept that intends to
replace traditional networks by dismantling vertical integration by separating the network’s
control logic from the underlying switches and routers. This implies that logical network
control is more centralized, and allows the network to program itself extensively [6] using
ML-based approaches. Many vendors predict that IoT can help with SDN decisionmaking
in managing networks [7], for example, telecom network management of connectivity from
IoT devices to the cloud. These networks are traditionally built using physical equipment,
and need to ensure adequate uptime for services. As service providers start to deploy SDN
for IoT in their networks, the front-end challenges are to maintain the level of reliability
and security that customers expect. Furthermore, SDN can assist in driving the expansion
of IoT-enabled devices.

DDoS attacks are toxic to any network. Different techniques can be used to attack a
specific network, including ICMP flood, TCP SYN flood, and UDP flood, which are harmful
to FON. DDoS attacks can harm the physical components of telecom equipment as well.
Organizations can efficiently utilize ML and SDN capabilities to detect and mitigate DDoS
attacks in FON to overcome network security issues [6]. However, organizations can use
multiple ML approaches to appropriate and resolve network security concerns.

Selecting a specific model is challenging due to various aspects, including the format
of the dataset (numerical, categorical, graphical, or textual), nature of the problem (classifi-
cation, regression, clustering), and quantity of features in the dataset (instances, dependent
and independent variables). Here, the performance evaluations achieved in recent related
works have been considered to select the most appropriate ML models.

This paper aims to evaluate the six most well known ML algorithms (Logistic Re-
gression, K-Nearest Neighbor, Support Vector Machine, Naive Bayes, Decision Tree, and
Random Forest) for protecting FON from DDoS attacks. Our performance evaluation is
based on classification metrics (Accuracy, Precision, Recall, and F1 score), and further
contributes to presenting a comprehensive comparison of ML models. The ML model

Electronics 2022, 11, 4065 3 of 31

providing the highest performance is then implemented in FONs to improve the network
efficiency in terms of throughput and delay.

The rest of this paper is organized as follows. Section 2 covers the necessary back-
ground, and Section 3 reviews published works in the field of detecting and mitigating
DDoS attacks in FONs. Then, the problem and the research motivation is described in
Section 4. Section 5 introduces the proposed methodology. Section 6 presents the obtained
results and discusses them, along with the limitations of this research and suggestions for
future work. Finally, the primary findings and conclusions of this research are presented in
Section 7.

2. FON, SDN, and ML Interaction for Security Applications

With the help of SDN and ML algorithms, the proposed work is concerned with
applying DDoS attack detection and mitigation for FONs. Figure 1 depicts the topics
related to our research work.

Related Topics

Fiber-Optic Networks

OpenFlow protocol

DDoS Attack

 Software-Defined
Networking

 Machine Learning

 Data Communication
Networks

Using machine learning and SDN to detect and mitigate DDoS
attacks in fiber-optic networks

Network Management
System

Figure 1. Related topics.

2.1. Fiber Optical Networks

Fiber Optical networks (FON) play a crucial role in developing high-quality and high-
speed telecommunication systems. Today, optical fibers are used in telecommunications
links, the Internet, and local area networks (LAN) to achieve high signaling rates [8].
Synchronous Digital Hierarchy (SDH) is a well-known technology for data communication
and telecom networks, and is used for high-speed data transmission and to deliver digital
signals of varying capacities [9].

2.2. Network Management System

A network management system (NMS) is an application or collection of tools that
allows network engineers to manage, configure, and monitor the various components of
a network within a stronger network management framework. Figure 2 shows the NMS
system, which is often located in the Network Operations Center (NOC).

Electronics 2022, 11, 4065 4 of 31

Fiber Optic SDH Network Data Communication Network Network Mnagment system

GNEGNE
External

DCN
Internal

 DCN

NE

NE

NE

NE

Figure 2. Fiber optic network architecture.

2.3. Data Communication Network

A data communication network (DCN) is a network in which operation, administra-
tion, and maintenance (OAM) information is shared between network elements (NEs) in
the network management system (NMS). It ensures that systems and managed devices can
talk to each other [10]. The DCN can be external or internal. In Figure 2, for example, an
external DCN connects the NMS to Gateway Network elements (GNE) and an internal
DCN lets NEs exchange information about OAM.

2.4. Data Communication Channel

The Data Communication Channel (DCC) feature utilizes the SDH Operation Admin-
istration and Maintenance (OAM) channel to manage devices that support SDH interfaces.
The SDH standard supports a wide range of capabilities for operations, administration,
management, and provisioning (OAMP) [11]. Figure 3 shows a basic SONET STM-1 frame
comprising nine rows and ninety columns [12]. According to standards, the OAM channels
that transport management information, alerts, and management commands are as follows:

• Overhead for the Generation Section ranges from D1 to D3 bytes.
• Bytes D4 through D12 are taken up by the Multiplex Section overhead.

Figure 3. SDH frame structure [13].

The Data Communication Channel (DCC) refers to these extra bytes. The line-level DCC
is a 576-kbps OAM channel, and the section-level DCC is a 192-kbps OAM channel [14].

Electronics 2022, 11, 4065 5 of 31

2.5. Normal and Attack Traffic in DCNs of Fiber Optic Networks

Traffic in data communication networks of fiber optic networks can be categorized
into two types, namely, normal and attack traffic.

2.5.1. Normal Traffic

Normal traffic in the DCN of a Fiber-optic network can be described as the daily
management activity, such as operation/maintenance activity, needed to ensure that all
the fiber optic network elements are monitored and controlled at all times using NMS
applications. Examples of normal traffic are File Transfer Protocol (FTP), Hypertext Transfer
Protocol (HTTP), Simple Network Management Protocol (SNMP), and Internet Control
Message Protocol (ICMP), which are discussed in the following paragraphs.

1. FTP is a protocol operating at the application layer to ensure files can be sent between
computers using TCP connections [15]. FTP can be used for Backup/Restore capability
between servers and nodes in fiber-optic networks and to simulate FTP traffic in the
DCN. The Distributed Internet Traffic Generator (DITG) tool described in Section 5
can be used at this level.

2. HTTP is a protocol used to request and dispense web content based on plain text.
Many websites employ HTTPS to encrypt traffic with Transport Layer Security (TLS),
making the internet more secure [16]. NMS applications use HTTP or HTTPS to
display a node’s graphical user interface (GUI) and monitor its operation. Section 5
describes the Curl tool used to simulate HTTP traffic in the DCN.

3. SNMP is an internet standard used for managing devices (switches, servers, work-
stations, printers, routers, and telecom equipment) on IP networks. Most NMSs
use SNMP to remotely monitor, set up, change, and fix networks. SNMP uses UDP
port 161 to send and receive requests and port 162 to receive traps from managed
devices [15]. As described in Section 5, the SNMP trap tool is used to simulate SNMP
traffic in the DCN.

4. ICMP is a protocol used to verify the connections between various network compo-
nents and determine whether data has reached the destination [17]. ICMP is a crucial
component of error reporting and network transmission testing. However, distributed
denial-of-service (DDoS) attacks can be carried out using ICMP. The Ping and Hping3
tools are used to simulate ICMP traffic inthe DCN, as described in Section 5.

2.5.2. Attack Traffic

One attack traffic type in the DCN of an FON is a DDoS attack, which constitutes a
risk to any network. A DDoS attack aims to prevent genuine users from using a system or
network resource, and works by flooding the target from many different directions. The
following methods can be used to flood a target system:

1. SYN Flood is an attack targeting the victim’s machine by starting a TCP connection.
Because of this, the victim receives a large number of SYN packets, while no ACK
is sent back to the victim. This utilizes many resources on the victim’s machine and
prevents legitimate users from being served [18].

2. ICMP Flood is an attack that exhausts all of the victim’s resources by flooding the
server with pings (echo requests) that keep it busy sending echo replies [18].

3. UDP Flood is an attack that attempts to take down servers by flooding the targeted
host with many UDP packets to random ports. Often, attackers use UDP’s connec-
tionless functionality to broadcast a continuous stream of UDP data packets to the
victim’s workstation [18].

4. HTTP Flood is an attack that occurs at the application layer and targets web servers
and apps. Typically, the attacker sends many HTTP GET and POST requests to a
webserver [19]. A tool called Hping3, which is described in Section 5, can be used to
simulate all the DDoS attacks mentioned above.

Electronics 2022, 11, 4065 6 of 31

2.6. Software-Defined Networking

A software-defined network (SDN) is a type of network architecture that allows the
hardware parts to be built and designed virtually [20]. Figure 4 shows the three layers
comprising the architecture of a software-defined network [21,22]. These layers can be
explained in the following way:

• Application Layer: a layer that contains applications and programs as well as services
such as load balancing, quality-of-service, and a firewall.

• Control layer: a central controller that manages the network traffic. It uses the
OpenFlow protocol to communicate with the infrastructure layer to monitor and
control the entire network.

• Infrastructure layer: this layer has both physical and virtual network forwarding hard-
ware devices that use OpenFlow protocols, such routers, switches, and access points.

Figure 4. SDN architecture [20].

2.7. OpenFlow Protocol

The OpenFlow protocol is at the heart of SDN technology, and an SDN switch with
an OpenFlow switch promises communication networks that are flexible and easy to set
up [23]. OpenFlow is an SDN-compatible programmable network protocol. It is used by
OpenFlow switches and controllers to communicate with one another. OpenFlow decouples
network device programming from the underlying hardware and provides a standard
method for delivering a centralized and programmable network that can swiftly adapt to
changing network needs. The OpenFlow switch is an OpenFlow-enabled data switch that
communicates with an external controller over the OpenFlow channel.

2.8. Machine Learning

Machine learning enables systems deploying artificial intelligence algorithms to per-
form the required tasks effectively. Statistical learning methods are the core of AI systems

Electronics 2022, 11, 4065 7 of 31

that make machines more intelligent. A method based on machine learning usually con-
stitutes an approach with two main parts, a training phase and a decisionmaking phase.
First, a training dataset is used to allow the system model to learn various features during
the training phase. Then, the system can use the trained model to determine the estimated
output for each new input [24,25].

3. Related Works

Multiple studies have addressed how to detect DDoS attacks. Various identification
techniques, such as machine learning (ML), are explored from the available scholarly
literature within this review. Our investigation shows that DDoS attack detection methods
using ML have been actively conducted and are essential to monitoring and resolution
operations for organizations.

Mishra et al. [26] proposed that cloud computing security with ML can act as a
mitigation technique against cyber threats. Their proposed SDN is a multilayer composition
of ML with a self-defense system that effectively detects and mitigates cyberattacks to
protect cloud-based enterprise solutions. The results showed the accuracy of the proposed
ML techniques and their effectiveness in attack detection and mitigation processes.

Dennis et al. [18] used the University of California—Los Angeles (UCLA) dataset and
then modified it by adding traffic flow entries of simulated traffic. Next, they used native
OpenFlow counters, utilizing the number of packets, number of bytes, and flow duration
as features to build their desired model. Then, a flow-based DDoS attack detection system
was developed using a random forest (RF) and ML embedded algorithm with weighted
voting. The intended approach was to send flow statistics collected from the switches to
the RF classifier every 10 s. When the system confirmed an attack, a mitigation module
was implemented, resulting in attack traffic ceasing and preventing further breakdown and
infiltration of the switches in the network or systems.

Isaac et al. [27] proposed a solution to detect (DDoS) attacks within an SDN using
a support vector machine (SVM) to classify network traffic as abnormal (i.e., suspicious)
or normal. However, the proposed security application only outlined the manipula-
tion of two significant DDoS attack types: internet protocol (IP) spoofing and synthe-
sized transaction processing performance council (i.e., TCP SYN) flooding. On the other
hand, Rahman et al. [28] evaluated ML techniques, such as the J48 (a form of Iterative
Dichotomiser 3), RF, SVM, and K-nearest neighbors (K-NN) algorithms, to detect and stop
DDoS attacks in an SDN network. Their evaluation method involved training, selecting
the most suitable model for the proposed network, and applying the desired model in
mitigation and prevention scripts within the network and systems. As result, Rahman et al.
demonstrated that J48 outperforms the other ML algorithms, especially in the training and
testing phases.

Khashab et al. [29] evaluated six different ML algorithms: Decision Tree (DT), Logistic
Regression (LR), Naïve Bayes (NB), KNN, RM, and SVM. Their investigation showed that
RF was the best-performing ML algorithm. Additionally, the results showed that their
proposed RF model could detect attacks accurately and immediately with a low probability
of stalling regular traffic.

The method proposed by Vishal Kumar in [30] is implemented using a Ryu controller
and mininet network simulator with OpenFlow SDN protocol. The presented method
integrates statistical and machine learning methods to efficiently detect and mitigate DDOS
attacks in an SDN, accomplishing an accuracy of 99.26% and a detection rate of 100% in
detecting and mitigating DDoS attacks.

Ahmed [31] proposed a novel DDoS detection system initiated by a semi-supervised
algorithm with an LR classifier. The author explained that the algorithm is executed as
software modeled by a Phyton-based open-source (i.e., POX) SDN controller, and compared
various test scenarios with statistical approaches to prove that the proposed detection
system has a better attack detection rate with a slower reaction time.

Electronics 2022, 11, 4065 8 of 31

Similarly, Kotb et al. [32] designed and implemented a security guard model to solve
DDoS attacks on POX SDN controllers. Their model, named SGuard, is represented as
a novel five-tuple feature vector utilized for classifying traffic flow by employing SVM.
Mininet was used to assess SGuard in network and software environments, allowing
SGaurd to assess the system’s performance in terms of delay, bandwidth, traffic flow,
and accuracy.

Contrarily, Gadallah et al. [33] provided an ML DDoS technique using newly noted
features for SDNs. The feature characteristics in this work were informed by a dataset that
had input from a linear SVM classifier. The classifier then trained the model with the kernel
radial basis function. The SVM model used algorithms such as DT, KNN, NB, and RF as
comparative correlations. The mediation system created by Gadallah et al. conclusively
prevented suspicious network and server activities, and the questionable information
was stored for future implementations to ensure more accurate mediation. Furthermore,
the experiment conducted by Gadallah et al. determined that their proposed technique
could detect attacks with higher accuracy and produce lower false alarm rates than other
related methods.

Mohammed et al. [34] proposed another ML DDoS mitigation technique for SDN
similar to other works mentioned in this literature review. They created a model for DDoS
detection in an SDN using the Network Security Laboratory (NSL) and Knowledge Dis-
covery and Data (KDD) datasets. After training the model on these datasets, the authors
used realistic DDoS attacks to assess their proposed model, showing that their proposed
technique equates favorably to the current methods in terms of providing increased perfor-
mance and accuracy.

Kyaw et al. [35] proposed a detector for DDOS attacks. The authors classified normal
and attack traffic in the SDN network using ML algorithms and compared polynomial
SVM to the existing linear SVM using scapy, a packet generation tool, and a component-
based software package that defines networking frameworks (i.e., the Ryu SDN controller).
According to their experimental results, the polynomial SVM achieved 3% better accuracy
and a 34% decrease in the false alarm rate compared to the linear SVM.

A hybrid ML model was used by Deepa et al. [36] to protect an experimental controller
from DDoS attacks. Experimental results showed that their hybrid ML model provided
better accuracy, a higher detection rate, and a lower false alarm rate compared to simple ML
models. On the other hand, Nurwarsito et al. [37] investigated a DDoS attack detection and
mitigation system constructed based on SDN architecture using an RF ML algorithm. The
RF algorithm classified normal and attack packets based on their associated flow entries. If
the packets were classified as a DDoS attack, the attacks were mitigated by flow rules to
the switch. Based on examinations conducted by the authors, this detection system could
detect DDoS attacks with an average accuracy of 98.38% with an average detection time
of 36 milliseconds (ms). The system was able to mitigate DDoS attacks with an average
mitigation time of 1179 ms, which reduced the average number of attack packets that
entered the victimized experimental host by up to 15,672. The concurrent reduction in the
controller’s intermediate central processing unit (CPU) usage equated to 44.9%.

To complete this literature review, Sudar [38] offered an ML technique to detect mali-
cious traffic that implemented DT and SVM. Test outcomes showed that the DT and SVM
algorithms generally provided better accuracy and detection rate. Finally, Ye et al. [39] used
an SDN environment, mininet, and a floodlight within a simulation platform constructed
of six-tuple characteristic values applied to the switch flow table. They built a DDoS attack
model by combining SVM classification algorithms. Their experiments showed that the
average accuracy rate of the proposed method was 95.24%, alongside the small amount of
flow that was collected. Thus, this proposed work is highly informative with respect to
detecting DDoS attacks in SDN. Table 1 summarizes the above literature review.

Electronics 2022, 11, 4065 9 of 31

Table 1. Comparison of related work.

Ref Scope ML Algorithm Dataset Feature Accuracy Limitations

[18] Detection/Mitigation RF UCLA dataset and Synthetic Three feature 97.70% Only one ML model is being evaluated.

[26] Detection/Mitigation SVM Synthetic Five features 98.52% Only layer 3 feature collection duplicates dataset instances.

[27] Detection SVM Synthetic Five features High Only layer 3 feature collection duplicates dataset instances.
Some features remain unchanged.

[28] Detection/Mitigation

J48

Synthetic 24 Features
High complexity due to many features.RF J48 classifier is the bestSVM The detection time is high.K-NN

[29] Detection

SVM

Synthetic Five features

94.99%

No mitigation.

LR 98.90%
KNN 86.41%
DT 99.11%
NB 99.64%
RF 99.76%

[30] Detection/Mitigation SVM Synthetic Three features 99.26% Only layer 3 feature collection duplicates dataset instances.

[31] Detection LSVM & LR Synthetic Four features 98% No mitigation.

[32] Detection SVM Synthetic Five features 97.5–99.9% No mitigation.

[33] Detection

SVM

Synthetic Six features

99.84%

No mitigation.
KNN 98.96%
DT 99.26%
NB 77.64%
RF 99.19%

[34] Detection/Mitigation ML NSL-KDD dataset 25 features F1-score (77%) High complexity due to many features.

[35] Detection polynomial SVM Synthetic Five features 95.38% No mitigation.

[36] Detection/Mitigation SVM- SOM Synthetic Not mentioned 98.12% Features not defined.

[37] Detection/Mitigation RF Synthetic Five features 98.38% Evaluation of only one model.

[38] Detection SVM KDD99 41 features 78% High complexity due to many features.
DT 85% No mitigation and accuracy not high.

[39] Detection SVM Synthetic Six Features 95.24% Only layer 3 feature collection duplicates dataset instances.

Electronics 2022, 11, 4065 10 of 31

4. Motivation

One of the most important parts of managing an FON is the DCN network. Data
communication networks (DCN) are utilized by the network management system (NMS)
to monitor, run, and maintain FON operations. Consequently, when a DDoS attack occurs
excessively in the DCN, NMS becomes inaccessible and FON becomes invisible and out of
control. DDoS attacks are harmful to every network. They can use many ways to attack
a specific network, such as ICMP flooding, TCP SYN flooding, and UDP flooding, all of
which are damaging to DCN networks. Physical FON equipment can be damaged by DDoS
attacks as well.

The present research suggests utilizing Machine Learning to detect a DDoS attack in
an FON network using a small group of features. Fewer features enable faster processing of
network packets to categorize them as either an attack or regular traffic. This categorization
is vital, as it is essential to detect a DDoS attack as soon as is feasible. Our suggested method
can detect a DDoS attack with 100 percent accuracy using only five features. Extremely
effective distributed denial of service (DDoS) attacks have the potential to crash the target
FON server or significantly slow its performance for an extended period of time. In the
second quarter of 2022, for example, network-layer DDoS attacks climbed by 109% annu-
ally. Furthermore, Quarter-over-Quarter (QoQ) attacks of 100 Gbps or more and attacks
lasting more than 3 h grew by 8% and 12%, respectively [40]. Telecommunications, gam-
ing/gambling, and information technology and services were the most targeted industries.
Due to the advanced features that SDN provides, such as a global view of the network,
software-based management and examination of network traffic, and dynamic updating of
forwarding rules, detecting and mitigating DDoS attacks is becoming more feasible.

5. Methodology

ML and SDN together can protect an FON from DDoS attacks. Figure 5 shows the
steps, starting with setting up the network by assessing the selected models and ending
with implementing and evaluating the proposed solution. For each step or phase in this
research, appropriate tools and techniques are used.

Evaluating models
with five features &

default ML
hyperparameter

Evaluating models
with three features &

tuned ML
hyperparameter

Determining the
adequate dataset size

Evaluating models
with three features &

default ML
hyperparameter

Comparing between
different models and

deploy the optimal one

Evaluating the impact of the
deploying model on

throughput and delay to
fiber optic networks.

Comparing the proposed
 model with existing models

in the Related work

Evaluating models
with five features &

tuned ML
hyperparameter

Determining the
appropriate ML models

Network
Implementation

Data collection and Feature
Extraction /Selection

Traffic Generation

1 2 3

456

7 8 9

101112

Figure 5. Research methodology.

Electronics 2022, 11, 4065 11 of 31

5.1. Network Implementation

The suggested topology for this project is an FON with SDH network elements con-
nected to the NOC through a DCN. The main goal of this project is to protect the external
DCN, which allows the NOC engineers to control, maintain, and monitor the SDH network
through the NMS, from DDoS attacks. Figure 6 illustrates our suggested network topology,
which is made up of SDH nodes split into three areas. Each area has several nodes and a
single gateway to the outside DCN.

Telecom SDH Network Data Communication Network Network Operation Center

Switch1

Switch 2

Switch 3

Switch 4

2
M

bp
s

2 Mbps

2 M
bps

10 Mbps

GNE

GNE

GNE

Server 1

 Area 1

 Area 2

 Area 3

Cloud
10 Mbps

Remote support
/working from

home

Switch 5

10
 M

bp
s

R1

Switch 1 Switch 4
2 Mbps

Server 1

2 Mbps 10 Mbps

[TCP,UDP,SNMP(GetBulk,TRAP),FTP(BackUp),HTTP(Req)]

A1

[SNMP(SetBulk),FTP(Restore),HTTP(Response)]

Switch 5 Switch 4
10 Mbps

Server 1

10 Mbps 10 Mbps

[TCP,UDP,SNMP(GetBulk,TRAP),FTP(BackUp),HTTP(Req)]

R1

[SNMP(SetBulk),FTP(Restore),HTTP(Response)]

Switch 2 Switch 4
2 Mbps

Server 1

2 Mbps 10 Mbps

[UDP,SNMP(TRAP)]

A2

Switch 3 Switch 4
2 Mbps

Server 1

2 Mbps 10 Mbps

[ICMP]

A3

Switch 1 Switch 4
2 Mbps

Server 1

2 Mbps 10 Mbps
A1

Switch 5 Switch 4
10 Mbps

Server 1

10 Mbps 10 Mbps
R1

Switch 2 Switch 4
2 Mbps

Server 1

2 Mbps 10 Mbps
A2

Switch 3 Switch 4
2 Mbps

Server 1

2 Mbps 10 Mbps
A3

TCP SYN and ICMP flood HTTP flood

ICMP flood UDP flood

Normal traffic.

Attack traffic.

GNE

Figure 6. Suggested topology and normal/attack traffic scenarios.

Electronics 2022, 11, 4065 12 of 31

The multiplex section DCC works as a single 576 Kbit/s message-based channel using
the section overhead bytes D4 through D12 [14]. First, we assume that the link bandwidth
to the NOC center is set to 2 Mbps to avoid congestion, although 576 kbps is enough for
this experiment. Next, the gateway nodes (GNEs) are connected to an external DCN that
leads to a switch at the NOC center. The DCN is connected to the server, which runs the
NMS application that allows network operators to configure, manage, and monitor the
SDH network. We assume that the server is the victim of a DDoS attack arriving from the
SDH network, cloud-based applications (remote support), or switches. Several different
DDoS attacks are considered, including HTTP flood from the R1 side, UDP flood from area
2, ICMP flood from area 3, and TCP-SYN and ICMP flood from area 1.

The proposed work was simulated on a Mac laptop with an Intel® CoreTM i75500U
processor and 4 GB of RAM. Linux Ubuntu 14.04 was used as the Virtual Machine op-
erating system. Mininet version 2.2.1 was used as the network emulator. Mininet was
used as a standard network emulator to build the suggested topology in the SDN environ-
ment. An RYU controller was selected to control the flows into the network and act as an
SDN controller.

The following tools are used in this step:

• Python is a high-level open-source programming language initially developed by
Guido van Rossum in 1991. It can be used to support machine learning through a
number of libraries and tools. Thanks to its wide range of machine learning program-
ming capabilities [41], Python has developed into a potent programming language
with support for object-oriented, imperative, functional, and procedural development
methods. In addition, Python now has built-in libraries for different machine learning
algorithms.

• Mininet is a popular network emulator tool for SDN research, and is used in our
research as it makes for an excellent underlying network topology. The mininet
environment enables the creation of virtual hosts and switches, which can then be
connected to create the desired network topology. This tool has a Python API as well,
making it easy to create custom topologies and experiments [31]. As shown in this
Listing 1, a mininet network emulator can be used to build a network consisting of
virtual hosts, switches, controllers, and connections. OpenFlow is enabled on mininet
hosts’ switches because the mininet hosts run standard Linux software, enabling SDN
and highly flexible custom routing. The primary benefit of using mininet is that it
supports Open-Flow Protocol, which SDNs require to configure their networks and
perform computations. It provides an affordable way to build, test, and create custom
network topologies that closely resemble real networks.

Listing 1. Mininet code example.

#Example of adding Switch
s1 = s e l f . addSwitch (’ s1 ’)
#Example of adding Host
h4= s e l f . addHost (’ h4 ’ , ip= ’ 1 0 . 1 . 1 . 4 / 2 4 ’ ,mac=" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 4 ")
#Example of adding Link
s e l f . addLink (h1 , s1 , c l s =TCLink , bw=10)

• Ryu controller is a component-based SDN framework, SDN architecture, and pro-
grammable controller tool. It is well-defined application programming interfaces
(APIs) for software components that makes it simple for developers to build new apps
for network management and control. In addition, Ryu is compatible with a variety of
protocols for the management of network devices. These protocols include OF-config,
Netconf, and OpenFlow (particularly versions 1.0, 1.2, 1.3, 1.4, and 1.5 and the Nicira
extensions). Because it is licensed under Apache 2.0, the Ryu code can be used by
anybody without cost [42]. This license makes the network more flexible by making it
easier to manage, handle, and adapt traffic flows. Listing 2 shows an example flow.

Electronics 2022, 11, 4065 13 of 31

Listing 2. Viewing flows in Ryu Controller.

#Example of MAC Flows Match (Layer #2)
cookie =0x0 , durat ion =3.782 s , t a b l e =0 , n_packets =5 , n_bytes =136 , p r i o r i t y =1 , in_por t

=" s1 −eth1 " , d l _ s r c = 0 0 : 0 0 : 0 0 : 0 0 : 1 2 : 1 3 , d l_dst = 0 0 : 0 0 : 0 0 : 0 0 : 1 1 : 2 1 a c t i o n s =output : "
s1 −eth2 "

#Example of IP Flows Match (Layer #3)
cookie =0x0 , durat ion =15.987 s , t a b l e =0 , n_packets =5 , n_bytes =197 , p r i o r i t y =1 , ip ,

nw_src = 1 9 2 . 1 6 8 . 0 . 1 , nw_dst = 1 9 2 . 1 6 8 . 0 . 2 a c t i o n s =output : " s1 −eth1 "

#Example of TCP/UDP Flows Match (Layer #4)
cookie =0x0 , durat ion =4.933 s , t a b l e =0 , n_packets =25852 , n_bytes =11049192464 ,

p r i o r i t y =1 , tcp , nw_src = 1 9 2 . 1 6 8 . 0 . 9 , nw_dst = 1 9 2 . 1 6 8 . 0 . 1 , t p _ s r c =37704 , tp_dst =5001
a c t i o n s =output : " s1 −eth1 "

#command to show flow :
−−@−−:~$ sudo ovs− o f c t l −O OpenFlow13 dump−flows s #

connect ion i n f o with c o n t r o l l e r :
cookie =0x0 , durat ion =7.781 s , t a b l e =0 , n_packets =89 , n_bytes =4112 , p r i o r i t y =0

a c t i o n s =CONTROLLER:65535

5.2. Traffic Generation

In this step, a dataset is created by simulating normal and attack traffic with several
traffic generation tools. In Section 2.5, we have already discussed the types of normal and
attack traffic in the DCN of an FON. Normal traffic is expected in the FON between the
nodes and the NMS (i.e., TCP, UDP, SNMP, FTP, and HTTP). Our experiment desires to
prevent all types of DDoS traffic, namely, TCP, UDP, HTTP, and ICMP flood.

The traffic generation procedure is accomplished within the four different scenarios
described below, and is shown in Figure 7.

Phase I

Phase

Phase

II

III

Phase IV
Low Normal traffic

Low Attack Traffic

High Normal Traffic

High Attack Traffic

Figure 7. Traffic generation phases.

I Low normal traffic: this occurs when there is little traffic between nodes and
servers in an FON in an ideal traffic case, which means that there are not very many
activities, alarms, or modifications in the configuration of the network. Up to five
simultaneous connections from a single region to the server are considered as low
normal traffic.

II Low attack traffic: this occurs when there is a small group of attackers attacking a
target and the target has enough resources to reply to the attackers. An attack with
low traffic, such as an ICMP flood, can slow down a server’s performance. A low
attack is defined by 25 to 33 spoof packets per second.

III High normal traffic: this occurs when there are more activities on the FON side,
such as fiber cuts, traffic needing to be rerouted, or an NOC engineer needing
do carry out a monthly network backup. Six to ten simultaneous connections are
considered high normal traffic.

IV High attack traffic: when a group of hackers constructs a DDoS attack on a FON,
they flood the server with a large amount of traffic, restricting the network operators
in their management of the FON. A high attack is estimated as 50 to 100 spoof
packets per second.

Listing 3 shows how the traffic types are generated using existing tools; here, the target
IP is 10.1.1.4.

Electronics 2022, 11, 4065 14 of 31

Listing 3. Traffic generation phases.

#PHASE I : Low−normal t r a f f i c
i p e r f −c 1 0 . 1 . 1 . 4 − t $ (shuf − i 1−5 −n 1) # one to f i v e connect ions a t same time .
#PHASE I I : Low− a t t a c k t r a f f i c
hping3 −2 −−rand−source − i u$ (shuf − i 30000 −40000 −n 1) −d $ (shuf − i 60−100 −n 1)

−c $ (shuf − i 1000 −1500 −n 1) 1 0 . 1 . 1 . 4 # 25 to 33 spoofed packets/second
#PHASE I I I : High−normal t r a f f i c
i p e r f −c 1 0 . 1 . 1 . 4 − t $ (shuf − i 5−10 −n 1) −P 5 # f i v e to ten connect ions a t same

time .
#PHASE IV : High− a t t a c k t r a f f i c
hping3 −2 −−rand−source − i u$ (shuf − i 10000 −20000 −n 1) −d $ (shuf − i 60−100 −n 1)

−c $ (shuf − i 1000 −1500 −n 1) 1 0 . 1 . 1 . 4 # 50 to 10 spoofed packets/second

The following tools are used in this step:

• Iperf is an open-source network performance measurement tool. It sends traffic from
one host to another with the adapted bandwidth to obtain the desired results. Iperf
can make more measurements than only the throughput, including packet loss, jitter,
and how the traffic is distrbuted. Iperf works for TCP and UDP traffic, is currently
built into mininet, and has differences for each protocol [43,44].

• Distributed Internet Traffic Generator (D-ITG) is a tool that can generate packet-
level traffic that can be precisely replicated [43,45]. D-ITG contains models created to
mimic the sources of several protocols, including TCP, UDP, ICMP, DNS, Telnet, and
FTP. In addition, D-ITG can simulate FTP traffic (e.g., backup and restore) and SNMP
traffic (e.g., set bulk and get bulk).

• SNMP TRAP is a tool that generates a notification (i.e., a trap) report alongside an
event or alarm to the SNMP manager with the specified message [46].

• Curl is a command line tool used to effectively simulate HTTP traffic [47].
• Hping3 is an open-source packet generator and analyzer for the TCP/IP protocol

created by Salvatore Sanfilippo. It can be utilized to benefit from an optimal scanning
technique, and is even included in the Nmap Security Scanner [48] as one of the stan-
dard tools for security auditing and testing of firewalls and networks. Furthermore,
as explained in Section 2.5, the Hping3 tool can simulate all DDoS attacks. Listing 4
shows how to use the associated tools to generate normal or attack traffic.

Listing 4. Normal and attack traffic generation.

#Normal t r a f f i c

i p e r f [−u UDP] [−b bandwidth] [− c t a r g e t _ I P] [− t time] # UDP
i p e r f [− c t a r g e t _ I P] [− t time] # TCP
snmptrap [−a host] [−h t a r g e t _ I P] [−c community] [−v vers ion] −m message#

snmp_trap
ITGSend [−T Protoco l] [−a t a r g e t _ I P] [−Fp fi lename] [− rp t a r g e t _ p o r t } # ftp_backup

/ r e s t o r e snmp GetBulk/SetBulk
hping3 [t a r g e t _ I P] [−− Protoco l] [− c packet count] [−d data s i z e packet body s i z e]

[− s baseport] [−k s t i l l keep source port] [−p t a r g e t _ p o r t] normal ICMP
[−1] or UDP [−2] or TCP []

Curl [t a r g e t _ I P or URL] # HTTP

Attack t r a f f i c

hping3 [t a r g e t _ I P] [−− Protoco l] [− c packet count] [−d data s i z e packet body s i z e]
[− s baseport] [−k s t i l l keep source port [−p t a r g e t _ p o r t] #TCP SYN & ICMP

Flood a t t a c k
hping3 −−rand−source [−S syn] [− i i n t e r v a l wait (uX f o r X microseconds] [−d data

s i z e packet body s i z e [− c packet count] [t a r g e t _ I P] #UDP flood a t t a c k
hping3 −−rand−source [−2 udp] [−S syn] [− i i n t e r v a l wait (uX f o r X microseconds]

[−d data s i z e packet body s i z e [− c packet count] [t a r g e t _ I P] #ICMP flood
a t t a c k

hping3 −−rand−source [−1 ICMP] [−S syn] [− i i n t e r v a l wait (uX f o r X microseconds]
[−d data s i z e packet body s i z e [− c packet count] [t a r g e t _ I P] #ICMP flood
a t t a c k

Electronics 2022, 11, 4065 15 of 31

hping3 −−rand−source [−p 80] [−S syn] [− i i n t e r v a l wait (uX f o r X microseconds] [−
d data s i z e packet body s i z e [− c packet count] [t a r g e t _ I P] #HTTP flood a t t a c k

5.3. Data Collection and Feature Extraction/Selection

This step is actually the most critical stage of the design, as it impacts the results of all
subsequent steps. Feature extraction within this phase is responsible for calculating the
feature values from the switch flow table and creating a matrix containing these values. In
the SDN environment, an OpenFlow protocol assists in creating a flow table that contains
status information collection. The switch responds to the SDN controller and periodically
sends request messages to obtain flow statistics. The time interval between receiving the
flow tables should be moderated in order to collect the status information of the flow table.
To achieve this, the “Sudoovs-ofct1 dump-flows s1” command is run on the SDN RYU
controller. An example of the extracted information is shown in Listing 2.

In the SDN controller, an incoming network traffic flow is identified along with
a number of features. These features can be extracted and collected during the traffic
generation phases. These preselected features became essential for distinguishing between
normal and attack traffic, as mentioned in prior studies [26,27,30,32,39]. These features,
provided below, were monitored and collected for each 5 seconds during traffic generation
phases:

1. Speed of the source IP (SSIP) can be determined by the number of IP addresses received
from sources in a certain amount of time; it can be defined as Equation (1) [27,30,32,39]:

SSIP =
∑ IPsrc

T
(1)

where T represents the time between samples and IPsrc is the total number of IP
sources incoming in the received flows. DDoS attacks initiate many distributions of
data packets duplicated randomly, leading to many attacks and an immediate increase
in the number of source IP addresses.

2. Speed of session (SOS): the number of flow entries in the transport layer (L4 in OSI)
determines how many sessions are opened per unit of time T. This feature, introduced
in our research and named SOS, is defined as shown in Equation (2):

SOS =
∑ L4_Sessions

T
(2)

This feature is essential for identifying attacks, as the number of open sessions per
unit of time T may considerably increase during a DDoS attack.

3. Ratio of pair-flow entries (RPF) is the total number of interactive flow entries (i.e.,
bi-directional) divided by the total number of IP addresses during the period T; it is
defined by Equation (3) [27,32]:

RPF =
intIPs

N
(3)

Under normal conditions, the traffic between sources and destinations is usually
interactive. Therefore, bidirectional flows induce a number of flows that is equal
to the number of IP addresses in the network. However, when an attack occurs,
interactive communication is disabled and unidirectional flows (from multiple sources
to a destination) become established in the network. In this case, the number of IPs
is much larger than the number of interactive flows. In this manner, due to the low
number of interactive flows and no service availability, the traffic can be characterized
as a DDoS attack.

Electronics 2022, 11, 4065 16 of 31

4. Standard deviation of flow of packets (SDFP) during a period T is defined by
Equation (4) [27,32,39]:

SDFP =

√
1
N

n

∑
i=1

(packeti −Mean_packets)2 (4)

where packeti is the total number of packets of the ith flow and Mean_Packets is the
average number of packets in the network within period T. Due to the substantial
correlation between this feature and an attack, the standard deviation is lower for an
attack compared to normal traffic.

5. Standard deviation of flow bytes (SDFB) is calculated by the difference between the
number of bytes in a flow compared to the average number of bytes per flow during a
period T. It is defined by Equation (5) [27,32,39]:

SDFB =

√
1
N

n

∑
i=1

(bytesi −Mean_bytes)2 (5)

where Bytesi is the number of bytes in the ith flow and Mean_Bytes is the average
number of bytes during a period T in the network.
Both the standard deviation of the packets in flows and the standard deviation of
bytes in flows significantly affect DDoS attack. However, the predictive value of SDFP
is significantly lower during attacks than during normal traffic.

5.3.1. The Dataset

Our dataset was constructed using the four different scenarios outlined in Section 5.2:
low normal traffic, low attack traffic, high normal traffic, and high attack traffic. In addition,
in Section 2.5 we have described the traffic types in fiber optic networks (SNMP, FTP, HTTP,
TCP, and UDP as Normal traffic and TCP-SYN, UDP, TCP, and HTTP floods as attack
traffic). Figure 8 shows the various traffic types during the traffic generation phases.

As illustrated in Figure 8, there are no sudden increases of packets over time in normal
traffic. However, there are always rapid rises during attack traffic, even up to the maximum
network bandwidth. In this case, a number of packets are discarded and retransmitted by
the congestion control mechanisms. The increases in these retransmissions further increases
the network load.

0 20 40 60 80 100 120
Time

0

250

500

750

1000

1250

1500

1750

Pa
ck

et
 p

er
 se

co
nd

A1-->Server[TCP,UDP,SNMP,FTP]
A2-->Server[UDP]
A3-->Server[ICMP]
R1-->Server[TCP,UDP,SNMP,FTP]
Server-->A1&R1[SNMP,FTP,HTTP]

5

0

25

20

15

10

0

62.5 65.0

20

67.5

40

72.5 75.0 77.5

80

80.0

100 120

70.0

Time

P
a
c
k
e
t
 p

e
r
 s

e
c
o
n
d

A1-->Server[TCP-SYN and ICMP flood]

A2-->Server[UDP flood]

A3-->Server[ICMP flood]

R1-->Server[HTTP flood]

60

Time

60

5

0

(a) (b)

Figure 8. Cont.

Electronics 2022, 11, 4065 17 of 31

0 20 40 60 80 100 120
Time

0

200

400

600

800

1000

1200

1400

Pa
ck

et
 p

er
 se

co
nd

A1-->Server[TCP,UDP,SNMP,FTP]
A2-->Server[UDP]
A3-->Server[ICMP]
R1-->Server[TCP,UDP,SNMP,FTP]
Server-->A1&R1[SNMP,FTP,HTTP]

175

150

150

125

100

75

50

25

0

0

22.5 25.0

20

27.5

40

32.5 35.0 37.5

80 100

30.0

60

P
a
c
k
e
t
 p

e
r
 s

e
c
o
n
d

A1-->Server[TCP-SYN and ICMP flood]

A2-->Server[UDP flood]

A3-->Server[ICMP flood]

R1-->Server[HTTP flood]

Time

Time

25

0

(c) (d)

Figure 8. Traffic generated during the four phases: (a) low normal traffic; (b) low attack traffic;
(c) high normal traffic; (d) high attack traffic.

As shown in Figure 8, the time of traffic generation for each phase is fixed to 120 s.
This procedure is repeated four times. The selected features are then collected from all
switches every five seconds by an SDN controller. Finally, the features are published in a
CSV file. This procedure generates 480 instances, produced as follows: (1) 120 s are sampled
into separated 5 s time intervals, resulting into 24 instances; (2) features are collected from
five switches, resulting in 120 instances; and (3) the same procedure is repeated four times,
resulting into 480 instances. Then, the dataset is manually cleaned to remove redundant
samples; this improves model performance, as predictions are based on unseen data. This
leaves 400 instances for each step and a total of 1600 instances, as illustrated in Figure 9.

0 200 400 600 800 1000 1200 1400 1600
Number of samples

0

2500

5000

7500

10000

12500

15000

Va
lu

e

0 200 400 600 800 1000 1200 1400 1600
Number of samples

0

2000

4000

6000

8000

Va
lu

e

(a) (b)

0 200 400 600 800 1000 1200 1400 1600
Number of samples

0

500

1000

1500

2000

Va
lu

e

0 200 400 600 800 1000 1200 1400 1600
Number of samples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Va
lu

e

1e6

(c) (d)

Figure 9. Cont.

Electronics 2022, 11, 4065 18 of 31

0 200 400 600 800 1000 1200 1400 1600
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

(e)

Figure 9. Feature values under normal and attack traffic: (a) speed of sessions; (b) speed of source
IP; (c) standard deviation of flow packets; (d) standard deviation of flow bytes; (e) ratio of pair-
flow entries.

5.3.2. Selected Features

The selected features are described in Section 5.3, with a novel feature known as SOS
introduced and calculated based on the number of flow entries at the transport layer. Five
features were collected during the traffic generation phase, and 1600 instances of these
features were gathered. The resulting dataset consists of five columns: SOS, SSIP, RPF,
SDFP, and SDFB. An example of normal and DDoS traffic features is provided in Table 2.
In the type column, the label ‘0’ represents normal traffic and the label ‘1’ represents DDoS
attack traffic.

Table 2. Samples of the dataset.

SOS SSIP RPF SDFP SDFB TYPE PHASE

7 1 0.083333 78.5163 11,8931.2 0
19 0 0.307692 1007.227 670,561.4 0
8 1 0.25 1510.026 939,150 0 Low Normal Traffic (I)
12 1 0.333333 99.04024 150,217.5 0
.
.

107 107 0.002331 0.048252 4.728723 1
123 123 0.002513 0 0 1
113 113 0.002255 0.047458 4.650868 1 Low Attack Traffic (II)
111 111 0.00216 0.046449 4.551984 1
.
.

12 4 0.166666667 268.1955528 149,167.4674 0
7 2 0.064516129 23.52020408 35,562.54857 0
5 2 0.066666667 0.577350269 567.0716445 0 High Normal Traffic (III)
10 1 0.25 93.32372 141,228.5 0
.
.

196 211 0.006494 0.113402 13.72169 1
182 197 0.00409 0.078165 10.47416 1
20 19 0 0.917663 109.2019 1 High Attack Traffic (IV)
236 251 0.008287 0.074175 9.444982 1
.
.

Under normal circumstances, the speed of sessions (SOS) is not significant. In addition,
the ratio of iterative connections should be around one, as it represents a two-way connec-
tion, which is considered real traffic. However, random spoofing sessions and new IPs are

Electronics 2022, 11, 4065 19 of 31

created during DDoS attacks, resulting in an increased number of SSIPs and SOS. On the
other hand, there is a strong link between SDFB and DDoS attacks. The attacker sends many
small attack data packets, meaning that the standard deviation is smaller than with normal
data packets. Additionally, if a DDoS attack happens, the amount of data coming into the
server at time T increases quickly, and the server becomes unable to perform the requested
services. Therefore, there is a sudden drop in the number of interactive flows. The features
of the dataset are shown in Figure 9. The generated dataset contains 1600 random data
points. Samples 1–400 indicate low normal traffic, samples 401–400 represent low attack
traffic, samples 801–1200 represent high normal traffic, and samples 1201–2600 represent
heavy attack traffic. During the traffic generation phases, these features were captured
every 5 s.

When preparing data for supervised machine learning algorithms, dataset partitioning
is a crucial first step. The normal practice is to choose between 20% and 30% of the data for
testing and the rest for training. In this study, the “train_test_split” function in scikit-learn
tool was used with a fixed “random_state” to ensure that all models used the same training
and testing subsets.

5.3.3. Comparative Study of the Most Popular ML Models

Considering the available machine learning algorithms, no one solution or approach
clearly fits our presented problem. For example, algorithm selection requires checking the
size of dataset, whether the data are labeled or unlabeled, and whether the problem type is
a classification or regression problem.

The size of our dataset is 1600 instances, with five features and two classes. It was
only after answering these questions that the classification algorithms could be decided
upon. As a result, six existing popular ML algorithms which are frequently used to solve
straightforward classification problems were selected, as described below:

• Logistic Regression (LR) is a well-known machine learning model used for binary
classification. It has a probabilistic framework able to adapt classification thresholds
and obtain conviction intervals [31].

• K-Nearest Neighbors (KNN) is a non-parametric supervised learning model used to
solve classification and regression problems. It performs classification and prediction
of new datapoints by comparing them to predefined groups based on the proximity
principle [33].

• Support Vector Machine (SVM) works by finding the best way to separate labeled
instances in each dataset using hyperplanes [35]. Various kernel functions, including
linear, polynomial, and radial-based, can be used in the mapping process [3].

• Naive Bayes (NB) is a typical classifier founded on Bayes’ theorem. It is able to define
the probability of an event based on previous facts. Naive Bayes classifiers rely on the
hypothesis that the features are independent [49,50].

• Decision Tree (DT) is a method of classification that uses a tree structure. This al-
gorithm divides the population into two or more groups based on the most critical
attributes [51].

• Random Forest (RF) is a regression-based machine learning algorithm guided by a
base model series. Random forest regression has many benefits, such as high accuracy,
efficiency, and performance when dealing with essential variables. To obtain the best
prediction results, it is vital to choose the correct number of trees [52].

5.3.4. Determining the Adequate Dataset Size

The size of the dataset is one of the most significant problems in supervised learning.
Obviously, insufficient training data can lead to a bad approximation, negatively impacting
ML model performance. Another training factor is the time it takes to train the model. The
time interval for training an ML model depends on the size of the database (i.e., it increases
with the number of samples in the dataset). Thus, training the model in a faster manner
might consider fewer data, while more data may provide better results.

Electronics 2022, 11, 4065 20 of 31

Learning curve graphs illustrate how well a model learns over time or with more
experience. Learning curve graphs are often used as diagnostic tools to investigate how the
performance of a model changes with dataset size. Figure 10 shows graphs of the learning
curves of selected machine learning algorithms used in this research, demonstrating that
a small dataset size is acceptable for the DT and RF algorithms. However, the other
algorithms need a more extensive dataset size. When using more than 1000 samples for
training sets, all selected ML algorithms show almost the same accuracy level. Therefore,
this number of samples was considered sufficient for performance evaluation, and was
used during the next step for model improvement.

200 400 600 800 1000

Training examples
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Sc
or

e

Training score
Cross-validation score

200 400 600 800 1000

Training examples
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Sc
or

e

Training score
Cross-validation score

(a) (b)

200 400 600 800 1000

Training examples
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Sc
or

e

Training score
Cross-validation score

200 400 600 800 1000

Training examples
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Sc
or

e

Training score
Cross-validation score

(c) (d)

Figure 10. Cont.

Electronics 2022, 11, 4065 21 of 31

200 400 600 800 1000

Training examples
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Sc
or

e

Training score
Cross-validation score

200 400 600 800 1000

Training examples
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Sc
or

e

Training score
Cross-validation score

(e) (f)

Figure 10. Learning curves of selected algorithms: (a) learning curves_LR; (b) learning curves_KNN;
(c) learning curves_SVM; (d) learning curves_NB; (e) learning curves_DT; (f) learning curves_RF.

5.4. Performance Metrics

Several metrics were considered for performance evaluation during the training and
testing phases: accuracy, precision, recall, and F1 score. A confusion matrix was used
to determine how to measure these metrics. A confusion matrix, sometimes known as
an error matrix, is a table summarizing the results of an algorithm when processing
data samples [53]. Additional metrics, such as learning curves, Cross-validation scores,
and the standard deviation of cross-validation scores, can be employed to assist in the
initial selection of dataset size and ML models. Usually, a supervised learning model is
represented based on how the machine learning model responds. This matrix has different
cases, such as True Positive, True Negative, False Positive, and False Negative. These cases
are described as follows:

• True Positive (TP): the number of attacks that the classifier predicts correctly.
• True Negative (TN): the amount of normal traffic that the classifier predicts correctly.
• False Positive (FP): how often normal traffic is mistakenly labeled as attack traffic.
• False Negative (FN): how often attack traffic is mistakenly labeled as normal traffic.

The main measurements used to evaluate how well the learning model works are:

1. Learning curve: a learning curve shows how an estimator’s validation score and
training score change as the number of training samples changes (i.e., with dataset
size). This curve is calculated from the training data in order to inform how well a
model is learning as the amount of data increases. Moreover, it determines whether
the estimator is more likely to make a bias or variance error.

2. Accuracy: the ratio of the number of correct predictions to the total number of predic-
tions. It can be calculated by Equation (6):

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

3. Precision: the number of true positive cases out of all predicted positive cases. The
precision value, which is between 0 and 1, can be calculated using Equation (7):

precision =
TP

TP + FP
(7)

Electronics 2022, 11, 4065 22 of 31

4. Recall: the number of predicted positive cases as a percentage of all positive cases; it
is similar to the True Positive Rate (TPR), and is calculated using Equation (8):

Recall =
TP

TP + FN
(8)

5. F1-score: the F1-score represents the harmonic mean of precision and recall. It ac-
counts for both false positives and false negatives. Consequently, it performs effec-
tively on uneven datasets. It can be determined by Equation (9):

F1 =
2× (precision× recall)
(precision + recall)

(9)

6. Cross-validation score: a method for re-sampling that uses different parts of the data
to test and train a model repeatedly. It is mostly used when the goal is to make
a prediction and determine how well a prediction model might work in real-life
problems [54].

7. STD of cross-validation score: the standard deviation of the cross-validation score
measures the variation of the scores when computing a single score for one of the
k folds. A low value of this parameter is the most acceptable, and indicates that a
dataset is adequate for testing use.

6. Results and Discussion

This section analyzes the proposed approach and demonstrates the improvements
it makes based on the ML models described in Section 5.3.3. Figure 5 outlines the most
important steps followed in our research. The conclusion of this step determines whether
it can improve network availability. In the first step, network implementation and traffic
generation are realized, followed by a discussion of the desired dataset and evaluation
of the models using various features and hyperparameters. The second step consists of
improving the proposed approach for better performance.

Table 3 shows the common parameters used for the selected algorithms.

Table 3. Common parameters of selected algorithms.

Machine Learning Algorithm Parameter 1 Default Value Increasing Value Decreasing Value Description

Logistic Regression tol float, default = 1× 10−4 T 2 :↓ A 3 :↓⇒ U 4 T :↑ A :↑⇒ O 5 Tolerance for stopping criteria.
C float, default = 1.0 A :↑⇒ O A :↓⇒ U Inverse of regularization strength; must be a positive float.

As in support vector machines, smaller values specify
stronger regularization.

K-Nearest Neighbour n_neighbors int, default = 5 T :↓ A :↓⇒ U T :↑ A :↑⇒ O Number of neighbors to use found by Algorithm
p int, default = 2 Power parameter for the Minkowski metric. This is equiv-

alent to using manhattan_distance (l1) when p = 1 and
euclidean_distance (l2) when p = 2.

Support Vector Machine C float, default = 1.0 A :↑⇒ O A :↓⇒ U Regularization parameter. The regularization strength is
inversely proportional to C and must be strictly positive.

kernel default = ‘rb’ Specifies the kernel type to be used in the algorithm.
gamma default = ‘scale’ A :↑⇒ O A :↓⇒ U Kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’.

Naive Bayes var_smoothing float, default = 1× 10−9 T :↓ A :↓⇒ U T :↑ A :↑⇒ O Portion of the largest variance of all features that are added
to variances for calculation stability.

Decision Trees max_depth int, default = None T :↑ A :↑⇒ O T :↓ A :↓⇒ U The maximum depth of the tree. If none, then nodes are
expanded until all leaves are pure or until all leaves contain
less than min_samples_split samples.

RandomForest n_estimators int, default = 100 T :↑ A :↑⇒ O T :↓ A :↓⇒ U The number of trees in the forest.

1 All parameters can be found in scikit-learn [55]. 2 T: Training time. 3 A: Accuracy. 4 U: Underfiting. 5 O: Overfiting.

6.1. Features and Hyperparameter-Based Performance Evaluation

In ML, the smallest subset of components can have a significant effect. Reducing a
model’s complexity does not always make predictions more accurate. This experiment
involves five features and discusses how a different number of features affects model
performance. In addition, using the scikit-learn library [55] and grid search mechanism, we
evaluate our proposed model with the default hyperparameters and tuned parameters. In
this section, we measure the performance metrics of the proposed ML algorithms described

Electronics 2022, 11, 4065 23 of 31

in Section 5.3.3 in four stages (6–9), as shown in Figure 5. In addition, the performance
metrics of the selected ML algorithm are shown in Table 4. The main findings regarding
ML algorithms are summarized below:

• LR: Figure 11a and Table 4 show that performance metrics improved during the
four stages (6–9) for the LR algorithm, from 94.59% accuracy at the beginning to a
99.79% accuracy at the end. Adding more features and tuning the LR algorithm’s
hyperparameters significantly affects the algorithm’s performance. However, an
increased number of features increases the training time.

• KNN: Most of the performance metrics for the KNN algorithm do not become better
during the first three stages (6–8). However, in the ninth stage the accuracy, precision,
and F1-score all improve, while the cross-validation score and its standard deviation
are not enhanced. The training time for KNN is acceptable, as shown in Figure 11b
and Table 4.

• SVM: As shown in Figure 12a and Table 4, increasing the number of features does not
represent adequate input for SVM utilization. When tuning the hyperparameters with
“linear” and C equal to “1000”, SVM is able to provide high performance. However,
training time is a major issue of SVM, especially for detecting DDoS attacks.

• NB: The NB algorithm works similarly to LR algorithm. All performance metrics
except for precision are excellent in the sixth stage. Figure 12b and Table 4 show the
performance in each step. Specifically, the training process of the NB algorithm is very
fast compared to the other algorithms.

• DT: There is no need to tune any ML hyperparameters, as the performance reached
100% in the sixth and eighth stages. Therefore, this algorithm only has two stages.
Figure 13a and Table 4 show that this algorithm works well for protecting FON from
DDoS attacks, and the training time is less than most of the selected algorithms.

• RF: Similar to the DT algorithm, the RF algorithm works well without changing any
ML hyperparameters. A random forest classifier is a robust classifier by default;
however, the main problem in this research resides in the numbers and classes being
different, meaning that reaching 100% is a reasonable goal. As an advanced step, we
changed the default parameters of the algorithm for “n_estimators” from 100 as the
default value to 3 (Table 3). This step was performed in order to check the performance
with fewer numbers than the default value in the Scikit-learn library. The RF algorithm
can be considered as multiple DT algorithms running simultaneously, which is why
the training time is higher than the DT algorithm. The performance metrics of this
algorithm are shown in Figure 13b and Table 4.

Accuracy F1 Score Recall Score Precision Score Cross_Val_Score

90

92

94

96

98

100

Pe
rc

en
ta

ge

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

Accuracy F1 Score Recall Score Precision Score Cross_Val_Score

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100.0

Pe
rc

en
ta

ge

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

(a) (b)

Figure 11. Performance evaluation of LR and KNN algorithms: (a) LR algorithm; (b) KNN algorithm.

Electronics 2022, 11, 4065 24 of 31

Accuracy F1 Score Recall Score Precision Score Cross_Val_Score
70

75

80

85

90

95

100

Pe
rc

en
ta

ge

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

Accuracy F1 Score Recall Score Precision Score Cross_Val_Score

90

92

94

96

98

100

Pe
rc

en
ta

ge

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

(a) (b)

Figure 12. Performance evaluation of SVM and NB algorithms: (a) SVM algorithm; (b) NB algorithm.

Accuracy F1 Score Recall Score Precision Score Cross_Val_Score

98.6

98.8

99.0

99.2

99.4

99.6

99.8

100.0

Pe
rc

en
ta

ge

Default model with three features
Default model with five features

Accuracy F1 Score Recall Score Precision Score Cross_Val_Score

99.65

99.70

99.75

99.80

99.85

99.90

99.95

100.00

Pe
rc

en
ta

ge

Default model with three features
Default model with five features

(a) (b)

Figure 13. Performance evaluation of RF and DT algorithms: (a) DT algorithm; (b) RF algorithm.

Table 4. Performance metrics of selected algorithms.

MLA Stage Numbrt of Features Grid Searched Hyper-Parameter Selected Hyper-Parameters Accuracy Precision Recall F1-Score CV_Score Std_CV Training Time (s)

LR

6 3 1 [‘tol’: [1× 10−2, 1× 10−3, 1× 10−4, 1× 10−6]], Default 3 94.59 99.55 89.75 94.4 95 3.16 0.03459
7 3 [‘C’: [0.1,1.0,10.0,100.0]] O 4 [‘C’: 100.0, ‘tol’: 0.01] 94.8 100 89.75 94.6 95.25 3 0.03057
8 5 2 Default 99.16 98.39 100 99.19 99.63 0.94 0.0775
9 5 O [‘C’: 10.0, ‘tol’: 0.01] 99.79 99.59 100 99.8 99.88 0.25 0.0473

KNN

6 3 [‘n_neighbors’: [3,5,10,15,20]], Default 99.58 99.19 100 99.59 99.81 0.29 0.0033
7 3 [‘p’: [1,2]] O [‘n_neighbors’: 5, ‘p’: 2] 99.58 99.19 100 99.59 99.81 0.29 0.0010
8 5 Default 99.58 99.19 100 99.59 99.25 1 0.0020
9 5 O [‘n_neighbors’: 3, ‘p’: 1] 99.79 99.59 100 99.8 99.5 0.78 0.0011

SVM

6 3 [‘C’: [0.01,1, 10,100,1000],’kernel’: [‘linear’], Default 85.03 100 70.49 82.69 87.56 7.28 0.0375
7 3 ‘gamma’]: [0.5,0.3,0.2,0.1,0.01], ‘kernel’: [‘rbf’] O [‘C’: 1000, ‘kernel’: ‘linear’] 100 100 100 100 99.94 0.18 14.299
8 5 Default 90.85 84.72 100 91.73 89.63 0.93 0.0201
9 5 O [‘C’: 1, ‘kernel’: ‘linear’] 99.38 98.79 100 99.39 99.88 0.24 1.2329

NB

6 3 [‘var_smoothing’: [1× 10−2, 1× 10−3, Default 93.76 97.77 89.75 93.59 94.63 3.36 0.0035
7 3 1× 10−7, 1× 10−9, 1× 10−11, 1× 10−15]] O [‘var_smoothing’: 1× 10−11] 94.8 100 89.75 94.6 95.25 3 0.0039
8 5 Default 98.34 96.83 100 98.39 98.5 1.26 0.0041
9 5 O [‘var_smoothing’: 1× 10−15] 99.79 99.59 100 99.8 99.88 0.25 0.0010

DT 6 3 Default 100 100 100 100 98.62 3.92 0.0036
8 5 Default 100 100 100 100 98.5 3.89 0.0059

6 3 Default 100 100 100 100 99.62 0.75 0.1699
RF – 5 3 Downgraded 5 [n_estimators = 3] 99.79 99.59 100 99.79 99.43 0.85 0.0149

8 5 Default 100 100 100 100 100 0 0.1800

1 Three features [SOS, SSIP , RPF]. 2 Five features [SOS, SSIP, RPF, SDFP, SDFB]. 3 The default hyperparameter in
scikit-learn [55]. 4 The optimized hyperparameters. 5 Downgraded hyperparameter.

6.2. Comparison Between Different Models and Deploying the Optimal One

Based on the previous step, the adequate dataset size was determined and the selected
ML models were evaluated with the most promising hyperparameters. This step assisted
in selecting and deploying the suitable model for the problem raised in this research.

Based on the results of the previous steps, shown in Figure 14 and Table 4, we can
have more than one solution to this problem. For example, the training time of SVM with
three features (SSIP, SOS, and RPF) and using C = 1000 and a linear kernel was 14.299 s,

Electronics 2022, 11, 4065 25 of 31

while the accuracy reached 100%. On the other hand, when using RF with five features
((SSIP, SOS, SDFP, SDFB, and RPF) and default parameters the training time was 0.18 s
and the accuracy reached 100%. Therefore, it can be concluded that the Random Forest
algorithm provides the best results in terms of complexity (affordable features), timing,
and classification accuracy, especially compared with SVM. Therefore, we proceeded to the
implementation phase with the RF algorithm.

LogisticRegression KNeighbors SVM Naive Bayes Decision Tree Random Forest

86

88

90

92

94

96

98

100

Ac
cu

ra
cy

Comparison of various models' performance(Zoomed In For Clarity)

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

LogisticRegression KNeighbors SVM Naive Bayes Decision Tree Random Forest84

86

88

90

92

94

96

98

100

Pr
ec

isi
on

 sc
or

e

Comparison of various models' performance(Zoomed In For Clarity)

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

(a) (b)

LogisticRegression KNeighbors SVM Naive Bayes Decision Tree Random Forest
70

75

80

85

90

95

100

Re
ca

ll
sc

or
e

Comparison of various models' performance(Zoomed In For Clarity)

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

LogisticRegression KNeighbors SVM Naive Bayes Decision Tree Random Forest
82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1
 sc

or
e

Comparison of various models' performance(Zoomed In For Clarity)

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

(c) (d)

LogisticRegression KNeighbors SVM Naive Bayes Decision Tree Random Forest

88

90

92

94

96

98

100

Cr
os

s_
Va

l_S
co

re

Comparison of various models' performance(Zoomed In For Clarity)

Default model with three features
Optimized model with three features
Default model with five features
Optimized model with five features

LogisticRegression KNeighbors SVM Naive Bayes Decision Tree Random Forest

0

1

2

3

4

5

6

7

ST
D

of
 C

ro
ss

_V
al

_S
co

re

Comparison of various models' performance(Zoomed In For Clarity)

Default model with three Features
Optimized model with three features
Default model with five features
Optimized model with five features

(e) (f)

Figure 14. Comparison between selected ML models: (a) accuracy; (b) precision; (c) recall; (d) F1
score; (e) cross-validation score; (f) STD of cross-validation score.

6.3. Detection and Mitigation Principle

With the data collected and the appropriate model selected, the SDN controller was
first initialized in the “detection” state. In this stage, the controller first collects data on
the five chosen features every five seconds. These features are then sent to the ML model,
which predicts whether the traffic is normal or an attack. If the traffic looks normal, the
ML model forwards it in the correct direction. However, if the traffic is classified as an
attack the ML model shuts down the port for 20 s to start the mitigation phase. During
the mitigation phase, the SDN controller checks the source MAC table to see whether the

Electronics 2022, 11, 4065 26 of 31

MAC address has been learned for a legitimate user, which requires accepting the traffic.
Otherwise, the SDN controller does not allow unacceptable traffic. Figure 15 shows how
detection and mitigation work in the proposed environment.

Switch1

Switch 2

Switch 3

Switch 4

GNE

Server 1

Ryu -controller

Cloud
Remote support
/working from

home
Switch 5

Machine learning Model

Data plane

Control plane

Application plane

GNE

GNE

A1

A2

A3
R1

Network Operation Center

Normal traffic Attack traffic

Open flow protocol

Figure 15. Detection and mitigation principle.

6.4. Performance Evaluation of FON Using the Selected Model

In this section, we investigate the impact of the proposed model on the primary
function of the NMS by targeting two significant network metrics, throughput and delay.
To study the impact of DDoS attacks on the throughput and delay, we generated normal
TCP traffic from all areas to the server using the Iperf tool, as shown in Figure 15. We used
the TCP dump tool to list and collect the incoming traffic on the server side. We supposed a
DDoS attack was coming from R1 side to the server using the Hping3 command. We used
the ping tool from all sources to the server side to measure the delay.

We found both throughput and delay to be significantly impacted. Figure 16a shows
that when not detecting and mitigating a DDoS attack at 60 s the attack is able to begin,
resulting in all traffic from the R1 side going down. Other traffic is impacted after a time in
between 100 to 120 s. Similar to the throughput, the delay from the R1 side to the server
increases dramatically due to the DDoS attack, as shown in Figure 16c, and the delay for
other traffic increases after detection of the DDoS attack.

Electronics 2022, 11, 4065 27 of 31

(a) (b)

(c) (d)

Figure 16. Impact of selected model on delay and throughput of FON: (a) throughput (without miti-
gation); (b) throughput (with mitigation); (c) delay (without mitigation); (d) delay (with mitigation).

Our proposed solution can improve the network’s throughput and reduce the delay
within the DDoS attack period. Considering the example in Figure 16b, where an attack
begins after 40 s, it can be seen that the selected RF model first detects the DDoS attack at
45 s and then blocks the source port against incoming attack traffic for 20 s. Second, the
mitigation process is immediately activated.

At 70 s, the network returns to its normal state and accepts only traffic from legitimate
users. Using an ARP protocol-based solution (port security mechanism), the delay from R1
to the server in Figure 16d increases dramatically compared to that at 40 s. After completing
the mitigation phase at 75 s, the delay is reinstated to the normal timing range. Figure 16
shows the impact of our solution on the traffic delay and throughput. These results reflect
improvements in the main management function of FON.

6.5. Performance Evaluation of the Proposed Model

This section compares the proposed method to the most recent classification-based
DDoS detection methods. These baseline approaches are discussed in Section 3. The
comparison in this research is based on the number of features, the impact of the introduced
new feature (SOS), and how the algorithm collects features to identify a DDoS attack while
maintaining high detection accuracy. We selected the two existing approaches in [30]
and [27] for use in this performance comparison with our proposed model.

Table 5 shows how the proposed model differs from the above two models discussed in
the Related Works section. This analysis justifies the employment of five features, including
our new proposed SOS feature, as it can improve performance in terms of accuracy for
all selected algorithms. In addition, Figure 17 shows that our proposed solution performs
better than the existing related works. However, it is worth mentioning here that our
proposed approach can only identify and mitigate DDoS attacks in FONs, and does not

Electronics 2022, 11, 4065 28 of 31

consider malware or malicious traffic. Thus, an additional mechanism addressing this sort
of threat could provide more reliable, efficient, and secure data communication, especially
in heterogeneous environments. Further statistical testing of our novel approach using
sophisticated tool such as analysis of variance (ANOVA) or T-test at various confidence
intervals could provide more detailed results as well.

LogisticRegression KNeighbors SVM Naive Bayes Decision Tree Random Forest

86

88

90

92

94

96

98

100
Ac

cu
ra

cy

Optimized model with five features[SOS,SSIP,RPF,SDFP,SDFB]
Default model with five features[SOS,SSIP,RPF,SDFP,SDFB]
Default model with five features[SFE,SSIP,RPF,SDFP,SDFB]
Default model with three features[SFE,SSIP,RPF]

Figure 17. Accuracy comparison with existing models (Black [27], Blue [30]).

Table 5. Comparison with existing models.

DDoS D 1 and M 2 Solutions Isaac et al. [27] Vishal Kumar [30] Proposed Model

Features [SFE, SSIP, RPF, SDFP, SDFB] [SFE, SSIP, RPF] [SOS, SSIP, RPF, SDFP, SDFB]
Flows in layer 3 Layer 3 Layer 3 Layer 4
Issue Some features are same Repeated Instances -
Sample duration 5 s 5 s 5 s
Flow counting Only new flows Existing flow and new Only new flows
Number of Instances 1600 1600 1600

1 Detection. 2 Mitigation. 3 OSI Model.

7. Conclusions

This paper presents a study utilizing SDN and ML-based techniques to detect and mit-
igate DDoS attacks in fiber optic networks. We provide significant technical background on
DDoS attack detection and mitigation through various methods published in the literature,
then introduce the proposed scheme, tools, and major features used in this research. Based
on a performance evaluation, our proposed solution is able to reach an accuracy of 100%
using a Random Forest algorithm with five features (SOS, SSIP, RPF, SDFP, SDFB) and a
Support Vector Machine algorithm with three features (SOS, SSIP, RPF). We estimate that
this result was obtained thanks to the new proposed feature introduced in this paper called
Speed of Session (SOS), which is a major contribution of the present research. Furthermore,
we explored the effects of this feature through a comparative study with existing solutions
in the literature. This paper demonstrates that there can be more than one solution to
the problem of DDoS attacks. For example, the fitting time of SVM using three features
(SSIP, SOS, and RPF) with C = 1000 and linear Kernal was 14.299 s, and 100% accuracy was
reached. On the other hand, when using RF with five features (SSIP, SOS, SDFP, SDFB, and
RPF) and default parameters, the accuracy reached 100% and the fitting time was 0.18 s.
These results indicate that the Random Forest algorithm is well suited for implementation
as it is faster than SVM and uses more affordable features.

Author Contributions: Conceptualization, S.A and R.O.; methodology, S.A and R.O.; software, S.A
and R.O.; validation, S.A., R.O. and K.S.; formal analysis, S.A., R.O. and K.S.; investigation, S.A.,
R.O. and K.S.; resources, S.A., R.O. and K.S.; writing—original draft preparation, S.A. and R.O.;
writing—review and editing, S.A., R.O. and K.S.; supervision, R.O. and K.S.; project administration,

Electronics 2022, 11, 4065 29 of 31

R.O.; funding acquisition, S.A., R.O. and K.S. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors extend their appreciation to the Deanship for Research & Innovation, Ministry of
Education in Saudi Arabia for funding this research work through the project number IFKSURG-2-13.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deanship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number
IFKSURG-2-13.

Conflicts of Interest: The authors have no relevant conflict of interest to disclose.

References
1. He, J.; Zhao, H. Fault Diagnosis and Location based on Graph Neural Network in Telecom Networks. In Proceedings of the

2020 International Conference on Networking and Network Applications, Haikou, China, 10–13 December 2020; pp. 304–309.
[CrossRef]

2. Security, C.N. Threat Intelligence Report 2020; Technical Report; Corero Network Security: Marlborough, MA, USA , 2020.
3. Xie, J.; Richard Yu, F.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A survey of machine learning techniques applied to software

defined networking (SDN): Research issues and challenges. IEEE Commun. Surv. Tutor. 2019, 21, 393–430. [CrossRef]
4. Ahmed, M.; Shatabda, S.; Islam, A.; Robin, M.; Islam, T. Intrusion detection system in software-defined networks using machine

learning and deep learning techniques—A comprehensive survey. TechRxiv 2021 . [CrossRef]
5. Alashhab, A.A.; Zahid, M.S.M.; Azim, M.A.; Daha, M.Y.; Isyaku, B.; Ali, S. A Survey of Low Rate DDoS Detection Techniques

Based on Machine Learning in Software-Defined Networks. Symmetry 2022, 14, 1563. [CrossRef]
6. Ashraf, J.; Latif, S. Handling intrusion and DDoS attacks in Software Defined Networks using machine learning techniques. In

Proceedings of the 2014 National Software Engineering Conference, Rawalpindi, Pakistan, 11–12 November 2014; pp. 55–60.
[CrossRef]

7. Geer, D. SDN for IoT Supports Networking Devices. Available online: https://www.techtarget.com/iotagenda/feature/SDN-to-
support-Internet-of-Things-devices (accessed on 12 September 2022).

8. Arumugam, M. Optical fiber communication—An overview. Pramana 2001, 57, 849–869. [CrossRef]
9. Agwekar, A.; Ahmed, M.; Singh, R.; Ahmed, R. Synchronization Problems in Synchronous Digital Hierarchy (SDH) Communica-

tion System and Master Slave Strategies. Int. J. Sci. Eng. Technol. 2012, 1, 197–199.
10. Huawei. Overview of DCN-NE40E-M2 V800R010C10SPC500 Feature Description—System Management 01. Available online:

https://support.huawei.com/enterprise/en/doc/EDOC1100058412/6ee037b2/overview-of-dcn (accessed on 10 September 2022).
11. Cisco. Configuring Data Communication Channel. Available online: https://content.cisco.com/chapter.sjs?uri=/searchable/

chapter/content/en/us/td/docs/routers/ncs4200/configuration/guide/cem-line-cards/16-12-1/b-cem-ocx-xe-16-12-1-ncs4
200/b-cem-ocx-xe-16-11-1-ncs4200_chapter_01010.html.xml (accessed on 10 September 2022).

12. Jyothirmai, N.; Valli, R.M.; Krishna, A.R. SDH and its future trends. Int. J. Innov. Technol. Explor. Eng. 2012, 1, 74–78.
13. Bhakar, M. STM Frame Structure. Available online: https://www.scribd.com/document/134931089/Stm-Frame-Structure

(accessed on 10 September 2022).
14. Henderson, P.M. Fundamentals of SONET/SDH. 2001. Available online: https://www.michael-henderson.us/Papers/SONET-

SDH.pdf (accessed on 10 September 2022).
15. Harjunen, T.; Särkkä, A. Classic TCP/IP applications: TELNET, FTP, SMTP, NNTP and SNMP. 1998. Available online: https:

//www.netlab.tkk.fi/opetus/s38130/s98/tcpapp/TCP_appl.pdf (accessed on 20 September 2022).
16. Seufert, M.; Egger, S.; Slanina, M.; Zinner, T.; Hoßfeld, T.; Tran-Gia, P. A Survey on Quality of Experience of HTTP Adaptive

Streaming. IEEE Commun. Surv. Tutor. 2015, 17, 469–492. [CrossRef]
17. Deering, S. ICMP Router Discovery Messages; Technical Report; Palo Alto: Santa Clara, CA, USA, 1991.
18. Dennis, J.R.; Li, X. Machine-Learning and Statistical Methods for DDoS Attack Detection and Defense System in Software Defined

Networks. Master’s Thesis, College of Engeering and Sc Ryerson University, Toronto, ON, Canada, 2018.
19. Dhaliwal, A.S. Detection and Mitigation of SYN and HTTP Flood DDoS Attacks in Software Defined Networks. Master’s Thesis,

Faculty of Engineering and Architectural Science, Ryerson University, Toronto, ON, Canada, 2017. [CrossRef]
20. Monnet, Q. An Introduction to SDN. Available online: https://qmonnet.github.io/whirl-offload/2016/07/08/introduction-to-

sdn/ (accessed on 10 September 2022).
21. Hamed, M.I.; ElHalawany, B.M.; Fouda, M.M.; Tag Eldien, A.S. A new approach for server-based load balancing using software-

defined networking. In Proceedings of the 2017 Eighth International Conference on Intelligent Computing and Information
Systems (ICICIS), Cairo, Egypt, 5–7 December 2017; pp. 30–35. [CrossRef]

http://doi.org/10.1109/NaNA51271.2020.00059
http://dx.doi.org/10.1109/COMST.2018.2866942
http://dx.doi.org/10.36227/techrxiv.17153213.v1
http://dx.doi.org/10.3390/sym14081563
http://dx.doi.org/10.1109/NSEC.2014.6998241
https://www.techtarget.com/iotagenda/feature/SDN-to-support-Internet-of-Things-devices
https://www.techtarget.com/iotagenda/feature/SDN-to-support-Internet-of-Things-devices
http://dx.doi.org/10.1007/s12043-001-0003-2
https://support.huawei.com/enterprise/en/doc/EDOC1100058412/6ee037b2/overview-of-dcn
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/content/en/us/td/docs/routers/ncs4200/configuration/guide/cem-line-cards/16-12-1/b-cem-ocx-xe-16-12-1-ncs4200/b-cem-ocx-xe-16-11-1-ncs4200_chapter_01010.html.xml
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/content/en/us/td/docs/routers/ncs4200/configuration/guide/cem-line-cards/16-12-1/b-cem-ocx-xe-16-12-1-ncs4200/b-cem-ocx-xe-16-11-1-ncs4200_chapter_01010.html.xml
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/content/en/us/td/docs/routers/ncs4200/configuration/guide/cem-line-cards/16-12-1/b-cem-ocx-xe-16-12-1-ncs4200/b-cem-ocx-xe-16-11-1-ncs4200_chapter_01010.html.xml
https://www.scribd.com/document/134931089/Stm-Frame-Structure
https://www.michael-henderson.us/Papers/SONET-SDH.pdf
https://www.michael-henderson.us/Papers/SONET-SDH.pdf
https://www.netlab.tkk.fi/opetus/s38130/s98/tcpapp/TCP_appl.pdf
https://www.netlab.tkk.fi/opetus/s38130/s98/tcpapp/TCP_appl.pdf
http://dx.doi.org/10.1109/COMST.2014.2360940
http://dx.doi.org/10.32920/ryerson.14647329.v1
https://qmonnet.github.io/whirl-offload/2016/07/08/introduction-to-sdn/
https://qmonnet.github.io/whirl-offload/2016/07/08/introduction-to-sdn/
http://dx.doi.org/10.1109/INTELCIS.2017.8260023

Electronics 2022, 11, 4065 30 of 31

22. Kaur, S.; Kumar, K.; Singh, J.; Ghumman, N.S. Round-robin based load balancing in Software Defined Networking. In Proceedings
of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,
11–13 March 2015; pp. 2136–2139.

23. Foundation, T.O.N. OpenFlow Switch Specification, Version 1.5.1 (Protocol Version 0x06). Available online: https:
//opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf (accessed on 10 September 2022).

24. Mohammed, M.; Khan, M.B.; Bashier, E.B.M. Machine Learning: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2016.
25. Paleyes, A.; Urma, R.G.; Lawrence, N.D. Challenges in Deploying Machine Learning: A Survey of Case Studies. ACM Comput.

Surv. 2022. [CrossRef]
26. Mishra, S.; Sharma, S.K.; Alowaidi, M.A. Multilayer self-defense system to protect enterprise cloud. Comput. Mater. Contin. 2021,

66, 71–85. [CrossRef]
27. William Isaac, S.I. Software-Defined Security; Technical Report, University of Toronto: Toronto, ON, Canada, 2018. Available online:

https://www.researchgate.net/publication/324716038_SOFTWARE-DEFINED_SECURITY (accessed on 20 September 2022).
28. Rahman, O.; Quraishi, M.A.G.; Lung, C.H. DDoS attacks detection and mitigation in SDN using machine learning. In Proceedings

of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; Volume 2642-939X, pp. 184–189. [CrossRef]
29. Khashab, F.; Moubarak, J.; Feghali, A.; Bassil, C. DDoS Attack Detection and Mitigation in SDN using Machine Learning. In

Proceedings of the 2021 IEEE Conference on Network Softwarization: Accelerating Network Softwarization in the Cognitive Age,
(NetSoft), Tokyo, Japan, 28 June–2 July 2021; pp. 395–401. [CrossRef]

30. Kumar Singh, V. DDOS Attack Detection and Mitigation Using Statistical and Machine Learning Methods in SDN. Master’s
Thesis, National College of Ireland, Dublin, Ireland, 2020.

31. Etman, M.A.A. DDoS Attack Detection System Using Semi-Supervised Machine Learning in SDN. Master’s Thesis, Ryerson
University, Toronto, ON, Canada, 2018. [CrossRef]

32. Kotb, S.E.; El-Dien, H.A.; Eldien, A.S. SGuard: Machine learning-based Distrbuted Denial-of-Service Detection Scheme for
Software Defined Network. In Proceedings of the 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference
(MIUCC), Cairo, Egypt, 26–27 May 2021; pp. 251–257. [CrossRef]

33. Gadallah, W.G.; Omar, N.M.; Ibrahim, H.M. Machine learning-based distributed denial of service attacks detection technique
using new features in software-defined networks. Int. J. Comput. Netw. Inf. Secur. 2021, 13, 15–27. [CrossRef]

34. Mohammed, S.S.; Hussain, R.; Senko, O.; Bimaganbetov, B.; Lee, J.Y.; Hussain, F.; Kerrache, C.A.; Barka, E.; Alam Bhuiyan, M.Z.
A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network. In Proceedings of the
2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Limassol,
Cyprus, 15–17 October 2018. [CrossRef]

35. Kyaw, A.T.; Zin Oo, M.; Khin, C.S. Machine-Learning Based DDOS Attack Classifier in Software Defined Network. In Proceedings
of the 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), Phuket, Thailand, 24–27 June 2020; pp. 431–434. [CrossRef]

36. Deepa, V.; Muthamil Sudar, K.; Deepalakshmi, P. Detection of DDoS attack on SDN control plane using hybrid machine learning
techniques. In Proceedings of the International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli,
India, 13–14 December 2018; pp. 299–303. [CrossRef]

37. Nurwarsito, H.; Nadhif, M.F. DDoS Attack Early Detection and Mitigation System on SDN using Random Forest Algorithm
and Ryu Framework. In Proceedings of the 2021 8th International Conference on Computer and Communication Engineering
(ICCCE), Kuala Lumpur, Malaysia, 22–23 June 2021; pp. 178–183. [CrossRef]

38. Sudar, K.M.; Beulah, M.; Deepalakshmi, P.; Nagaraj, P.; Chinnasamy, P. Detection of Distributed Denial of Service Attacks in SDN
using Machine learning techniques. In Proceedings of the 2021 International Conference on Computer Communication and
Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; pp. 1–4. [CrossRef]

39. Ye, J.; Cheng, X.; Zhu, J.; Feng, L.; Song, L. A DDoS Attack Detection Method Based on SVM in Software Defined Network. Secur.
Commun. Netw. 2018, 2018, 9804061. [CrossRef]

40. Bashaireh, B. Cloudflare Reports Q2 2022 DDoS Attack Trends. Zawya, 2022. Available online: https://www.zawya.com/en/
press-release/research-and-studies/cloudflare-reports-q2-2022-ddos-attack-trends-x3erqlfs (accessed on 10 September 2022).

41. Rana, Y. Python: Simple though an Important Programming language. Int. Res. J. Eng. Technol. 2019, 6, 1856–1858.
42. Asadollahi, S.; Goswami, B.; Sameer, M. Ryu controller’s scalability experiment on software defined networks. In Proceedings of

the 2018 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), Bangalore, India, 1–2 February
2018; pp. 1–5. [CrossRef]

43. Noman, H.M.; Jasim, M.N. POX Controller and Open Flow Performance Evaluation in Software Defined Networks (SDN) Using
Mininet Emulator. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 012102. [CrossRef]

44. Dugan, J.; Estabrook, J.; Ferbuson, J.; Gallatin, A.; Gates, M.; Gibbs, K.; Hemminger, S.; Jones, N.; Qi, F.; Renker, G.; et al.
iPerf—The Ultimate Speed Test Tool for TCP, UDP and SCTP. Available online: https://iperf.fr/ (accessed on 10 September 2022).

45. Avallone, S.; Guadagno, S.; Emma, D.; Pescape, A.; Ventre, G. D-ITG distributed Internet traffic generator. In Proceedings of the
First International Conference on the Quantitative Evaluation of Systems, Enschede, The Netherlands, 27–30 September 2004;
pp. 316–317. [CrossRef]

46. IBM. Snmptrap Command IBM DOCUMENTATION. Available online: https://www.ibm.com/docs/en/aix/7.2?topic=s-
snmptrap-command. (accessed on 10 September 2022).

https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://dx.doi.org/10.1145/3533378
http://dx.doi.org/10.32604/cmc.2020.012475
https://www.researchgate.net/publication/324716038_SOFTWARE-DEFINED_SECURITY
http://dx.doi.org/10.1109/SERVICES.2019.00051
http://dx.doi.org/10.1109/NetSoft51509.2021.9492558
http://dx.doi.org/10.32920/ryerson.14657868.v1
http://dx.doi.org/10.1109/MIUCC52538.2021.9447680
http://dx.doi.org/10.5815/ijcnis.2021.03.02
http://dx.doi.org/10.1109/WiMOB.2018.8589104
http://dx.doi.org/10.1109/ECTI-CON49241.2020.9158230
http://dx.doi.org/10.1109/ICSSIT.2018.8748836
http://dx.doi.org/10.1109/ICCCE50029.2021.9467167
http://dx.doi.org/10.1109/ICCCI50826.2021.9402517
http://dx.doi.org/10.1155/2018/9804061
https://www.zawya.com/en/press-release/research-and-studies/cloudflare-reports-q2-2022-ddos-attack-trends-x3erqlfs
https://www.zawya.com/en/press-release/research-and-studies/cloudflare-reports-q2-2022-ddos-attack-trends-x3erqlfs
http://dx.doi.org/10.1109/ICCTAC.2018.8370397
http://dx.doi.org/10.1088/1757-899X/881/1/012102
https://iperf.fr/
http://dx.doi.org/10.1109/QEST.2004.1348045
https://www.ibm.com/docs/en/aix/7.2?topic=s-snmptrap-command
https://www.ibm.com/docs/en/aix/7.2?topic=s-snmptrap-command

Electronics 2022, 11, 4065 31 of 31

47. Hostetter, M.; Kranz, D.A.; Seed, C.; Terman, C.; Ward, S. Curl: A gentle slope language for the Web. World Wide Web J. 1997,
2, 121–134.

48. Sanfilippo, S. Hping. Available online: http://www.hping.org/ (accessed on 10 September 2022).
49. Gupta, A. Distributed Denial of Service Attack Detection Using a Machine Learning Approach. Master’s Thesis, University of

Calgary, Calgary, AB, Canada, 2018. [CrossRef]
50. Stankovic, B.; Kotur, N.; Nikcevic, G.; Gasic, V.; Zukic, B.; Pavlovic, S. Machine Learning Modeling from Omics Data as

Prospective Tool for Improvement of Inflammatory Bowel Disease Diagnosis and Clinical Classifications. Genes 2021, 12, 1438.
[CrossRef] [PubMed]

51. Rochmawati, N.; Hidayati, H.B.; Yamasari, Y.; Yustanti, W.; Rakhmawati, L.; Tjahyaningtijas, H.P.; Anistyasari, Y. Covid
Symptom Severity Using Decision Tree. In Proceedings of the 2020 3rd International Conference on Vocational Education and
Electrical Engineering: Strengthening the framework of Society 5.0 through Innovations in Education, Electrical, Engineering and
Informatics Engineering (ICVEE), Surabaya, Indonesia, 3–4 October 2020; pp. 1–5. [CrossRef]

52. Kurniawati, N.; Putri, D.N.N.; Ningsih, Y.K. Random Forest Regression for Predicting Metamaterial Antenna Parameters. In
Proceedings of the 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE), Lombok, Indonesia, 20–21
October 2020; pp. 174–178. [CrossRef]

53. Jayaswal, V. Performance Metrics: Confusion Matrix, Precision, Recall, and F1 Score. Available online: https://towardsdatascience.
com/performance-metrics-confusion-matrix-precision-recall-and-f1-score-a8fe076a2262 (accessed on 10 September 2022).

54. Brownlee, J. Machine Learning Mastery with Python: Understand Your Data, Create Accurate Models, and Work Projects End-to-End;
Machine Learning Mastery: San Juan, Puerto Rico, 2016.

55. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://www.hping.org/
http://dx.doi.org/10.11575/PRISM/32797
http://dx.doi.org/10.3390/genes12091438
http://www.ncbi.nlm.nih.gov/pubmed/34573420
http://dx.doi.org/10.1109/ICVEE50212.2020.9243246
http://dx.doi.org/10.1109/ICIEE49813.2020.9276899
https://towardsdatascience.com/performance-metrics-confusion-matrix-precision-recall-and-f1-score-a8fe076a2262
https://towardsdatascience.com/performance-metrics-confusion-matrix-precision-recall-and-f1-score-a8fe076a2262

	Introduction
	FON, SDN, and ML Interaction for Security Applications
	Fiber Optical Networks
	Network Management System
	Data Communication Network
	Data Communication Channel
	Normal and Attack Traffic in DCNs of Fiber Optic Networks
	Normal Traffic
	Attack Traffic

	Software-Defined Networking
	OpenFlow Protocol
	Machine Learning

	Related Works
	Motivation
	Methodology
	Network Implementation
	Traffic Generation
	Data Collection and Feature Extraction/Selection
	The Dataset
	Selected Features
	Comparative Study of the Most Popular ML Models
	Determining the Adequate Dataset Size

	Performance Metrics

	Results and Discussion
	Features and Hyperparameter-Based Performance Evaluation
	Comparison Between Different Models and Deploying the Optimal One
	Detection and Mitigation Principle
	Performance Evaluation of FON Using the Selected Model
	Performance Evaluation of the Proposed Model

	Conclusions
	References

