
Citation: Shi, Z.; Wu, Z.; Shi, S.; Mao,

C.; Wang, Y.; Zhao, L.

High-Frequency Forecasting of Stock

Volatility Based on Model Fusion and

a Feature Reconstruction Neural

Network. Electronics 2022, 11, 4057.

https://doi.org/10.3390/

electronics11234057

Academic Editor: Flavio Canavero

Received: 28 October 2022

Accepted: 5 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

High-Frequency Forecasting of Stock Volatility Based on Model
Fusion and a Feature Reconstruction Neural Network
Zhiwei Shi 1 , Zhifeng Wu 1,*, Shuaiwei Shi 2, Chengzhi Mao 1, Yingqiao Wang 1 and Laiqi Zhao 1

1 Institute of Intelligent Computing and Applications, Tianjin University of Technology and Education,
Tianjin 300222, China

2 School of Economics, Hebei University, Baoding 071000, China
* Correspondence: zhifeng.wu@163.com

Abstract: Stock volatility is an important measure of financial risk. Due to the complexity and
variability of financial markets, time series forecasting in the financial field is extremely challenging.
This paper proposes a “model fusion learning algorithm” and a “feature reconstruction neural
network” to forecast the future 10 min volatility of 112 stocks from different industries over the
past three years. The results show that the model in this paper has higher fitting accuracy and
generalization ability than the traditional model (CART, MLR, LightGBM, etc.). This study found that
the “model fusion learning algorithm” can be well applied to financial data modeling; the “feature
reconstruction neural network” can well-model data sets with fewer features.

Keywords: time series model; model fusion; feature reconstruction; data science; stock volatility
forecast; high-frequency quantification

1. Introduction

In recent years, time series models have been explored to solve various engineering
application problems. With the rise of the big data industry, the combination of big
data and the financial field has formed big data finance [1–3]. Time series forecasting
of financial indicators has become a widely studied topic in recent years. However, the
highly complex, highly time-varying, and highly nonlinear nature of data in the financial
sector makes the forecasting of relevant indicators more challenging [4]. In financial
markets, investors are more concerned with forecasting future market trends than accurate
price forecasts. Volatility reflects the magnitude of price fluctuations, and volatility is a
measure of asset price variability using high-frequency data information [5]. Volatility
has extremely important decision-making value in risk management, option pricing, asset
allocation, etc. Accurate forecasting of volatility can reduce uncertainty in investment
decisions and improve investment efficiency for financial firms and investors [6]. Volatility
has become one of the most important quantitative indicators in the current financial
industry [7]. Therefore, the prediction model of volatility is of great academic and practical
research importance.

1.1. Literature Review

In 1959, Osborme proposed the random walk theory which infers that stock prices
are unpredictable [8]. In 1970, Fama’s efficient market hypothesis also inferred that stock
prices could not be efficiently predicted [9]. However, in 1999, the nonrandom walk theory
proposed by Lo and Mackinlay argued that stock prices could be predicted by economic
modeling [10]. In 1971, Barclays Investment Management in the United States issued the
world’s first fund using quantitative investment strategies [11]. The explosive growth and
huge development prospects of the current global quantitative trading market have made
stock-related time series forecasting a hot research topic [12].

Electronics 2022, 11, 4057. https://doi.org/10.3390/electronics11234057 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11234057
https://doi.org/10.3390/electronics11234057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6995-7164
https://doi.org/10.3390/electronics11234057
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11234057?type=check_update&version=2

Electronics 2022, 11, 4057 2 of 28

In past studies by numerous scholars and experts on time series models and the pre-
diction of stock volatility, different researchers have proposed different modeling schemes.
Depending on the research area, the models can be broadly classified into two types:
statistical models and machine learning models.

In the field of economics, volatility is often predicted using statistical models, which are
knowledge paradigms that focus on theoretical perfectionism (data–knowledge–problem).
The autoregressive conditional heteroskedasticity (ARCH) model was first proposed by
Engle in 1982 and used for volatility forecasting [13]. The model was widely used in
the field of time series forecasting because it was able to obtain good forecasting results
for future information by using the variance function. By analyzing the actual situation,
we can find that most time series forecasting research objects (such as stock volatility)
will be affected by macroeconomics, national policies, company management, and other
factors, and there will be strong randomness and sudden changes in future information.
Based on this, in 1986, Bollerslev extended the variance function and further improved the
ARCH model into a generalized autoregressive conditional heteroskedasticity (GARCH)
model [14]. In 2005, Awartani and Corradi proposed that symmetric and asymmetric
GARCH is applicable to symmetric and asymmetric stock volatility forecasting [15]. In
2021, Feng He and Libo Yin experimentally argued that linear regression models can also
be effective in predicting stock volatility [16].

With the development of the computing performance of data centers and the improve-
ment of financial markets, the data generated from real-time transactions and quantitative
statistics have become more and more accurate, and financial big data with a precision of
seconds is now commonly formed. High-frequency volatility has different characteristics
than low-frequency volatility, with a negative correlation of time series, periodic U-shape,
calendar effect, and long memory while the classical models based on low-frequency data
(ARCH, SV, and GARCH) are difficult to use for the analysis of high-frequency data.

With the rise of artificial intelligence, machine learning has begun to be applied to
solve various engineering challenges. While econometric models focus on being logic-
driven, AI models focus more on being data-driven (data-problem), which is a kind of
historical empiricism. In 2017, Li et al. accurately predicted the long- and short-term prices
of copper using a regression tree model [17]. With the development of machine learning,
many scholars have shifted their attention from single models to ensemble learning models,
which have proven to be powerful performance metalearning algorithms, such as boosting
and bagging. In 2016, Khaidem successfully forecasted stock returns by building a random
forest model using the bagging algorithm on a decision tree model. In 2019, Basak, S. et al.
implemented gradient-boosting decision trees (GBDT) using the distributed computing
framework XGBoost and demonstrated that the GBDT (decision tree and boosting) al-
gorithm outperformed random forests in the forecasting of stock volatility [18]. In 2022,
Raubitzek and Neubauer et al. validated the powerful performance and advantages of
GBDT in time series modeling (e.g., stock forecasting) [19].

Artificial neural networks (ANN) and deep learning frameworks have been hot re-
search topics in artificial intelligence in recent years. Deep learning is a feature learning
approach that converts raw data into a higher-level, more abstract representation process
through a set of simple transformation methods, that is, using enough simple transforma-
tion functions and their various combinations to learn a complex objective function. It
was found that any finite continuous function can be approximated by artificial neural
networks, so artificial neural nets have fewer restrictions on model training and work
well for regression fitting of both linear and nonlinear relationships. In 1988, White et al.
used artificial neural networks to successfully predict the daily volatility of IBM stock [20].
However, the strong randomness and dynamic nonlinearity of financial big data make
the fit of ordinary neural networks poor, and in 1997, Hochreiter et al. proposed the long
short-term memory neural network (LSTM) [21]. The LSTM can store temporal information
and has proven to be a very successful deep learning framework in various engineering
applications of time series modeling. The LSTM is a kind of recurrent neural network

Electronics 2022, 11, 4057 3 of 28

(RNN). Unlike feedforward neural networks, recurrent neural networks have the mode of
learning time through feedback connections, so RNNs have unique advantages in model-
ing and analyzing data of time series. Based on the advantages of LSTM, many scholars
have successfully applied it to the forecasting research of financial indicators. In 2012,
Maknickiene and Maknickas improved the prediction performance of feedforward neural
networks using LSTM models and demonstrated that RNN models outperformed CNN
models for the prediction of financial data information [22]. In 2015, Chen predicted the
returns of the Chinese stock market by LSTM modeling [23]. In 2017, Nelson et al. used an
LSTM model to predict the volatility of the stock market [24].

1.2. The Study of this Paper

In the current research on time series models, although the relevant algorithms pro-
posed by the above scholars have achieved good results, there are still some problems to be
solved: (1) Initially, scholars used single machine learning for training, and the prediction
error was relatively high. In recent years, ensemble learning models have been used to
iteratively optimize the models, such as bagging to reduce variance and boosting to reduce
bias, but there is no way to reduce both bias and variance. (2) If a neural network is directly
used for training, the model has poor interpretability and high uncertainty, the increase
of input parameters will cause the model complexity to be too high, and the time and
computational resources consumed for model training are not optimistic. (3) Before the era
of artificial intelligence, the contradiction of intelligent algorithms was between the lack of
algorithms and the growing demand for algorithms from users. With the development of
artificial intelligence and big data, the contradiction of intelligent algorithms becomes a
contradiction between the limited versatility of algorithms and the diversity of engineering
problems. Although this is an era of algorithm enrichment, there is no perfect algorithm
and no universal model. In 1997, Wolpert and Macready proposed the “no free lunch”
theorem that no single model can provide the most accurate predictions for all time series
data and that specific modeling approaches must be found for specific problems because
universal solutions are unlikely to emerge [25,26].

To address these issues, the following research is presented in this paper: Statistics and
artificial intelligence are often distinguished, and it is generally believed that they belong to
different research fields, with the former focusing on interpretable processes and the latter
on optimal output results. From the perspective of data science, this paper organically
combines the modeling techniques in these two fields to form a better modeling solution. In
this paper, we innovatively propose a model fusion algorithm to jointly complete modeling
with different and differentiated base models and model fusers according to different data
sets in practical engineering applications, which not only can well-combine the unique
advantages of each base model but also can adapt to different time series problems and
improve the prediction accuracy and generalization ability.

The main contributions of this paper are as follows:

(1) The contradiction of current intelligent algorithms is pointed out: the contradiction
between the limited generality of intelligent algorithms and the diversity of engineer-
ing problems. A model fusion algorithm is proposed to solve this contradiction, and
a theoretical analysis was performed. The algorithm can improve the generality of
existing models and can be applied to different practical engineering problems in the
future, providing new ideas for the research direction of intelligent algorithms;

(2) The MLR–LightGBM–LSTM and MLR–LightGBM–FRNN models are designed to
predict the high-frequency volatility of 112 stocks from different industries, and the
obtained prediction results have lower bias and variance than the existing mainstream
models, and the model accuracy and credibility are further improved. In this paper,
the same model was used to train and predict 112 stocks instead of modeling each
stock separately, which is more in line with real engineering application scenarios;

(3) Using LSTM as a model fuser retains the advantage of predicting time series while
avoiding the high expendability and instability caused by direct training with deep

Electronics 2022, 11, 4057 4 of 28

learning frameworks, providing a dimensionality reduction idea for deep learning
modeling. In terms of error, using neural networks can quickly help the hybrid
model find the balance of bias and variance, making the hybrid model simultaneously
high-fitting and strongly generalizable;

(4) In this paper, a feature reconstruction neural network (FRNN) is innovatively pro-
posed for datasets with few features. It can solve the problems of high error and slow
fitting when existing neural networks are modeled for datasets with few features.

2. Theoretical Basis

This section briefly introduces the basic principles of MLR, CART, LightGBM, and
LSTM. It also describes in detail the system architecture of the model fusion algorithm, the
learning approach, the prediction process, and the designed MLR–LightGBM–LSTM model
and features reconstruction neural network.

2.1. MLR (Multiple Linear Regression)
2.1.1. Mathematical Models

Linear regression is one of the most famous models in statistics. It uses regression
analysis to determine the interdependent quantitative relationship between two or more
variables. For a multiple regression problem with m input variables, the model takes the
form of:

ŷ = β0 + β1x1 + β2x2 + · · ·+ βmxm + ε (1)

ŷ: The forecast value of the response variable;
β0: Unknown regression constants;
β1, β2,+ · · ·+ βm: Unknown model coefficients;
x1, x2,+ · · ·+, xm: The input variable;
ε: Random error.

2.1.2. Solving the Regression Equation

The least squares method is used to solve the estimate
_
β of the parameter vector β

such that the random error term ε and the sum of squared residuals (SSE) are minimized.
CART can be used as both a classification tree and regression tree [27]. The regression
model uses an error sum-of-squares metric.

SSE =
n

∑
i=1

ε2
i =

n

∑
i=1

(yi − ŷi)
2 (2)

Xβ̂ = Y (3)

(XTX)β̂ = XTY (4)

Solving the regression equation:

Ŷ = β̂X + ε (5)

2.2. CART (Classification and Regression Tree)

In 1984, the decision regression tree (CART) model was proposed by Breiman et al. [28].
The CART regression tree algorithm is described as follows:

Step 1: Divide each value of each feature into two parts D1 and D2, calculate their
error sum of squares, and use the minimum value of the error sum of squares as the
division criterion to divide the optimal feature A and the optimal cut point a. The formula
is as follows.

min
A,a

min
c1

∑
xi∈D1(A,a)

(yi − c1)
2 + min

c2
∑

xi∈D2(A,a)
(yi − c2)

2

 (6)

Electronics 2022, 11, 4057 5 of 28

c1: The mean of the output of D1 samples;
c2: The mean of the output of D2 samples.
Step 2: Divide the data set of this node into D1 and D2 parts according to A and a, and

get the corresponding output values.

D1(A, a) = (x, y) ∈ D|A(x) ≤ a (7)

D2(A, a) = (x, y) ∈ D|A(x) > a (8)

c1 = average(yi|xi ∈ D1(A, a)) (9)

c2 = average(yi|xi ∈ D2(A, a)) (10)

Step 3. Continue to divide the two-part subset of the output according to steps one
and two until the optimal combination of feature variables is found.

Step 4: Divide the input space into D1, D2, . . . , Dn to generate a CART regression tree,
input the test set to the model, and use the mean values of the leaf nodes as the regression
prediction results.

2.3. LightGBM

In 1990, Hansen and Salamon proposed that using a set of models was better than
using a single model for classification, and this research gave rise to the idea of ensemble
learning [29]. Ensemble learning is the combination of different base models to achieve
the effect of model optimization. By “base models”, we mean some unstable models,
and “unstable” means that small changes in training data can cause large changes in
prediction results.

2.3.1. Bagging and Boosting

In 1996, Leo Breiman proposed the bagging integration approach (as shown in
Figure 1), which combines several training subsets of the same machine learning algo-
rithm to produce the final prediction results, thus effectively reducing the variance of the
model [30].

Electronics 2022, 11, 4057 5 of 29

Step 1: Divide each value of each feature into two parts 1D and 2D , calculate their
error sum of squares, and use the minimum value of the error sum of squares as the divi-
sion criterion to divide the optimal feature A and the optimal cut point a. The formula is
as follows.

()
()

()
()

1 2
1 2

2 2
1 2,

, ,

min min min
i i

i iA a c c
x D A a x D A a

y c y c
∈ ∈

 − + −

 (6)

1c : The mean of the output of 1D samples;

2c : The mean of the output of 2D samples.
Step 2: Divide the data set of this node into 1D and 2D parts according to A and

a , and get the corresponding output values.

() () ()1 , , |D A a x y D A x a= ∈ ≤ (7)

() () ()2 , ,D A a x y D A x a= ∈ (8)

()()1 1| ,i ic average y x D A a= ∈ (9)

()()2 2| ,i ic average y x D A a= ∈ (10)

Step 3. Continue to divide the two-part subset of the output according to steps one
and two until the optimal combination of feature variables is found.

Step 4: Divide the input space into 1 2 nD D D…， ，， to generate a CART regression
tree, input the test set to the model, and use the mean values of the leaf nodes as the re-
gression prediction results.

2.3. LightGBM
In 1990, Hansen and Salamon proposed that using a set of models was better than

using a single model for classification, and this research gave rise to the idea of ensemble
learning [29]. Ensemble learning is the combination of different base models to achieve
the effect of model optimization. By “base models”, we mean some unstable models, and
“unstable” means that small changes in training data can cause large changes in predic-
tion results.

2.3.1. Bagging and Boosting
In 1996, Leo Breiman proposed the bagging integration approach (as shown in Figure

1), which combines several training subsets of the same machine learning algorithm to
produce the final prediction results, thus effectively reducing the variance of the model
[30].

Figure 1. Description of bagging principle. Figure 1. Description of bagging principle.

In 1990, Schapire proposed the boosting method (as shown in Figure 2), which com-
bines multiple weak models in a weighted way to form a strong model and iteratively
optimizes it through the optimal solution of the loss function, which can effectively reduce
the bias of the model [31].

Electronics 2022, 11, 4057 6 of 28

Electronics 2022, 11, 4057 6 of 29

In 1990, Schapire proposed the boosting method (as shown in Figure 2), which com-
bines multiple weak models in a weighted way to form a strong model and iteratively opti-
mizes it through the optimal solution of the loss function, which can effectively reduce the
bias of the model [31].

Figure 2. Description of boosting principle.

2.3.2. GBDT and LightGBM
A gradient boosting decision tree (GBDT) is formed by using gradient boosting for

CART. The light gradient boosting machine (LightGBM) is the best-performing GBDT im-
plementation framework available [32–34].

Divide the data set into () () (){ }1 1 2 2, , , ,..., ,m mD X Y X Y X Y= . The modeling process is
as follows, where h is the learner, L is the loss function, and c is the optimal output value
of the leaf node.

Step 1. Initialize the decision regression tree learner.

()0
1

arg ,
M

c i
i

h min L y c
=

= (11)

Step 2. For the number of iterations 1,2, ,t T= .

(a) For each sample 1,2, ,i M= calculate the negative gradient (residual) for t itera-
tions.

()()
()

() ()1

,

t

i i
ti

i
f x f x

L y f x
r

f x
−=

 ∂
 = −

∂
 (12)

(b) The residuals are used as the target values of the sample data, and (),i tix r
1,2, ,i M= is used as the training data of the tth tree to fit a new regression tree

()th x , which corresponds to a leaf node region of ()1,2, ,tjR j J= , where J is the
number of leaf nodes of the regression tree.

(c) The value of the corresponding leaf node region ()1,2, ,tjR j J= is estimated by go-
ing to the case where the loss function is minimized.

()()1arg ,
i tj

tj c i m i
x R

r min L y h x r−
∈

= + (13)

Figure 2. Description of boosting principle.

2.3.2. GBDT and LightGBM

A gradient boosting decision tree (GBDT) is formed by using gradient boosting for
CART. The light gradient boosting machine (LightGBM) is the best-performing GBDT
implementation framework available [32–34].

Divide the data set into D = {(X1, Y1), (X2, Y2), . . . , (Xm, Ym)}. The modeling process
is as follows, where h is the learner, L is the loss function, and c is the optimal output value
of the leaf node.

Step 1. Initialize the decision regression tree learner.

h0 = argminc

M

∑
i=1

L(yi, c) (11)

Step 2. For the number of iterations t = 1, 2, · · · , T.

(a) For each sample i = 1, 2, · · · , M calculate the negative gradient (residual) for t
iterations.

rti = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= ft−1(x)

(12)

(b) The residuals are used as the target values of the sample data, and (xi, rti) i = 1,2, · · · , M
is used as the training data of the tth tree to fit a new regression tree ht(x), which
corresponds to a leaf node region of Rtj(j = 1, 2, · · · , J), where J is the number of leaf
nodes of the regression tree.

(c) The value of the corresponding leaf node region Rtj(j = 1, 2, · · · , J) is estimated by
going to the case where the loss function is minimized.

rtj = argminc ∑
xi∈Rtj

L(yi, hm−1(xi) + r) (13)

(d) Update the learner.

hm(x) = hm−1(x) +
J

∑
j=1

rtj I
(
x ∈ Rtj

)
(14)

Step 3. Generate the final model.

h(x) = hj(x) = h0(x) +
T

∑
t=1

J

∑
j=1

rtj I
(
x ∈ Rtj

)
(15)

Electronics 2022, 11, 4057 7 of 28

2.4. LSTM (Long Short-Term Memory)

The introduction of artificial neural networks has produced many deep learning
frameworks, the most famous being the convolutional neural network (CNN) proposed
by Alexander Waibel et al. in 1987 and the recurrent neural network (RNN) proposed by
Jeffrey Elman in 1990, the latter having superior performance in time series prediction [26].

2.4.1. RNN (Recurrent Neural Network)

X, S, and O in the Figure 3 denote vectors: X denotes the value of the input layer; S
denotes the value of the hidden layer with the same number of nodes as the dimension of
S; O denotes the value of the output layer, U is the weight matrix from the input layer to
the hidden layer, and V is the weight matrix from the hidden layer to the output layer. The
value S of the hidden layer of the RNN is determined by both the input X this time and the
value St−1 of the previously hidden layer. The value of the previously hidden layer is used
as the input weight W for this time.

Electronics 2022, 11, 4057 7 of 29

(d) Update the learner.

() () ()1
1

J

m m tj tj
j

h x h x r I x R−
=

= + ∈ (14)

Step 3. Generate the final model.

() () () ()0
1 1

T J

j tj tj
t j

h x h x h x r I x R
= =

= = + ∈ (15)

2.4. LSTM (Long Short-Term Memory)
The introduction of artificial neural networks has produced many deep learning frame-

works, the most famous being the convolutional neural network (CNN) proposed by Alex-
ander Waibel et al. in 1987 and the recurrent neural network (RNN) proposed by Jeffrey
Elman in 1990, the latter having superior performance in time series prediction [26].

2.4.1. RNN (Recurrent Neural Network)
X, S, and O in the Figure 3 denote vectors: X denotes the value of the input layer; S

denotes the value of the hidden layer with the same number of nodes as the dimension of
S; O denotes the value of the output layer, U is the weight matrix from the input layer to
the hidden layer, and V is the weight matrix from the hidden layer to the output layer.
The value S of the hidden layer of the RNN is determined by both the input X this time
and the value 1tS − of the previously hidden layer. The value of the previously hidden
layer is used as the input weight W for this time.

Figure 3. Structure of RNN.

RNN calculation formula:

()*t tO g V S= (16)

()1* *t t tS f U X W S −= + (17)

Here, g and f are the activation functions.
However, RNNs are prone to gradient explosion and gradient disappearance during

training, resulting in gradients that cannot be passed all the way through longer

Figure 3. Structure of RNN.

RNN calculation formula:
Ot = g(V ∗ St) (16)

St = f (U ∗ Xt + W ∗ St−1) (17)

Here, g and f are the activation functions.
However, RNNs are prone to gradient explosion and gradient disappearance during

training, resulting in gradients that cannot be passed all the way through longer sequences,
so RNNs cannot capture information over long distances and cannot get good time series
prediction results.

2.4.2. LSTM

To overcome these drawbacks, Hochreiter and Schmidedhuber proposed the long
short-term memory network (LSTM) in 1997, which is a deformation of the RNN [35]. The
process of LSTM unfolding by time is shown in Figure 4.

Electronics 2022, 11, 4057 8 of 28

Electronics 2022, 11, 4057 8 of 29

sequences, so RNNs cannot capture information over long distances and cannot get good
time series prediction results.

2.4.2. LSTM
To overcome these drawbacks, Hochreiter and Schmidedhuber proposed the long

short-term memory network (LSTM) in 1997, which is a deformation of the RNN [35]. The
process of LSTM unfolding by time is shown in Figure 4.

Figure 4. Cell state.

The LSTM has three inputs: the input value tx of the network at the current mo-
ment, the output value 1th − of the LSTM at the previous moment, and the cell state 1tc −
at the previous moment. The LSTM has two outputs: the output value th of the LSTM at
the current moment and the cell state tc at the current moment. The LSTM introduces
the concept of the gate. The LSTM uses forgetting gates and inputs to control the content
of the cell state c. The output gates and the cell state together determine the output of the
LSTM. The detailed calculation process of LSTM is shown in Figure 5.

Figure 4. Cell state.

The LSTM has three inputs: the input value xt of the network at the current moment,
the output value ht−1 of the LSTM at the previous moment, and the cell state ct−1 at the
previous moment. The LSTM has two outputs: the output value ht of the LSTM at the
current moment and the cell state ct at the current moment. The LSTM introduces the
concept of the gate. The LSTM uses forgetting gates and inputs to control the content of the
cell state c. The output gates and the cell state together determine the output of the LSTM.
The detailed calculation process of LSTM is shown in Figure 5.

Electronics 2022, 11, 4057 9 of 29

Figure 5. The calculation process of LSTM (* denotes the Hadamard product of the matrix.).

The forget gate determines how much of the previous moment’s cell state is retained
at the current moment.

()1,t f t t ff W h X bσ −= + • (18)

fW is the weight matrix of the forgetting gate, t 1][h , tX− denotes connecting two
vectors into a longer vector, fb is the bias term of the forgetting gate, and σ is the sig-
moid function.

The input gate determines how much of the current moment’s network input is saved
to the cell state tC .

()1,t i t t ii W h X bσ −= + • (19)

iW is the weight matrix of the input gate, and ib is the bias term of the input gate.
The current input cell state is tC′ , which is calculated based on the previous output

and the current input.

()1,c t t ct tanC h W h X b−′ = + • (20)

tanh is the activation function.
This provides the Hadamard product of the cell state 1tC − of the previous moment

and the forgotten gate tf and the Hadamard product of the cell state tC′ of the current
input and the input gate ti . The two products are then summed to produce the cell state

tC of the current moment.

1* * tt t t tC C Cf i−= + ′ (21)

Below is the output gate to control how many cell states tC are output to the current output
value ht .

()0 1 0,t t to W h X bσ −= + • (22)

The final output of the LSTM is determined by both the output gate and the cell state
is as follows:

()*t t th o tanh c= (23)

Figure 5. The calculation process of LSTM (* denotes the Hadamard product of the matrix).

The forget gate determines how much of the previous moment’s cell state is retained
at the current moment.

ft = σ
(

W f •[ht−1, Xt] + b f

)
(18)

Electronics 2022, 11, 4057 9 of 28

W f is the weight matrix of the forgetting gate, [h t−1, Xt] denotes connecting two
vectors into a longer vector, b f is the bias term of the forgetting gate, and σ is the sig-
moid function.

The input gate determines how much of the current moment’s network input is saved
to the cell state Ct.

it = σ(Wi•[ht−1, Xt] + bi) (19)

Wi is the weight matrix of the input gate, and bi is the bias term of the input gate.
The current input cell state is C′t, which is calculated based on the previous output and

the current input.
C′t = tanh(Wc•[ht−1, Xt] + bc) (20)

tanh is the activation function.
This provides the Hadamard product of the cell state Ct−1 of the previous moment

and the forgotten gate ft and the Hadamard product of the cell state C′t of the current input
and the input gate it. The two products are then summed to produce the cell state Ct of the
current moment.

Ct = ft ∗ Ct−1 + it ∗ C′t (21)

Below is the output gate to control how many cell states Ct are output to the current
output value ht.

ot = σ(W0•[ht−1, Xt] + b0) (22)

The final output of the LSTM is determined by both the output gate and the cell state
is as follows:

ht = ot ∗ tanh(ct) (23)

We described the computational procedures of MLR, CART, LightGBM, and LSTM,
which are classical regression algorithms that have also been used in time series forecast-
ing studies or stock volatility forecasting studies, and we will use these algorithms for
experimental and comparative analyses later on.

3. Methodology Innovation

This part innovatively proposes a model fusion algorithm and feature reconstruction
neural network and designs the MLR–LightGBM–LSTM model and MLR–LightGBM–
FRNN model.

3.1. Model Fusion Learning Algorithms
3.1.1. Algorithm Description

A large amount of the literature shows that different regression algorithms have their
own advantages, disadvantages, and adaptability for different data. In this paper, we
propose a model fusion meta-algorithm, using a neural network as a model fuser and a
traditional statistical model or a machine learning model as a base model, and using the
fuser to fuse different base models and combining the advantages of each base model to find
the balance point of the bias and variance of the hybrid model. The specific implementation
method is that each base model is first trained and optimized individually, and then the
output of each base model is used as the input of the model fuser for training and prediction.
The strategy of the model fusion learning algorithm is that different base models and model
fusers can be selected for different data characteristics or business requirements, and the
model fusion learning strategy has an algorithmic relative universality. When selecting
a base model, we should pay attention to the diversification and difference between the
models. The purpose of model fusion is to integrate the advantages of different models
and avoid the shortcomings and shortcomings of a single model. The formula is described
as follows:

Oi = fi(X)(i = 1, . . . , n) (24)

Y = h([O1, . . . , On]) (25)

Electronics 2022, 11, 4057 10 of 28

Oi: The output value of the i-th base model;
fi: The i-th base model;
Y: The output value after model fusion;
h: Model fuser.

3.1.2. Theoretical Analysis

Different base models are obtained by different algorithms trained on the same dataset,
and the models obtained by different algorithms have different preferences. The model
fuser combines the output and target values of each base learner to complete the training
and modeling, which can intuitively explain why the model fusion strategy can be success-
ful. Learners with different preferences can label data samples differently, e.g., learner A
should be able to learn some information that learner B does not have, i.e., data samples
that cannot be labeled correctly by learner B may be labeled correctly by learner A and
vice versa. If learners A and B have large differences, then fusing their mutual learning
results may achieve better results, so it is possible that the existence of differences between
different learners is a condition for the success of the model fusion algorithm.

Argumentation:
A, B denote the two base learners;
d(A, B) denotes the difference between learners A and B;
eA denotes the error rate of A and eB denotes the error rate of B.
The following inequalities exist:

0 ≤ eA ≤ 1 (26)

0 ≤ eB ≤ 1 (27)

0 ≤ d(A, B) ≤ 1 (28)

There are various choices of model fusers, and the model fuser chosen in this paper is
a neural network, which is used to learn a complex objective function by means of multiple
simple functions and their different combinations, which can be simply expressed by the
following equation:

Ycom = W1Y1(X) + W2Y2(X) + C (29)

For the same data sample X, if the confidence level of the output Y1(X) from A learner
is greater than that of the output Y2(X) from B learner, then the fuser will pay more
attention to the output of A learner when learning and vice versa. The final result Ycom
produced by the fuser will be closer to the target value.

When d(A, B) is larger, the greater the labeling inconsistency between learner A and
learner B for data sample X, the greater the difference between the information learned by
learner A and that learned by learner B, and the more different the information contributed
by A, B learners to the fuser. The fuser learns according to the principle of finding the best
optimization, then the following results will be generated.

0 ≤ ecom ≤ min(eA, eB) (30)

It can be concluded from the above derivation that the difference between the base
learners is a sufficient condition for the success of the model fusion strategy algorithm, i.e.,
as long as there is a difference between the base learners, the overall prediction accuracy
can be improved by the model fusion algorithm. The different base learners show mutual
support in the training process.

However, for the current study, there is no specific metric that can be used to measure
the difference between the underlying models (i.e., d in Equation (28)). In this paper,
we propose to portray the distance between models by quantifying their learning results

Electronics 2022, 11, 4057 11 of 28

during training. In this paper, two quantification formulas (31) and (32) are proposed,
which are respectively applicable to normalized and non-normalized data.

d(A, B) =
√
(yA1 − yB1)

2 + (yA2 − yB2)
2 + · · ·+ (yAn − yBn)

2 (31)

d(A, B) = 1− |∑n
i=1 yAiyBi|√

∑n
i=1 y2

Ai

√
∑n

i=1 y2
Bi

(32)

3.1.3. MLR–LightGBM–LSTM

At present, the mainstream modeling techniques for time series prediction problems
are MLR, CART, LightGBM, and LSTM. For the specific problem of stock price return
volatility prediction, a model fusion algorithm was used to design the hybrid model shown
in Figure 6 and named MLR–LightGBM–LSTM, which uses LSTM as the model fuser and
MLR and LightGBM as the base models. “Algorithm 1” shows a detailed description of
the algorithm.

Electronics 2022, 11, 4057 12 of 29

Figure 6. Architecture of MLR–LightGBM–LSTM model.

Algorithm 1. Description of MLR–LightGBM–LSTM algorithm.

MLR–LightGBM–LSTM
Input: Historical stock trading data (divided into training set and test set).
Output: The future volatility of the stock.
Modeling
Step 1: Model the training dataset with MLR and LightBoost, respectively, and train the
two learners to the best state by tuning the parameters.
Step 2: The feature values of the training set are input to the trained MLR and
LightBoost, respectively, and the output results of the two models as well as the target
value (true volatility) are used as the input to the LSTM for modeling, and the LSTM is
trained by tuning the parameters.
#Forecast
Step 3: The feature values of the test dataset are input into MLR and LightBoost for pre-
diction, respectively.
Step 4: The prediction results of MLR and LightBoost are used as the input of LSTM to
get the final prediction.

The selection of models in MLR–LightGBM–LSTM is based on the following:
The use of MLR in statistics ensures low variance of the prediction model, LightGBM

in machine learning ensures low bias of the prediction model, and two base models with
large differences ensure the diversity of models and outputs.

A neural network is a kind of low-bias, high-variance model which belongs to an
unstable learner. Facing high-dimensional and dynamically changing financial big data,
if neural networks are used directly for prediction, there are disadvantages, such as being
time-consuming, being resource-consuming, being difficult to adjust hyperparameters,
having poor stability, and having poor interpretability (black box algorithm). The predic-
tion results of the two base learners are used as inputs, and the LSTM is used as a model
fuser to further fit the regression, providing a dimensionality reduction idea for deep
learning, which not only combines the advantages of the two base models but also avoids
the disadvantages of directly using neural networks for prediction. The advantages of au-
tonomous adaptation, autonomous learning, fast fitting, and fast optimization search of
neural networks are used to find the balance of variance and bias of the hybrid model so
that the interpretability, stability, accuracy, and generalization ability of the model can
reach the optimal state.

Figure 6. Architecture of MLR–LightGBM–LSTM model.

Algorithm 1. Description of MLR–LightGBM–LSTM algorithm.

MLR–LightGBM–LSTM
Input: Historical stock trading data (divided into training set and test set).
Output: The future volatility of the stock.
Modeling
Step 1: Model the training dataset with MLR and LightBoost, respectively, and train the two
learners to the best state by tuning the parameters.
Step 2: The feature values of the training set are input to the trained MLR and LightBoost,
respectively, and the output results of the two models as well as the target value (true volatility)
are used as the input to the LSTM for modeling, and the LSTM is trained by tuning the
parameters.
#Forecast
Step 3: The feature values of the test dataset are input into MLR and LightBoost for prediction,
respectively.
Step 4: The prediction results of MLR and LightBoost are used as the input of LSTM to get the
final prediction.

The selection of models in MLR–LightGBM–LSTM is based on the following:
The use of MLR in statistics ensures low variance of the prediction model, LightGBM

in machine learning ensures low bias of the prediction model, and two base models with
large differences ensure the diversity of models and outputs.

Electronics 2022, 11, 4057 12 of 28

A neural network is a kind of low-bias, high-variance model which belongs to an
unstable learner. Facing high-dimensional and dynamically changing financial big data, if
neural networks are used directly for prediction, there are disadvantages, such as being
time-consuming, being resource-consuming, being difficult to adjust hyperparameters,
having poor stability, and having poor interpretability (black box algorithm). The prediction
results of the two base learners are used as inputs, and the LSTM is used as a model
fuser to further fit the regression, providing a dimensionality reduction idea for deep
learning, which not only combines the advantages of the two base models but also avoids
the disadvantages of directly using neural networks for prediction. The advantages of
autonomous adaptation, autonomous learning, fast fitting, and fast optimization search
of neural networks are used to find the balance of variance and bias of the hybrid model
so that the interpretability, stability, accuracy, and generalization ability of the model can
reach the optimal state.

3.2. Feature Reconfiguration Neural Network(FRNN)

In terms of Taylor’s formula, any differentiable function can be approximated by a
neighborhood nth-order expansion to fit the original function. The modeling principle of
deep learning is similar to Taylor’s formula, so the number of features of the data directly
determines the effect of deep learning; the more features of the data, the better the effect of
deep learning. As of now, deep learning does not work well for modeling if the number
of features is small. To address this academic problem, this paper proposes a feature
reconstruction neural network, and the proposed model can get good modeling results
even in the face of data sets with a small number of features.

The steps of the feature reconstruction neural network calculation are as follows:

(1) Obtain the time series characteristics of the data. The detailed calculation process is
shown in Figure 7.

LSTM_Out = LSTM(Sequence_Length, Time_Series, Feature_Size, Hidden_Size) (33)

(2) Use a multilayer perceptron to perform feature compression, and then feature am-
plification can extract more information and avoid adding redundant features. The
detailed calculation process is shown in Figure 8

MLP_Out = MLP(LSTM_Out) (34)

(1) Add attention-boosting mechanism to LSTM;

LSTM_Boost = LSTM_Out ∗MLP_Out (35)

(2) One-dimensional convolution on time series information occurs so that the data before
and after convolution have the same size and can both reduce feature redundancy
and prevent feature loss. The detailed calculation process is shown in Figure 9.

Time_Convolution = Conv1d(LSTM_out(Time_Series)) (36)

(3) Obtain information about the weights of the time series;

Time_Boost = Time_Convolution− LSTM_out (37)

(4) One-dimensional convolution of feature information on the time series occurs so that
the data before and after convolution have the same size can both reduce feature
redundancy and prevent feature loss. The detailed calculation process is shown in
Figure 10.

Feature_Convolution = Conv1d(Time_Enhance(Feature_Size)) (38)

Electronics 2022, 11, 4057 13 of 28

(5) The enhanced LSTM features, time series weight information, and feature weight
information are fused. The detailed calculation process is shown in Figure 11.

Feature_Boost = LSTM_Boost ∗ Feature_Convolution (39)

(6) Retain the time series data at the end and output the feature information after recon-
struction. The detailed calculation process is shown in Figure 12.

Feature_Recon f iguration = Feature_Boost(Time_Series = Last) (40)

Electronics 2022, 11, 4057 13 of 29

3.2. Feature Reconfiguration Neural Network(FRNN)
In terms of Taylor’s formula, any differentiable function can be approximated by a

neighborhood nth-order expansion to fit the original function. The modeling principle of
deep learning is similar to Taylor’s formula, so the number of features of the data directly
determines the effect of deep learning; the more features of the data, the better the effect
of deep learning. As of now, deep learning does not work well for modeling if the number
of features is small. To address this academic problem, this paper proposes a feature re-
construction neural network, and the proposed model can get good modeling results even
in the face of data sets with a small number of features.

The steps of the feature reconstruction neural network calculation are as follows:
(1) Obtain the time series characteristics of the data. The detailed calculation process is

shown in Figure 7.

(_ _ , _ , _), _LSTM Out LSTM Sequence Length Time Series Feature Size Hidden Size= (33)

Figure 7. LSTM_Out.

(2) Use a multilayer perceptron to perform feature compression, and then feature ampli-
fication can extract more information and avoid adding redundant features. The de-
tailed calculation process is shown in Figure 8.

_ _MLP Out MLP LSTM Out= （ ） (34)

Figure 7. LSTM_Out.Electronics 2022, 11, 4057 14 of 29

Figure 8. MLP_Out.

(1) Add attention-boosting mechanism to LSTM;

_ _ * _LSTM Boost LSTM Out MLP Out= (35)

(2) One-dimensional convolution on time series information occurs so that the data be-
fore and after convolution have the same size and can both reduce feature redun-
dancy and prevent feature loss. The detailed calculation process is shown in Figure
9.

()()_ 1 _ _Time Convolution Conv d LSTM out Time Series= (36)

Figure 9. Time_Convolution.

(3) Obtain information about the weights of the time series;

Figure 8. MLP_Out.

Electronics 2022, 11, 4057 14 of 28

Electronics 2022, 11, 4057 14 of 29

Figure 8. MLP_Out.

(1) Add attention-boosting mechanism to LSTM;

_ _ * _LSTM Boost LSTM Out MLP Out= (35)

(2) One-dimensional convolution on time series information occurs so that the data be-
fore and after convolution have the same size and can both reduce feature redun-
dancy and prevent feature loss. The detailed calculation process is shown in Figure
9.

()()_ 1 _ _Time Convolution Conv d LSTM out Time Series= (36)

Figure 9. Time_Convolution.

(3) Obtain information about the weights of the time series;

Figure 9. Time_Convolution.

Electronics 2022, 11, 4057 15 of 29

_ _ _Time Boost Time Convolution LSTM out= − (37)

(4) One-dimensional convolution of feature information on the time series occurs so that
the data before and after convolution have the same size can both reduce feature re-
dundancy and prevent feature loss. The detailed calculation process is shown in Fig-
ure 10.

()()_ 1 _ _Feature Convolution Conv d Time Enhance Feature Size= (38)

Figure 10. Festure_Convolution.

(5) The enhanced LSTM features, time series weight information, and feature weight in-
formation are fused. The detailed calculation process is shown in Figure 11.

_ _ * _Feature Boost LSTM Boost Feature Convolution= (39)

Figure 11. Festure_Boot.

Figure 10. Festure_Convolution.

We described the computational procedures of the proposed model fusion strategy and
feature reconstruction neural network, and we performed experiments and comparative
analysis using these algorithms.

Electronics 2022, 11, 4057 15 of 28

Electronics 2022, 11, 4057 15 of 29

_ _ _Time Boost Time Convolution LSTM out= − (37)

(4) One-dimensional convolution of feature information on the time series occurs so that
the data before and after convolution have the same size can both reduce feature re-
dundancy and prevent feature loss. The detailed calculation process is shown in Fig-
ure 10.

()()_ 1 _ _Feature Convolution Conv d Time Enhance Feature Size= (38)

Figure 10. Festure_Convolution.

(5) The enhanced LSTM features, time series weight information, and feature weight in-
formation are fused. The detailed calculation process is shown in Figure 11.

_ _ * _Feature Boost LSTM Boost Feature Convolution= (39)

Figure 11. Festure_Boot. Figure 11. Festure_Boot.

Electronics 2022, 11, 4057 16 of 29

(6) Retain the time series data at the end and output the feature information after recon-
struction. The detailed calculation process is shown in Figure 12.

)_ _ (_Feature Reconfiguration Feature Boost Time Series Last= = (40)

Figure 12. Feature_Reconfiguration.

We described the computational procedures of the proposed model fusion strategy
and feature reconstruction neural network, and we performed experiments and compar-
ative analysis using these algorithms.

4. Experiments and Results
Figure 13 and Algorithm 2 describe the overall idea and steps of the simulation ex-

periment.

Figure 13. Experimental steps.

Figure 12. Feature_Reconfiguration.

4. Experiments and Results

Figure 13 and Algorithm 2 describe the overall idea and steps of the simulation experiment.

Electronics 2022, 11, 4057 16 of 28

Electronics 2022, 11, 4057 16 of 29

(6) Retain the time series data at the end and output the feature information after recon-
struction. The detailed calculation process is shown in Figure 12.

)_ _ (_Feature Reconfiguration Feature Boost Time Series Last= = (40)

Figure 12. Feature_Reconfiguration.

We described the computational procedures of the proposed model fusion strategy
and feature reconstruction neural network, and we performed experiments and compar-
ative analysis using these algorithms.

4. Experiments and Results
Figure 13 and Algorithm 2 describe the overall idea and steps of the simulation ex-

periment.

Figure 13. Experimental steps. Figure 13. Experimental steps.

Algorithm 2. Simulation Description.

Stock Volatility Forecast
Input: Historical data of stock trading.
Output: The future volatility of the stock.
#Data preprocessing
Step 1. Data description: Understand the data structure of the dataset, perform data cleaning,
missing value processing, data normalization, and divided into training set and test sets.
Step 2. Exploratory analysis of data: Explore the overall distribution of the dataset and prepare for
the parameter setting of feature engineering and data modeling.
Step 3. Feature engineering: According to step 2, feature engineering and vector coding are
performed on the dataset from the perspective of the data.
#Modeling and Training
Step 4. Modeling training and parameter tuning are performed for MLR, CART, LightGBM,
LSTM, MLR–LightGBM–LSTM, and MLR–LightGBM–FRNN, respectively.
#Model Evaluation
Step 5. A variety of evaluation functions are selected to evaluate the model.
#Experimental results and analysis
Step 6. Analyze the prediction results of all models and discuss the value of model fusion
algorithms and feature reconstruction neural networks.

4.1. Data Preprocessing
4.1.1. Data Description

The experimental dataset was derived from hundreds of millions of refined historical
financial data provided externally by Optiver which were the trading histories of 112 stocks
in different sectors over the last three years with time precision measured in seconds [36].
This dataset reflected the very rare high-frequency quantitative trading problem. The
datasets were diverse and different, and conducting experiments with them together could
more comprehensively and truly evaluate the effectiveness and practicality of the model.
The data structure of the datasets used for the experiments is shown in Table 1.

Electronics 2022, 11, 4057 17 of 28

Table 1. Data Structure.

Data Name Data Description

stock_id Stock ID
time_id Time window ID for stock trading

seconds_in_bucket Specific time points (in seconds of precision)
bid_price Expected bid price for a buy order
ask_price Expected ask price of sell orders
bid_size Expected number of sell orders
ask_size Expected number of buy orders

The objective of the experiment was to predict future 10 min stock volatility using
historical 10 min stock trading data. St is the price of stock S at time t. The formula for the
logarithmic rate of return between t1 and t2 is:

rt1,t2 = log
(

St2

St1

)
(41)

The logarithmic rate of return for a 10 min fixed time window can be expressed as:

rt = rt−10min,t (42)

The square root of the sum of the squares of the log returns of all consecutive trades is
the definition of volatility σ [37].

σ =

√
n

∑
t

r2
t−1,t (43)

After normalizing the data set, the data were divided into a training set and a test set
in the ratio of 9:1. To ensure the reliability of the resulting model, the data in the test set
were all from the future time period compared to the training set.

4.1.2. Exploratory Analysis of Data

Figure 14 shows the data length distribution of time windows in the training set (with
the stock ID of 0 as an example): a 10 min time window contains 600 s of time points, and
the amount of data in the different time windows for each stock was different and normally
distributed, and the amount of data in most time windows is less than 600, so the data was
discontinuous. The data segment seconds_in_bucket implicitly contains information on
stock activity, which can provide inspiration for feature engineering.

Electronics 2022, 11, 4057 18 of 29

10 ,t t min tr r −= (42)

The square root of the sum of the squares of the log returns of all consecutive trades
is the definition of volatility σ [37].

2
1,σ

n
t tt
r −= (43)

After normalizing the data set, the data were divided into a training set and a test set
in the ratio of 9:1. To ensure the reliability of the resulting model, the data in the test set
were all from the future time period compared to the training set.

4.1.2. Exploratory Analysis of Data
Figure 14 shows the data length distribution of time windows in the training set (with

the stock ID of 0 as an example): a 10 min time window contains 600 s of time points, and
the amount of data in the different time windows for each stock was different and nor-
mally distributed, and the amount of data in most time windows is less than 600, so the
data was discontinuous. The data segment seconds_in_bucket implicitly contains infor-
mation on stock activity, which can provide inspiration for feature engineering.

Figure 14. Data volume distribution for time windows.

Figure 15 shows that the volatility distributions of both single stocks and all stocks in
different time windows showed a Poisson distribution. It can provide direction for the
selection of loss function in modeling.

Figure 14. Data volume distribution for time windows.

Electronics 2022, 11, 4057 18 of 28

Figure 15 shows that the volatility distributions of both single stocks and all stocks
in different time windows showed a Poisson distribution. It can provide direction for the
selection of loss function in modeling.

Electronics 2022, 11, 4057 19 of 29

Figure 15. Volatility distribution ((a,b) denote the data distribution of single stocks and all stocks.).

4.1.3. Feature Engineering
Based on the exploratory analysis of the data, feature engineering was performed

from the data perspective, as shown in Figure 16, with stock_id,time_id as the label. More
features were generated horizontally with stock_id,time_id,target as the label and sec-
onds_in_bucket as the target. Panel data were generated by vertical aggregation. The gen-
erated data were uniformly coded and then used for model training and prediction.

Figure 16. Feature engineering.

4.2. Modeling and Training
4.2.1. Experimental Environment

The simulation environment and the model training and prediction environment was
Python 3.X. The experimental platform was a CPU: AMD Ryzen 9 5900HX; GPU: NVIDIA
GeForce RTX 3080; 32.00 GB installed RAM.

In this paper, the same model was used to train and predict 112 stocks instead of
modeling each stock separately, which is more in line with real engineering application
scenarios.

The main libraries used in the experiments were the data computation libraries
NumPy and Pandas, the machine learning library Scikit-learn, and the deep learning li-
braries PyTorch and Keras.

4.2.2. Model Parameter Setting
The following model parameters were given by trial-and-error analysis and com-

bined with computational costs.
MLR and CART were solved optimally using least squares and MSE, respectively.

The parameters of LightGBM are set as shown in Table 2.

Figure 15. Volatility distribution ((a,b) denote the data distribution of single stocks and all stocks).

4.1.3. Feature Engineering

Based on the exploratory analysis of the data, feature engineering was performed
from the data perspective, as shown in Figure 16, with stock_id,time_id as the label.
More features were generated horizontally with stock_id,time_id,target as the label and
seconds_in_bucket as the target. Panel data were generated by vertical aggregation. The
generated data were uniformly coded and then used for model training and prediction.

Electronics 2022, 11, 4057 19 of 29

Figure 15. Volatility distribution ((a,b) denote the data distribution of single stocks and all stocks.).

4.1.3. Feature Engineering
Based on the exploratory analysis of the data, feature engineering was performed

from the data perspective, as shown in Figure 16, with stock_id,time_id as the label. More
features were generated horizontally with stock_id,time_id,target as the label and sec-
onds_in_bucket as the target. Panel data were generated by vertical aggregation. The gen-
erated data were uniformly coded and then used for model training and prediction.

Figure 16. Feature engineering.

4.2. Modeling and Training
4.2.1. Experimental Environment

The simulation environment and the model training and prediction environment was
Python 3.X. The experimental platform was a CPU: AMD Ryzen 9 5900HX; GPU: NVIDIA
GeForce RTX 3080; 32.00 GB installed RAM.

In this paper, the same model was used to train and predict 112 stocks instead of
modeling each stock separately, which is more in line with real engineering application
scenarios.

The main libraries used in the experiments were the data computation libraries
NumPy and Pandas, the machine learning library Scikit-learn, and the deep learning li-
braries PyTorch and Keras.

4.2.2. Model Parameter Setting
The following model parameters were given by trial-and-error analysis and com-

bined with computational costs.
MLR and CART were solved optimally using least squares and MSE, respectively.

The parameters of LightGBM are set as shown in Table 2.

Figure 16. Feature engineering.

4.2. Modeling and Training
4.2.1. Experimental Environment

The simulation environment and the model training and prediction environment was
Python 3.X. The experimental platform was a CPU: AMD Ryzen 9 5900HX; GPU: NVIDIA
GeForce RTX 3080; 32.00 GB installed RAM.

In this paper, the same model was used to train and predict 112 stocks instead of
modeling each stock separately, which is more in line with real engineering application sce-
narios.

The main libraries used in the experiments were the data computation libraries NumPy
and Pandas, the machine learning library Scikit-learn, and the deep learning libraries
PyTorch and Keras.

Electronics 2022, 11, 4057 19 of 28

4.2.2. Model Parameter Setting

The following model parameters were given by trial-and-error analysis and combined
with computational costs.

MLR and CART were solved optimally using least squares and MSE, respectively. The
parameters of LightGBM are set as shown in Table 2.

Table 2. LightGBM parameter settings.

Parameters Value Description

n_estimators 20,000 The maximum number of times the base model can perform boosting is 20,000.
objective rmse The model uses L2 as the loss function.

boosting_type gbdt The base learner is a gradient-boosting decision tree.
max_depth −1 There is no maximum depth limit for the model.

learning_rate 0.01 The model learning rate is 0.01.
subsample 0.8 For each tree, 80% of the samples are randomly selected as training samples.

subsample_freq 4 Boosting is performed once every four times.
feature_fraction 0.8 For each tree, 80% of the features are selected as training samples.

lambda_l1 1 The regularization factor of L1 is 1.
lambda_l2 1 The regularization factor of L2 is 1.

random_state 66 The random number seed is 66.
early_stping_rounds 500 If the model performs 500 cycles without improvement, training is stopped.

n_fold 10 Perform 10 times crossvalidation.

The distance between MLR and LightGBM was calculated by Equation (31) as 0.40.
The model fuser in MLR–LightGBM–LSTM is a multilayer neural network shown in

Figure 17: the first layer is an LSTM layer consisting of 100 neurons; the second layer is
an LSTM layer consisting of 10 neurons, and the third layer is a dense layer. In order to
prevent the overfitting phenomenon and improve the generalization ability of the fuser, the
Dropout (0.2) method was used for the first two layers, i.e., the neurons were temporarily
discarded according to a probability of twenty percent during the training process. The
specific parameter settings are shown in Table 3.

Electronics 2022, 11, 4057 20 of 29

Table 2. LightGBM parameter settings.

Parameters Value Description
n_estimators 20,000 The maximum number of times the base model can perform boosting is 20,000.

objective rmse The model uses L2 as the loss function.
boosting_type gbdt The base learner is a gradient-boosting decision tree.

max_depth −1 There is no maximum depth limit for the model.
learning_rate 0.01 The model learning rate is 0.01.

subsample 0.8 For each tree, 80% of the samples are randomly selected as training samples.
subsample_freq 4 Boosting is performed once every four times.
feature_fraction 0.8 For each tree, 80% of the features are selected as training samples.

lambda_l1 1 The regularization factor of L1 is 1.
lambda_l2 1 The regularization factor of L2 is 1.

random_state 66 The random number seed is 66.
early_stping_rounds 500 If the model performs 500 cycles without improvement, training is stopped.

n_fold 10 Perform 10 times crossvalidation.

The distance between MLR and LightGBM was calculated by Equation (31) as 0.40.
The model fuser in MLR–LightGBM–LSTM is a multilayer neural network shown in

Figure 17: the first layer is an LSTM layer consisting of 100 neurons; the second layer is an
LSTM layer consisting of 10 neurons, and the third layer is a dense layer. In order to pre-
vent the overfitting phenomenon and improve the generalization ability of the fuser, the
Dropout (0.2) method was used for the first two layers, i.e., the neurons were temporarily
discarded according to a probability of twenty percent during the training process. The
specific parameter settings are shown in Table 3.

Figure 17. LSTM model fuser.

Table 3. LSTM parameter setting.

Parameters Value Description
loss mean_squared_error The loss function is the root mean square error.

optimizers Adam (0.00001) The training process uses Adam as the optimization algorithm with a learning
rate of 0.00001.

epochs 1000 The maximum number of iterations is 1000.
validation_freq 5 Step length of 5

batch_size 30,096 The batch size is 30,096.

The experimental parameters of FRNN are set as shown in the legend in Section 3.2.

Figure 17. LSTM model fuser.

Electronics 2022, 11, 4057 20 of 28

Table 3. LSTM parameter setting.

Parameters Value Description

loss mean_squared_error The loss function is the root mean square error.

optimizers Adam (0.00001) The training process uses Adam as the optimization algorithm with a learning
rate of 0.00001.

epochs 1000 The maximum number of iterations is 1000.
validation_freq 5 Step length of 5

batch_size 30,096 The batch size is 30,096.

The experimental parameters of FRNN are set as shown in the legend in Section 3.2.

4.2.3. Model Evaluation

When assessing and analyzing the performance and predictive power of a model, it
is necessary to use a variety of different evaluation metrics [38,39]. In order to evaluate
the model comprehensively, MSE (the most common metric for prediction models), MAE
(considering the outlier error), RMSE (considering the magnitude problem), RMSPE (root
mean square percentage error), MAPE (considering the error proportionality problem), and
SMAPE (considering the error symmetry problem) were used as evaluation metrics, and
R2 was used to evaluate the goodness of fit [40–43].

MSE =
1
n

n

∑
t=1

(σ̂t − σt)
2 (44)

MAE =
1
n

n

∑
t=1
|σ̂t − σt| (45)

RMSE =

√
1
n

n

∑
t=1

(σ̂t − σt)
2 (46)

RMSPE =
1
n

√√√√ n

∑
t=1

(
σt − σ̂t

σt

)2

(47)

MAPE =
1
n

n

∑
t=1

∣∣∣∣σt − σ̂t

σt

∣∣∣∣ (48)

SMAPE =
1
n

n

∑
t=1

|σ̂t − σt|
(σt + σ̂t)/2

(49)

R2 = 1− ∑n
t=1(σt − σ̂t)

2

∑n
t=1(σt − σt)

2 (50)

σt is the real value of volatility when the time window is t, and σ̂t is the predicted
value of volatility when the time window is t. Therefore, the smaller the value of the above
error index, the higher the accuracy of the model prediction is, and the larger the R2 is, the
better the model fit is.

4.3. Empirical Results and Analysis
4.3.1. Model Fusion Algorithm

The prediction results of different models for the test set are given in Figure 18. For the
sake of display and observation, the data in Figure 19 are 20 randomly selected prediction
points. It is easy to find that the MLR–LightGBM–LSTM and MLR–LightGBM–FRNN
models have the best prediction results both in terms of accuracy and stability. Although
the volatility changes of different stocks in different sectors in different time windows
are different, the prediction results of the hybrid model are closer to the true values. The

Electronics 2022, 11, 4057 21 of 28

volatility shown in Figure 18 is nonlinear, nonstationary, and prone to abrupt changes, so
ensemble learning has become the preferred prediction algorithm, and numerous schol-
ars have demonstrated in practice that ensemble learning is the classical algorithm with
excellent performance [44,45], but the experimental results show that the model fusion
algorithm can still further improve the performance of the hybrid model.

Electronics 2022, 11, 4057 22 of 29

Figure 18. Comparison of prediction results for the test set.

Figure 19. Comparison of random samples of forecasted results.

To quantify the prediction results for 112 stocks, Figure 20 and Table 4 show the error
results for the different models. The MSE, RMSE, MAE, MAPE, and SMAPE of MLR–
LightGBM–LSTM are smaller than other models, and the R2 of MLR–LightGBM–LSTM is
larger than other models, indicating that the prediction accuracy and goodness of fit of
MLR–LightGBM–LSTM are the best among all models.

Figure 18. Comparison of prediction results for the test set.

To quantify the prediction results for 112 stocks, Figure 20 and Table 4 show the error
results for the different models. The MSE, RMSE, MAE, MAPE, and SMAPE of MLR–
LightGBM–LSTM are smaller than other models, and the R2 of MLR–LightGBM–LSTM
is larger than other models, indicating that the prediction accuracy and goodness of fit of
MLR–LightGBM–LSTM are the best among all models.

Electronics 2022, 11, 4057 22 of 29

Figure 18. Comparison of prediction results for the test set.

Figure 19. Comparison of random samples of forecasted results.

To quantify the prediction results for 112 stocks, Figure 20 and Table 4 show the error
results for the different models. The MSE, RMSE, MAE, MAPE, and SMAPE of MLR–
LightGBM–LSTM are smaller than other models, and the R2 of MLR–LightGBM–LSTM is
larger than other models, indicating that the prediction accuracy and goodness of fit of
MLR–LightGBM–LSTM are the best among all models.

Figure 19. Comparison of random samples of forecasted results.

Electronics 2022, 11, 4057 22 of 28
Electronics 2022, 11, 4057 23 of 29

Figure 20. Model bias comparison (a-g are seven different evaluation metrics.).

Table 4. Model bias comparison (Based on test sets).

 MSE RMSE MAE RMSPE MAPE SMAPE R2
CART 0.27532 × 10−5 0.00166 0.00101 0.27141 0.20808 0.22230 0.73743
MLR 0.20759 × 10−5 0.00144 0.00094 0.21600 0.18684 0.20519 0.80203

LightGBM 0.15806 × 10−5 0.00126 0.00074 0.17369 0.13959 0.15523 0.84926
MLR–LightGBM–LSTM 0.13816 × 10−5 0.00118 0.00065 0.16472 0.12187 0.13429 0.86824

Bias describes the difference between the predicted value and the true value and re-
flects the prediction accuracy of the model [46]. Variance describes the degree of difference
between the model’s effect in the training set and the test set and reflects the generaliza-
tion ability of the model [47]. Bias and variance are important measures of model robust-
ness but finding the balance of bias–variance is a major challenge in regression modeling.
Figure 21 shows that the bias and variance are in an inverse correlation and how the bias
and variance balance of the model determines the final performance of the model.

Figure 20. Model bias comparison (a–g are seven different evaluation metrics).

Table 4. Model bias comparison (Based on test sets).

MSE RMSE MAE RMSPE MAPE SMAPE R2

CART 0.27532 × 10−5 0.00166 0.00101 0.27141 0.20808 0.22230 0.73743

MLR 0.20759 × 10−5 0.00144 0.00094 0.21600 0.18684 0.20519 0.80203
LightGBM 0.15806 × 10−5 0.00126 0.00074 0.17369 0.13959 0.15523 0.84926

MLR–LightGBM–LSTM 0.13816 × 10−5 0.00118 0.00065 0.16472 0.12187 0.13429 0.86824

Bias describes the difference between the predicted value and the true value and
reflects the prediction accuracy of the model [46]. Variance describes the degree of difference
between the model’s effect in the training set and the test set and reflects the generalization
ability of the model [47]. Bias and variance are important measures of model robustness but
finding the balance of bias–variance is a major challenge in regression modeling. Figure 21
shows that the bias and variance are in an inverse correlation and how the bias and variance
balance of the model determines the final performance of the model.

Electronics 2022, 11, 4057 23 of 28Electronics 2022, 11, 4057 24 of 29

Figure 21. Bias–variance relationship.

Table 8 is obtained from the absolute value of the difference between Table 4 and
Table 5. Combining Figure 22 and Table 6, it can be observed that all models have biases
between the training set error and the test set error, and these biases affect the confidence
level of the model effects. As shown above, MLR–LightGBM–LSTM exhibits excellent
model confidence while ensuring prediction accuracy. Compared with the ensemble
learning algorithm, the model fusion algorithm can not only reduce the bias but also re-
duce the variance. Although the variance of the MLR model also presents a good ad-
vantage, the accuracy of the MLR model is not high.

Figure 22. Model variance comparison (a-g are seven different evaluation metrics.).

Table 5 Model bias comparison (based on the training set).

Figure 21. Bias–variance relationship.

Table 6 is obtained from the absolute value of the difference between Tables 4 and 5.
Combining Figure 22 and Table 6, it can be observed that all models have biases between
the training set error and the test set error, and these biases affect the confidence level
of the model effects. As shown above, MLR–LightGBM–LSTM exhibits excellent model
confidence while ensuring prediction accuracy. Compared with the ensemble learning
algorithm, the model fusion algorithm can not only reduce the bias but also reduce the
variance. Although the variance of the MLR model also presents a good advantage, the
accuracy of the MLR model is not high.

Electronics 2022, 11, 4057 24 of 29

Figure 21. Bias–variance relationship.

Table 8 is obtained from the absolute value of the difference between Table 4 and
Table 5. Combining Figure 22 and Table 6, it can be observed that all models have biases
between the training set error and the test set error, and these biases affect the confidence
level of the model effects. As shown above, MLR–LightGBM–LSTM exhibits excellent
model confidence while ensuring prediction accuracy. Compared with the ensemble
learning algorithm, the model fusion algorithm can not only reduce the bias but also re-
duce the variance. Although the variance of the MLR model also presents a good ad-
vantage, the accuracy of the MLR model is not high.

Figure 22. Model variance comparison (a-g are seven different evaluation metrics.).

Table 5 Model bias comparison (based on the training set).

Figure 22. Model variance comparison (a–g are seven different evaluation metrics).

Electronics 2022, 11, 4057 24 of 28

Table 5. Model bias comparison (based on the training set).

MSE RMSE MAE RMSPE MAPE SMAPE R2

CART 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
MLR 0.15826 × 10−5 0.00126 0.00074 0.18222 0.17122 0.19261 0.82133

LightGBM 0.10063 × 10−5 0.00100 0.00054 0.16199 0.12722 0.13255 0.88640
MLR–LightGBM–LSTM 0.11625 × 10−5 0.00108 0.00062 0.16374 0.11541 0.13130 0.86876

Table 6. Error Variance (obtained through Tables 4 and 5).

MSE RMSE MAE RMSPE MAPE SMAPE R2

CART 0.27532 × 10−5 0.00166 0.00101 0.27141 0.20808 0.22230 0.73743
MLR 0.04933 × 10−5 0.00018 0.00020 0.03378 0.01562 0.01258 0.01930

LightGBM 0.05743 × 10−5 0.00025 0.00021 0.01170 0.01236 0.02268 0.03714
MLR–LightGBM–LSTM 0.02191 × 10−5 0.00010 0.00004 0.00098 0.00646 0.00300 0.00052

4.3.2. Feature Reconfiguration Neural Network

In a MLR–LightGBM–LSTM model, the outputs of MLR and LightGBM are used as the
inputs to the LSTM, and the two features are not conducive to the training of a deep learning
framework. In this paper, we innovatively propose a feature reconstruction neural network
to replace LSTM as a model fuser to generate a new hybrid model: MLR–LightGBM–FRNN.

The hidden layer input of an LSTM is 100 neural units, and the hidden layer input
of an FRNN is 12 neural units. An FRNN has a lower model complexity and consumes
fewer computational resources. Figure 23 shows the loss function curves of the two models
when the learning rate and learning step are the same. It can be seen from the figure that
the training speed of the FRNN is much faster than that of the LSTM.

It can be seen through Figure 24 and Table 7 that an FRNN as a model fuser has
higher fit optimization and lower error rate than an LSTM deep learning framework as a
model fuser.

Electronics 2022, 11, 4057 25 of 29

 MSE RMSE MAE RMSPE MAPE SMAPE R2
CART 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
MLR 0.15826 × 10−5 0.00126 0.00074 0.18222 0.17122 0.19261 0.82133

LightGBM 0.10063 × 10−5 0.00100 0.00054 0.16199 0.12722 0.13255 0.88640
MLR–LightGBM–LSTM 0.11625 × 10−5 0.00108 0.00062 0.16374 0.11541 0.13130 0.86876

Table 6. Error Variance (obtained through Tables 4 and 5.

 MSE RMSE MAE RMSPE MAPE SMAPE R2
CART 0.27532 × 10−5 0.00166 0.00101 0.27141 0.20808 0.22230 0.73743
MLR 0.04933 × 10−5 0.00018 0.00020 0.03378 0.01562 0.01258 0.01930

LightGBM 0.05743 × 10−5 0.00025 0.00021 0.01170 0.01236 0.02268 0.03714
MLR–LightGBM–LSTM 0.02191 × 10−5 0.00010 0.00004 0.00098 0.00646 0.00300 0.00052

4.3.2. Feature Reconfiguration Neural Network
In a MLR–LightGBM–LSTM model, the outputs of MLR and LightGBM are used as

the inputs to the LSTM, and the two features are not conducive to the training of a deep
learning framework. In this paper, we innovatively propose a feature reconstruction neu-
ral network to replace LSTM as a model fuser to generate a new hybrid model: MLR–
LightGBM–FRNN.

The hidden layer input of an LSTM is 100 neural units, and the hidden layer input of
an FRNN is 12 neural units. An FRNN has a lower model complexity and consumes fewer
computational resources. Figure 23 shows the loss function curves of the two models
when the learning rate and learning step are the same. It can be seen from the figure that
the training speed of the FRNN is much faster than that of the LSTM.

Figure 23. Comparison of loss function curves of FRNN and LSTM.

It can be seen through Figure 24 and Table 7 that an FRNN as a model fuser has
higher fit optimization and lower error rate than an LSTM deep learning framework as a
model fuser.

Figure 23. Comparison of loss function curves of FRNN and LSTM.

Electronics 2022, 11, 4057 25 of 28Electronics 2022, 11, 4057 26 of 29

Figure 24. Bias comparison (a-g are seven different evaluation metrics.).

Table 7. Error comparison of models.

 MSE RMSE MAE RMSPE MAPE SMAPE R2
MLR–LightGBM–LSTM 0.13816 × 10−5 0.00118 0.00065 0.16472 0.12187 0.13429 0.86824
MLR–LightGBM–FRNN 0.11282 × 10−5 0.00106 0.00055 0.14933 0.10161 0.11190 0.89240

5. Conclusions
Time series forecasting has always been a hot and difficult research topic in academic,

business, and engineering fields. Quantitative trading is growing rapidly in the financial
markets, and its market share is increasing while there is a huge potential space. Stock
return volatility is an important measure of financial risk, and volatility forecasting is crit-
ical for investors, policymakers, and researchers. However, stock prices are often charac-
terized by irregular fluctuations and sudden changes, making the accurate and stable pre-
diction of volatility a difficult and challenging problem.

High-frequency trading data can be accurate to the closing price at minute/second,
fully ensuring that important market information is not lost, making the volatility esti-
mated based on high-frequency data contain richer volatility information. Realized vola-
tility is an estimated amount of volatility constructed based on closing prices during the
trading day, which, to some extent, misses market information. For investors, studying
high-frequency volatility can help them better grasp trading costs in short-term trading
and seek reasonable trading opportunities to obtain higher investment returns.

Figure 24. Bias comparison (a–g are seven different evaluation metrics).

Table 7. Error comparison of models.

MSE RMSE MAE RMSPE MAPE SMAPE R2

MLR–LightGBM–LSTM 0.13816 × 10−5 0.00118 0.00065 0.16472 0.12187 0.13429 0.86824
MLR–LightGBM–FRNN 0.11282 × 10−5 0.00106 0.00055 0.14933 0.10161 0.11190 0.89240

5. Conclusions

Time series forecasting has always been a hot and difficult research topic in academic,
business, and engineering fields. Quantitative trading is growing rapidly in the financial
markets, and its market share is increasing while there is a huge potential space. Stock
return volatility is an important measure of financial risk, and volatility forecasting is critical
for investors, policymakers, and researchers. However, stock prices are often characterized
by irregular fluctuations and sudden changes, making the accurate and stable prediction of
volatility a difficult and challenging problem.

High-frequency trading data can be accurate to the closing price at minute/second,
fully ensuring that important market information is not lost, making the volatility estimated
based on high-frequency data contain richer volatility information. Realized volatility is an
estimated amount of volatility constructed based on closing prices during the trading day,
which, to some extent, misses market information. For investors, studying high-frequency
volatility can help them better grasp trading costs in short-term trading and seek reasonable
trading opportunities to obtain higher investment returns.

Electronics 2022, 11, 4057 26 of 28

In this paper, the MLR–LightGBM–LSTM model and MLR–LightGBM–FRNN model
were designed for the specific problem of stock volatility prediction using an LSTM and
FRNN as model fusers and an MLR and LightGBM as base models. To investigate the
predictive performance of the model, experiments were conducted on stock trading data
of 112 different industries from the last three years. The performance of the model was
measured based on evaluation metrics such as MSE, RMSE, MAE, MAPE, SMAPE, and
R2. The qualitative and quantitative results show that the hybrid model outperformed
the current mainstream models on all evaluation criteria, and the hybrid model has better
fitting and generalization abilities. Since the stock market is a very complex and unstable
system, prediction is extremely difficult if the time window is too long. The model in this
paper can make a relatively accurate prediction of the volatility of the next 10 min, which is
of great practical importance.

The main innovations made in this paper are as follows: (1) identification of the
contradiction of current intelligent algorithms: the contradiction between the limited
versatility of intelligent algorithms and the diversity of engineering problems. (2) The
model fusion algorithm was proposed and theoretically analyzed, providing a research
direction for the relative universality of the algorithm and a solution for the bias–variance
balance. (3) The proposed model fuser provides a new direction for the application of
neural networks and provides a dimensionality reduction idea for modeling deep learning.
(4) Feature reconstruction neural networks can provide a better deep learning framework
for modeling datasets with fewer features. (5) In this paper, the same model was used to
train and predict 112 stocks instead of modeling each stock separately, which is more in
line with real engineering application scenarios.

With the advent of the big data era, complex and diverse data problems have emerged
in various engineering fields. In an algorithm-rich environment, we must improve the
performance of modeling by combining the advantages of multiple algorithms. We hope
that more outstanding scholars will join the research direction of model fusion in the future
to provide more possibilities for the solution of data problems. The direction of benign
development of intelligent algorithms should not just be to increase the number of new
algorithms. In the future, our team will continue to explore the possibility of fusion between
more machine learning algorithms; combine the advantages of different existing intelligent
algorithms; explore the development of more types of model fusers; and explore more
relatively universal modeling solutions to solve engineering problems.

Author Contributions: Conceptualization, Z.S. and Z.W.; methodology, Z.S.; software, Z.S.; valida-
tion, Z.S., C.M. and Y.W.; investigation, L.Z.; resources, S.S.; data curation, S.S.; writing review and
editing, Z.W.; visualization, Z.S.; supervision, Z.W.; project administration, Z.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Tianjin Research Innovation Project for Postgraduate Students:
2021YJSS226; Tianjin Science and Technology Planning Project: 22KPXMRC00170; and Science and
Technology Think Tank Young Talent Program, China: 20220615ZZ07110153.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the study
design, data collection, analysis or interpretation of the data, manuscript writing, or decision to
publish the results.

References
1. Nateghi, R.; Aven, T. Risk Analysis in the Age of Big Data: The Promises and Pitfalls. Risk Anal. 2021, 41, 1751–1758. [CrossRef]

[PubMed]
2. Bisht, D.; Singh, R.; Gehlot, A.; Akram, S.V.; Singh, A.; Montero, E.C.; Priyadarshi, N.; Twala, B. Imperative Role of Integrating

Digitalization in the Firms Finance: A Technological Perspective. Electronics 2022, 11, 3252. [CrossRef]
3. Shi, Z.; Wu, Z.; Zhang, Z.; Chen, Y.; Liu, X. Learning Path Planning Algorithm Based on Career Goals and Artificial Intelligence.

Int. J. Emerg. Technol. Learn. 2022, 17, 256–272. [CrossRef]

http://doi.org/10.1111/risa.13682
http://www.ncbi.nlm.nih.gov/pubmed/33448087
http://doi.org/10.3390/electronics11193252
http://doi.org/10.3991/ijet.v17i10.28455

Electronics 2022, 11, 4057 27 of 28

4. Al-Nefaie, A.H.; Aldhyani, T.H.H. Predicting Close Price in Emerging Saudi Stock Exchange: Time Series Models. Electronics
2022, 11, 3443. [CrossRef]

5. Daradkeh, M.K. A Hybrid Data Analytics Framework with Sentiment Convergence and Multi-Feature Fusion for Stock Trend
Prediction. Electronics 2022, 11, 250. [CrossRef]

6. Jia, F.; Yang, B. Forecasting Volatility of Stock Index: Deep Learning Model with Likelihood-Based Loss Function. Complexity
2021, 2021, 5511802. [CrossRef]

7. Aouadi, A.; Arouri, M.; Roubaud, D. Information Demand and Stock Market Liquidity: International Evidence. Econ. Model.
2018, 70, 194–202. [CrossRef]

8. Osborne, M.F.M. Brownian Motion in the Stock Market. Oper. Res. 1959, 7, 145–173. [CrossRef]
9. Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ. 1970, 25, 383. [CrossRef]
10. Brown, E. A Non-Random Walk Down Wall Street. J Econ. Surv. 1999, 13, 477–478. [CrossRef]
11. Rossi, S.; Tinn, K. Rational Quantitative Trading in Efficient Markets. J. Econ. Theory 2021, 191, 105127. [CrossRef]
12. Shternshis, A.; Mazzarisi, P.; Marmi, S. Efficiency of the Moscow Stock Exchange before 2022. Entropy 2022, 24, 1184. [CrossRef]

[PubMed]
13. Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Economet-

rica 1982, 50, 987. [CrossRef]
14. Bollerslev, T. Generalized Autoregressive Conditional Heteroskedasticity. J. Econom. 1986, 31, 307–327. [CrossRef]
15. Awartani, B.M.A.; Corradi, V. Predicting the Volatility of the S&P-500 Stock Index via GARCH Models: The Role of Asymmetries.

Int. J. Forecast. 2005, 21, 167–183. [CrossRef]
16. He, F.; Yin, L. Shocks to the Equity Capital Ratio of Financial Intermediaries and the Predictability of Stock Return Volatility. J.

Forecast. 2021, 40, 945–962. [CrossRef]
17. Khaidem, L.; Saha, S.; Dey, S.R. Predicting the Direction of Stock Market Prices Using Random Forest. arXiv 2016, arXiv:1605.00003.

[CrossRef]
18. Basak, S.; Kar, S.; Saha, S.; Khaidem, L.; Dey, S.R. Predicting the Direction of Stock Market Prices Using Tree-Based Classifiers.

North Am. J. Econ. Financ. 2019, 47, 552–567. [CrossRef]
19. Raubitzek, S.; Neubauer, T. An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data.

Entropy 2022, 24, 332. [CrossRef]
20. White Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns. In Proceedings of the IEEE

International Conference on Neural Networks, San Diego, CA, USA, 24–27 July 1988; IEEE: San Diego, CA, USA, 1988; Volume 2,
pp. 451–458.

21. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
22. Maknickienė, N.; Maknickas, A. Application of Neural Network for Forecasting of Exchange Rates and Forex Trading. In

Proceedings of the 7th International Scientific Conference “Business and Management 2012”, Vilnius, Lithuania, 1–2 November
2012; Selected papers. Vilnius Gediminas Technical University Publishing House Technika: Vilnius, Lithuania, 2012; pp. 122–127.

23. Chen, K.; Zhou, Y.; Dai, F. A LSTM-Based Method for Stock Returns Prediction: A Case Study of China Stock Market. In
Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 29 October–1 November
2015; IEEE: Santa Clara, CA, USA, 2015; pp. 2823–2824.

24. Nelson, D.M.Q.; Pereira, A.C.M.; de Oliveira, R.A. Stock Market’s Price Movement Prediction with LSTM Neural Networks. In
Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017;
IEEE: Anchorage, AK, USA, 2017; pp. 1419–1426.

25. Wolpert, D.H. The Lack of A Priori Distinctions Between Learning Algorithms. Neural Comput. 1996, 8, 1341–1390. [CrossRef]
26. van der Aalst, W.; Damiani, E. Processes Meet Big Data: Connecting Data Science with Process Science. IEEE Trans. Serv. Comput.

2015, 8, 810–819. [CrossRef]
27. Tufte, E.R.; Cohen, J.; Cohen, P. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. J. Am. Stat. Assoc.

1979, 74, 935. [CrossRef]
28. Loh, W. Classification and Regression Trees. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. [CrossRef]
29. Hansen, L.K.; Salamon, P. Neural Network Ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [CrossRef]
30. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
31. Schapire, R.E. The Strength of Weak Learnability. Mach. Learn. 1990, 5, 197–227. [CrossRef]
32. Zhong, R.; Johnson, R.; Chen, Z. Generating Pseudo Density Log from Drilling and Logging-While-Drilling Data Using Extreme

Gradient Boosting (XGBoost). Int. J. Coal Geol. 2020, 220, 103416. [CrossRef]
33. Lv, J.; Wang, C.; Gao, W.; Zhao, Q. An Economic Forecasting Method Based on the LightGBM-Optimized LSTM and Time-Series

Model. Comput. Intell. Neurosci. 2021, 2021, 8128879. [CrossRef]
34. Muller, F.; Schug, D.; Hallen, P.; Grahe, J.; Schulz, V. Gradient Tree Boosting-Based Positioning Method for Monolithic Scintillator

Crystals in Positron Emission Tomography. IEEE Trans. Radiat. Plasma Med. Sci. 2018, 2, 411–421. [CrossRef]
35. Aldhyani, T.H.H.; Alzahrani, A. Framework for Predicting and Modeling Stock Market Prices Based on Deep Learning Algorithms.

Electronics 2022, 11, 3149. [CrossRef]
36. Shi, Z. Optiver Realized Volatility Prediction[DS/OL]; Science Data Bank: Tianjin, China, 2022. [CrossRef]
37. Vlastakis, N.; Markellos, R.N. Information Demand and Stock Market Volatility. J. Bank. Financ. 2012, 36, 1808–1821. [CrossRef]

http://doi.org/10.3390/electronics11213443
http://doi.org/10.3390/electronics11020250
http://doi.org/10.1155/2021/5511802
http://doi.org/10.1016/j.econmod.2017.11.005
http://doi.org/10.1287/opre.7.2.145
http://doi.org/10.2307/2325486
http://doi.org/10.1111/1467-6419.00091
http://doi.org/10.1016/j.jet.2020.105127
http://doi.org/10.3390/e24091184
http://www.ncbi.nlm.nih.gov/pubmed/36141070
http://doi.org/10.2307/1912773
http://doi.org/10.1016/0304-4076(86)90063-1
http://doi.org/10.1016/j.ijforecast.2004.08.003
http://doi.org/10.1002/for.2754
http://doi.org/10.48550/ARXIV.1605.00003
http://doi.org/10.1016/j.najef.2018.06.013
http://doi.org/10.3390/e24030332
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco.1996.8.7.1341
http://doi.org/10.1109/TSC.2015.2493732
http://doi.org/10.2307/2286442
http://doi.org/10.1002/widm.8
http://doi.org/10.1109/34.58871
http://doi.org/10.1007/BF00058655
http://doi.org/10.1007/BF00116037
http://doi.org/10.1016/j.coal.2020.103416
http://doi.org/10.1155/2021/8128879
http://doi.org/10.1109/TRPMS.2018.2837738
http://doi.org/10.3390/electronics11193149
http://doi.org/10.57760/sciencedb.06354
http://doi.org/10.1016/j.jbankfin.2012.02.007

Electronics 2022, 11, 4057 28 of 28

38. Lin, Z. Modelling and Forecasting the Stock Market Volatility of SSE Composite Index Using GARCH Models. Future Gener.
Comput. Syst. 2018, 79, 960–972. [CrossRef]

39. Xu, Q.; Bo, Z.; Jiang, C.; Liu, Y. Does Google Search Index Really Help Predicting Stock Market Volatility? Evidence from a
Modified Mixed Data Sampling Model on Volatility. Knowl.-Based Syst. 2019, 166, 170–185. [CrossRef]

40. Hacker, R.S.; Hatemi-J, A. Tests for Causality between Integrated Variables Using Asymptotic and Bootstrap Distributions: Theory
and Application. Appl. Econ. 2006, 38, 1489–1500. [CrossRef]

41. Narayan, P.K.; Popp, S. A New Unit Root Test with Two Structural Breaks in Level and Slope at Unknown Time. J. Appl. Stat.
2010, 37, 1425–1438. [CrossRef]

42. Narayan, P.K.; Liu, R. A Unit Root Model for Trending Time-Series Energy Variables. Energy Econ. 2015, 50, 391–402. [CrossRef]
43. Narayan, P.K.; Liu, R.; Westerlund, J. A GARCH Model for Testing Market Efficiency. J. Int. Financ. Mark. Inst. Money 2016, 41,

121–138. [CrossRef]
44. Nabipour, M.; Nayyeri, P.; Jabani, H.; Mosavi, A.; Salwana, E. Deep Learning for Stock Market Prediction. Entropy 2020, 22, 840.

[CrossRef] [PubMed]
45. Liu, Y.; Yang, C.; Huang, K.; Gui, W. Non-Ferrous Metals Price Forecasting Based on Variational Mode Decomposition and LSTM

Network. Knowl.-Based Syst. 2020, 188, 105006. [CrossRef]
46. Liu, W.; Morley, B. Volatility Forecasting in the Hang Seng Index Using the GARCH Approach. Asia-Pac Financ Mark. 2009, 16,

51–63. [CrossRef]
47. Brooks, C.; Burke, S.P. Forecasting Exchange Rate Volatility Using Conditional Variance Models Selected by Information Criteria.

Econ. Lett. 1998, 61, 273–278. [CrossRef]

http://doi.org/10.1016/j.future.2017.08.033
http://doi.org/10.1016/j.knosys.2018.12.025
http://doi.org/10.1080/00036840500405763
http://doi.org/10.1080/02664760903039883
http://doi.org/10.1016/j.eneco.2014.11.021
http://doi.org/10.1016/j.intfin.2015.12.008
http://doi.org/10.3390/e22080840
http://www.ncbi.nlm.nih.gov/pubmed/33286613
http://doi.org/10.1016/j.knosys.2019.105006
http://doi.org/10.1007/s10690-009-9086-4
http://doi.org/10.1016/S0165-1765(98)00178-5

	Introduction
	Literature Review
	The Study of this Paper

	Theoretical Basis
	MLR (Multiple Linear Regression)
	Mathematical Models
	Solving the Regression Equation

	CART (Classification and Regression Tree)
	LightGBM
	Bagging and Boosting
	GBDT and LightGBM

	LSTM (Long Short-Term Memory)
	RNN (Recurrent Neural Network)
	LSTM

	Methodology Innovation
	Model Fusion Learning Algorithms
	Algorithm Description
	Theoretical Analysis
	MLR–LightGBM–LSTM

	Feature Reconfiguration Neural Network(FRNN)

	Experiments and Results
	Data Preprocessing
	Data Description
	Exploratory Analysis of Data
	Feature Engineering

	Modeling and Training
	Experimental Environment
	Model Parameter Setting
	Model Evaluation

	Empirical Results and Analysis
	Model Fusion Algorithm
	Feature Reconfiguration Neural Network

	Conclusions
	References

