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Abstract: Video data have become the main data traffic on the Internet, and their traffic is increasing
explosively every year, thus increasing the pressure of video transmission. Video coding technology
has become the key to compressing original videos. As an indispensable technology, rate control plays
an important role in stabilizing video stream transmission. Rate control (RC) is part of rate distortion
optimization (RDO) whose job is to find the optimal solution based on balancing rate and distortion.
It not only needs to consider the buffer and network status but also adjust the corresponding bit rate
according to the video content. This paper reviews the related technologies of rate control under
high efficiency video coding (HEVC) and versatile video coding (VVC) standards so that subsequent
researchers can quickly understand the field and promote the development of rate control algorithms.
Firstly, the paper summarizes the various aspects of RC, including basic principles, rate-distortion
models, major processes, and performance criteria. Secondly, the paper surveys, in detail, the research
progress in the field of rate control and analyzes several mainstream research directions. Thirdly,
we carry out relevant experiments on the standard reference software and analyze and discuss the
experimental results of the existing studies. Finally, we look ahead to the future trends of rate control
and provide feasible improvement suggestions.

Keywords: video coding; rate control; bit allocation; high efficiency video coding; versatile video coding

1. Introduction

Under the continuous influence of the novel coronavirus pneumonia epidemic, people
are gradually staying at home for longer periods of time. In order to build a bridge of
communication between people, the volume of video-related services such as short video
and video conferencing has been gradually increasing. According to reports [1–3], mobile
web traffic has doubled in the past two years since the first quarter of 2020, and 80% of all
videos created in 2021 are user-generated; in 2022, video resources are estimated to account
for 82% of all IP traffic. Uncompressed video is huge and usually needs to be encoded for
transmission. In recent decades, in order to achieve high-quality, high-resolution video
storage and transmission, the Video Coding Experts Group (VCEG) of the International
Telecommunication Union Telecommunication Standardization Sector (ITU-T) and the Mov-
ing Picture Experts Group (MPEG) of the International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC) has released a series of international
video coding standards: from the previous Advanced Video Coding (AVC/H.264) [4] and
HEVC/H.265 [5] standards to the latest video coding standard (VVC/H.266) [6]. Although
each standard has significant changes, a hybrid coding framework consisting of modules
such as block segmentation, intra-frame prediction, inter-frame prediction, transform,
quantization, entropy coding, and loop filtering is still used. The encoder will then use
this hybrid coding framework to remove the temporal, spatial, and information entropy
redundancy in the unprocessed video to achieve high-performance video compression.
The main changes of the new generation standard are as follows: The HEVC standard intro-
duces a quad-tree-based block division scheme, supports 35 intra-frame prediction modes
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(including 33 types of angle prediction), provides new inter-frame prediction technologies
(including motion information fusion technology (Merge), motion vector prediction technol-
ogy (AMVP) and merge-based skip mode), and realizes the compensation of reconstructed
pixel values through sample adaptive offset (SAO) technology and the use of advanced
context-based adaptive binary arithmetic coding (CABAC) for entropy coding, etc. The
VVC standard adds binary and ternary tree schemes to block division and supports 67 intra-
frame prediction modes (including 65 angle prediction modes). Inter-frame prediction also
adds an extended Merge mode and bidirectional optical flow technology. Affine motion
compensated prediction and other technologies add luma mapping with chroma scaling
(LMCS) and an adaptive loop filter (ALF) to the loop filter. In the hybrid video coding
framework, rate control is not added as a separate module, but this does not mean that rate
control is not important.

Rate control, as the name implies, controls the number of bits transmitted during
encoding. Video transmission will be affected by bandwidth and network fluctuations, so a
reasonable allocation of bit rates can improve the quality of transmission. In many video
scenarios, such as online on-demand, online live broadcast, and real-time communication,
rate control plays an important role. Taking online video and live streaming as an example,
it is necessary to limit the bit rate due to the constant bandwidth of the user and the limited
amount of data that can be buffered. Otherwise, some clips with an excessively high
instantaneous bit rate will cause stuttering and bring a poor experience to the user. A
great deal of large-scale live video traffic is distributed to users through a content delivery
network (CDN), which pays by traffic, where an unreasonable bit rate allocation will make
bandwidth costs uncontrollable. Therefore, the streaming media server often transcodes
the video and converts the video source into smooth, standard definition, high definition,
ultra-clear, and other grades of video through rate control technology for people to watch
conveniently. In general, for each different business scenario, the various restrictions on the
bit rate will also be different. The goal of rate control is to achieve scene optimization by
controlling each frame or basic coding unit under the premise of ensuring coding efficiency
and subjective quality.

In this paper, we aim to provide a comprehensive overview of rate control techniques
from HEVC to VVC. The main contributions of this work are as follows: (1) The detailed
structure of rate control from HEVC to VVC is organized, from the basic principles to the
performance indicators, so that readers can understand the whole picture of rate control.
(2) The research status of rate control in recent years is summarized, including the optimal
bit allocation for rate-distortion models, perceptual rate control, heuristic rate control, rate
control under artificial intelligence, and rate control under extended standards. At the same
time, related algorithms are also introduced and their advantages and disadvantages are
discussed. (3) Finally, suggestions are made for future development exploration.

The rest of this paper is organized as follows: Section 2 presents an overview of rate
control from multiple aspects, Section 3 describes the current state of rate control research
from different perspectives, comparative experiments are discussed in Section 4, and finally,
Sections 5 and 6 summarize the paper and make constructive suggestions.

2. Rate Control
2.1. Basic Principle

Rate control selects the coding parameters to make the output rate of the encoder
equal to the pre-set target rate while minimizing the coding distortion and can be expressed
as an optimization problem under strict rate constraints:

argmin
Para

D s.t. R ≤ Rtar (1)

where Para represents the encoding parameter set, D is the encoding distortion, and R and
Rtar are the encoder output bit rate and target bit rate, respectively. It is not difficult to see
from the above equation that rate control is inseparable from rate-distortion optimization.
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Rate-distortion theory can be traced back to Shannon’s “Discrete Source Coding Theorem
under Fidelity Criterion” [7]. Based on this theory, a rate-distortion model is established, the
target bit rate is determined, and then the actual bit rate is allocated according to the rate-
distortion model, which is the process of rate control. The overall goal of rate control is to
control the number of bits of each frame or basic coding unit so as to minimize the distortion
under the condition of a certain total number of bits so each buffer will not overflow (the
details are shown in Figure 1). As each frame of the video sequence passes through the
encoder, the encoder analyzes the content and buffer state and sequentially performs bit
allocation and bit implementation to guide the encoding, allowing the generated media
stream to enter the channel.
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2.2. Rate-Distortion Model
2.2.1. R-Q Model

The rate-distortion model of rate control refers to the R-Q model in a broad sense,
where R stands for bit rate and Q stands for quantization parameter (QP). However, in
order to distinguish the direct or indirect connection between R and Q, in a narrow sense,
we use the model with a direct connection between R and Q, the R-Q model. Rate control
algorithms based on the R-Q model have been widely studied in the past. The TMN8
algorithm of H.263 [8], VM5 algorithm of MPEG-4 [9], JVT-G012 proposal [10] algorithm
of H.264, and JCTVC-H0213 proposal [11] algorithm of H.265 all suggested the relevant
R-Q model, and the early reference software version of HEVC(HM6.0) also demonstrated
the feasibility of the Unified R-Q (URQ) model [12]. The R-Q model can be mainly divided
into the linear R-Q model and the quadratic R-Q model. The relationship of the linear R-Q
model is as follows:

R =
α ∗ S

Q
(2)

p(x) =
α

2
e−α|x| (3)

R = MAD×
(

α

Qstep
+

β

Qstep
2

)
(4)

where α is the parameter of the linear regression and S is the complexity of the target
source. The quadratic R-Q model is widely used in the R-Q model. The theory of the R-Q
model comes from the classic rate-distortion function [13]. The discrete cosine transform
(DCT) coefficient obtained by the early standard obeys the Laplace distribution as shown
in Equation (3). The R-Q relationship in the quadratic R-Q model is expressed as shown
in Equation (4). Qstep represents the basic quantization step size, α and β are coding
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parameters, which will be updated with a coding unit is encoded, and the mean absolute
deviation (MAD) is the absolute error of the predicted coding unit, which can measure the
complexity of the coding unit through residual information.

In MPEG.4 rate control, α, β, MAD, and the target number of bits can be obtained by
performing a quadratic R-D model before estimating QP. Different from the MPEG series, it
is more difficult to rate control the H.26X series by this method than the previous method
because the quantization parameters are not only used in the rate control algorithm but also
applied in the rate-distortion optimization. This creates “the chicken and egg dilemma” [14],
meaning that RC conflicts with the RDO process. In order to solve this dilemma, a linear
prediction model is introduced in H.264 to predict MAD, and the equation is as follows:

MADcur = a1 ×MADpre + a2 (5)

where MADcur and MADpre represent the MAD at the corresponding position of the current
basic unit and the previous frame, and a1 and a2 are model coefficients with initial values
of 1 and 0 and are updated by least squares regression when the last macroblock of each
basic unit is processed.

2.2.2. R-ρModel

The rate control algorithm in the ρ-domain was first proposed by He et al. [15]. The
algorithm mainly focuses on the relationship between the bit rate (R) and the percentage of
zero coefficients (ρ) after quantization. He et al. [15] found that there is a linear relationship
between R and ρ. The specific R-ρ relationship is as follows:

R = θ·(1− ρ) (6)

Wang et al. [16] also proposed the method of quadratic ρ domain on this basis. Although
the ρ-domain rate control algorithm can provide a smoother output bit rate and better
target quality, it has been gradually abandoned because it does not apply the new standard;
it is only applicable to the earlier H.263 standard.

2.2.3. R-λModel

The rate control algorithm based on the R-λ model is the algorithm adopted by the
current VVC standard reference software and is also the mainstream algorithm currently
studied. The R-λ model accurately refers to the R-λ-QP model. The R-λ-QP model is a
model established by Li Bin et al. [17] with λ as the link. This proposal was tried in the
HEVC reference software HM8.0 version, achieved good coding performance, and was
subsequently formally applied in the HM10.0 version. λ is the slope (absolute value) of the
rate-distortion curve and can be calculated by the following equation:

D(R) = C(R)−k (7)

λ = −∂D
∂R

= CK·R−K−1 , αRβ (8)

The rate-distortion relationship of R-λ model is derived from hyperbolic curve fitting;
C and K are the parameters of the hyperbolic model and α and β are parameters related
to the content of the sequence. It can be seen from Equation (8) that the bit rate R in the
model will be determined by the Lagrange multiplier λ. Since the RDO process is too
cumbersome, in order to simplify the QP decision, the rate control algorithm is simplified
by the following equation [18]:

QP = 4.2005× ln(λ) + 13.7122 (9)

The R-λmodel has been adopted for a long time, so this paper collates the studies on
the proposals related to rate control in the reference software, as shown in Table 1.
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Table 1. The R-λmodel development proposal.

Coding Standard Proposal Main Role

HEVC JCTVC-K0103 [19] First proposed the R-λmodel and included it in HM10.0 as the main standard

HEVC JCTVC-M0036 [20] Adjust the updated parameter range and proposed an adaptive bit
allocation scheme

HEVC JCTVC-M0257 [21] Mainly proposed improvements for intra-frame bit allocation and
bit implementation

HEVC JCTVC-U0132 [22] Avoided buffer overflow and underflow
HEVC JCTVC-V0078 [23] Adjusted the lower limit of buffer overflow in the U0132 proposal
VVC JVET-K0390 [24] The skip area and sub-skip area were divided at the frame level for bit allocation
VVC JVET-M0060 [25] First proposed the quality dependent factor (QDF) for bit allocation
VVC JVET-T0062 [26] Adopted the QDF and made RC support GOP=32 in the RA configuration
VVC JVET-Y0105 [27] Updated the skip and non-skip area bit allocation CTU level bit allocation

2.3. The Process of Rate Control

The bit rate control can be divided into two parts, the target bit allocation and the
target bit implementation. The target bit allocation assigns a target bit rate to each basic
coding unit according to the existing video content and buffer state. Since the actual bit
is not equal to the target bit, it is necessary to determine the appropriate QP through the
rate control model when the target bit is realized, and then achieve the target bit rate after
the quantization parameter, QP, is encoded. The target bit allocation is mainly divided into
three levels: the GOP level, frame level, and coding tree unit (CTU) level. The target bit
implementation calculates the λ and QP of the frame level and CTU; the specific process is
shown in Figure 2.
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Taking the reference software of VVC as an example, the actual configuration of VTM
video coding [28] is usually as follows: all intra (AI), low delay (LD), and random access
(RA). In the AI configuration, each image in the video stream is encoded as an IDR frame,
which is suitable for scenarios with poor channel environments and prone to packet loss.
The LD configuration is suitable for scenarios with high latency requirements, such as
video calls and video conferences, and can be divided into low delay B (LDB) and low
delay P (LDP) configurations, corresponding to the two previous coding structures: IBBB
and IPPP. The characteristics of the two structures are that the video frames are all B frames
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or P frames, except that the first frame is an I frame, but here the B frame refers specifically
to the generalized P and B (GPB) [29]. The RA coding structure adopts the hierarchical-B
structure [30], which is suitable for broadcasting and streaming media applications. Since
the AI configuration does not have B and P frames, there is no need to divide the GOP,
so it does not need to be specified in the encoding configuration. There are three modes
of bit allocation which are equal-bit allocation, fixed-rate bit allocation, and adaptive bit
allocation; the latter two are also hierarchical-B structures. CTU level rate control is not
necessary; as seen in the study, it can be enabled or disabled in the coding configuration
according to specific needs.

2.4. The Performance Index of Rate Control

The performance index of the algorithm reflected in the rate control experiment is
mainly as follows:

• Rate-distortion performance: The peak signal-to-noise ratio (PSNR) value is often used
to represent the distortion introduced by the encoder during the encoding process, but
it cannot be directly compared because the actual bit rates are often different. The BD-
PSNR (Bjøntegaard-delta-psnr) and BD-rate (Bjøntegaard-delta-rate) are commonly
used rate-distortion performance standards [31]. The BD-rate represents the rate
increase in the optimized algorithm compared with the original algorithm under the
same objective video quality. If the BD-rate is negative, it indicates that the coding
performance of the optimized algorithm is improved. Of course, some papers use
SSIM instead of PSNR to calculate BD-SSIM.

• Bit allocation error (BRE)/Bit allocation accuracy (BRA): From the previous section,
we know that QP is an integer, and the actual bit rate and the target bit rate are
always different. An important index of the rate control algorithm is the precision
of rate control; the higher the precision of rate control, the better the algorithm. In
other words, the smaller the error of rate allocation, the better the algorithm. The bit
allocation error/bit allocation accuracy is calculated from the target bit rate and the
actual bit rate as follows:

BRE =

∣∣Rtarget − Ractal
∣∣

Rtarget
(10)

BRA = 1− BRE (11)

• Buffer Occupancy/Bit fluctuation and quality smoothness: Buffer occupancy analysis
is also an essential part of a high-performance rate control algorithm. In the official
reference software for HEVC and VVC, the buffers can be handled by enabling the
HRD constraint [22,23] and the R-λmodel. The buffer size is defined as

Bu f f er = Delay × Bwidth (12)

where Delay and Bwidth represent the time delay and bandwidth, respectively. Buffer
occupancy changes are generally represented graphically, and bit fluctuations and quality
smoothness can usually be obtained in a graph comparing the bit values and PSNR values
of different algorithms.

• Time complexity: Time complexity is a necessary metric for almost all algorithms. An
optimized algorithm is bound to require low time overhead. The comparison time
complexity is calculated by the following equation:

∆T =
Tpro − Torg

Torg
(13)

where Tpro represents the time consumed by the proposed algorithm and Torg represents
the time consumed by the reference algorithm.
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3. Research Status of Rate Control

Before we begin to explore the latest developments in rate control, let’s take a look at
the general framework of the current study, as detailed in Figure 3. There are two main
research trends: from method to process and from goal to process. The first one starts from
the basic method and focuses on the performance of various video sequences in general,
and the other one starts from the real environment and focuses on the performance of video
sequences under current constraints.
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Method selection: perceptual and heuristic methods are used, with the new artificial
intelligence method emerging in recent years. Application scenario selection: The specific
scenario and the extended standard scenario are more selected scenarios, and the point
cloud is a new target scenario. This paper purposely takes the optimal bit allocation of
the rate-distortion model as a subdivision field because the key part of rate control is bit
implementation rather than bit allocation.

3.1. Optimal Bit Allocation for Rate-Distortion Models

An important part of the rate control algorithm based on the R-λ model is the bit
allocation of three layers, namely, the GOP layer, frame layer, and CTU layer. The actual
rate control algorithm can act on different coding unit levels, and the rate-distortion
performance of different coding units is mainly related to the content characteristics of the
coding units. Of course, there may also be interdependence in rate-distortion performance
between different coding units, and many studies may propose related bit allocation
schemes in two or even three layers. An important problem faced by bit allocation is the
application under low-bit conditions, i.e., under the condition that there are not enough
bits, how can we reasonably allocate as much as possible to ensure the quality of the
reconstructed frame? Therefore, the study of optimal bit allocation has become an effective
breakthrough point to improve coding performance.

In terms of GOP-level bit allocation, the LD configuration will have a greater impact
on subsequent GOPs due to the large bit allocation occupied by the I frame, and the buffer
may even be a negative value. The algorithm based on the R-λ model effectively solves
this problem after the introduction of the sliding window, but there will still be some
negative effects on the RA configuration, such as high cache area occupancy and large-
period bit fluctuations. Song et al. [32] proposed to solve this problem by linearly reducing
the buffer occupancy rate in each cycle to zero according to GOP; this method achieves
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a slightly better rate-distortion performance without increasing the coding complexity.
In the frame-level bit allocation, the frame-level and GOP-level bit allocation are closely
related, so some scholars [33,34] consider the quality and hierarchical structure factors of
the two models and use them for bit allocation. Guo et al. [35] proposed an R-D-dependent
GOP-level bit allocation scheme, adopted a recursive Taylor expansion scheme to optimize
frame-level bit allocation, and achieved good performance in LD configurations. The use of
inter-frame prediction techniques leads to dependencies between frames, and the distortion
of previous and subsequent frames will also affect the accuracy of bit allocation. Therefore,
Li et al. [36] established a dependency model between frame distortion and bit allocation,
extracted key features, and made the algorithm’s peak signal-to-noise ratio increase and
bit rate decrease by about 0.132 dB and 3.41%, respectively. In terms of CTU-level bit
allocation, CTU-level bit allocation is often performed at the same time as frame-level.
Additionally, Li et al. [37] proposed a content-based frame-level and CTU-level optimal bit
allocation algorithm, which can better adjust the allocation bits of important pictures and
corresponding blocks and improve the rate-distortion performance. Liu et al. [38] combined
frame-level and CTU-level bit allocation as an overall optimization problem, obtained better
bit rate allocation results, and improved coding efficiency. Block partitioning and intra-
frame prediction techniques also create distortion dependencies between CTUs in a frame.
Xie et al. [39] adopted a distortion propagation model to measure the temporal weights of
CTU blocks, which effectively ensured the coding quality of these temporally correlated
units, and Li et al. [40] proposed a recursive Taylor expansion method to measure the CTU
level. Bit allocation improves the accuracy of rate control and is effective with videos with
scene changes. Wang et al. [41] proposed a CTU-level bit allocation method for low-bit-
rate applications based on regional classification which slightly improved subjective and
objective quality.

On the whole, the bit allocation determines the initial optimization goal of each stage.
Once a serious deviation from the goal estimation occurs, the stability of the entire sequence
will be affected, so it needs to be carefully controlled.

3.2. Perceptual Rate Control

The quality of the video generally depends on the subjective guess of people, but since
most videos are ultimately perceived by the human visual system (HVS), not all video
distortions may be noticed. For this reason, many standards for evaluating video quality
were born, such as MSE, PSNR (peak signal-to-noise ratio), SSIM (structural similarity),
VMAF (video multi-method assessment fusion), and so on. At the same time, different
video evaluation standards will have subjective and objective bias, as shown in Table 2.

Table 2. Comparison of common video quality measurement factors.

Focus on Subjective Perception Focus on Objective Perception

MSE
√

PSNR
√

SSIM/MS-SSIM
√

JND
√

ROI
√

VMAF
√ √

On the one hand, this series of standards is used as a reference index for the encoded
video, and on the other hand, it can also be used as an adjustment parameter to establish
a relationship model between distortion and bit rate. As a result, a rate control direction
guided by the evaluation criteria emerges which largely pursues the overall objective
quality of the video and tries to stabilize the subjective quality as much as possible.

Zhou et al. [42] proposed a split normalization scheme, tried to establish a connection
between SSIM and coded bits, and applied it to the rate control of CTU. The result was
a significant improvement in the performance of rate-aware distortion. Zhang et al. [43]
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introduced a new visual analysis distortion, established a rate joint distortion model,
and solved the rate joint distortion optimization problem with the Lagrange multiplier
method; the experimental results show that the scheme is stable in use. The visual analysis
performance can be improved by encoding in bits. Yuan et al. [44] proposed a hybrid video
coding method based on distortion RDO and a rate control that mixes MSE and SSIM. This
method divides the image into textured regular regions and textured irregular regions, with
CTU as the minimum division unit, compared with HM16.14; the average BD-BR under
AI, RA, and LD configurations is −6.25%, −7.53%, and −9.05%, respectively, however,
the disadvantage is that the complexity of the encoder is increased. Zhou et al. [45] also
proposed a rate control method for HEVC based on just noticeable distortion (JND), which
uses the JND factor as the weight of bit allocation to establish a rate-distortion model
which improves the control accuracy and improves the coding performance. Additionally,
Xiang et al. [46] proposed an adaptive Lagrange multiplier perceptual distortion model for
intra-frame rate control to improve the overall quality of video compression.

In fact, in regard to the human eye, the video can choose to retain important area
information as much as possible and reduce the proportion of unimportant information.
For example, during a video call, improving the quality of the video about the face and
reducing the quality of the edge environment can not only ensure a smooth call but also
will not affect the user experience. This important area is called a region of interest (ROI).
The focus of ROI-based rate control is to improve the overall subjective quality of the video.
Meddeb et al. [47] proposed a rate control method based on the ROI which introduced
regional bit allocation at both the frame layer and the CTU layer, and the scheme performed
well for face perception. Maun et al. [48] integrated the ROI information into the existing
rate control algorithm, and also considered the reference picture selection (RPS) method
and the intra-frame refresh mechanism. As a result, the computational cost can be reduced
while ensuring quality. Zhang et al. [49] proposed a rate control scheme in the ROI mode
based on the DCT coefficient model which improved the PSNR value by an average of
0.5–1.0 dB compared to other rate control methods in ROI.

3.3. Heuristic Rate Control

As mentioned in the previous section, rate control is part of rate-distortion theory, and
rate-distortion optimization itself is a convex optimization problem. In video coding, the
Lagrange multiplier method is often used for extreme solutions under constraints, and this
is only one of the tools to achieve the goal. The probability distribution is most closely
related to the rate-distortion theory. Rate control process is based on the rate-distortion
theory. It calculates the rate-distortion functions under different probability distributions, a
series of empirical formulas and reference models are obtained, and then the DCT transform
is used to process the luminance and chrominance coefficients to obtain a reliable simulation
distribution. This process can explore available rate control model. In the past, widely used
distributions included the Laplace distribution, generalized Gaussian distribution, and
Cauchy distribution. Therefore, this paper classifies the rate control method combining
theory and experiment as a heuristic rate control method.

Si et al. [50] proposed a CTU-level rate control method to adjust the quantization
parameters based on the Laplacian distribution model of the transformed residuals, and
the average performance gains under the LD and RA configurations were 5.0% and 2.4%,
respectively. Hyun [51] proposed a VVC frame-level constant bit rate control method based
on the recursive Bayesian estimation (RBE), which not only accurately estimates the rate
but also assigns target bits based on the distortion variation of previously encoded frames
with less fluctuation in visual quality. Chen et al. [52] proposed a quadratic rate-distortion
model for frame-level rate control, and the proposed rate control algorithm can achieve
0.77% BD-BR reduction with similar control accuracy. Sanchez [53] used a piecewise
linear approximation to approximate the slope of the R-D curve. In the AI and AI-SCC
configurations, it achieved higher accuracy and a more constant number of bits per frame
than HEVC’s own algorithm. Mao et al. [54] proposed a VVC rate control method based
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on the composite Cauchy distribution. Based on the derived R-Q model and D-Q model,
the relationship between the rate, distortion, and coding parameters was established. An
adaptive bit allocation method was then proposed which can achieve 1.03% BD-rate saving
in LDB configuration and 1.29% BD-rate saving in RA configuration.

3.4. Rate Control Using Artificial Intelligence

The victory of AlphaGo, the success of unmanned driving, the breakthrough of pattern
recognition, and the rapid development of artificial intelligence have amazed countless
people. As the core of artificial intelligence, machine learning has also attracted much
attention in the development of artificial intelligence. Today, the application of machine
learning has spread to various branches of artificial intelligence, such as expert systems,
automatic reasoning, natural language understanding, pattern recognition, computer vision,
intelligent robots, and other fields. In recent years [55], the popularity of machine learning
in the field of video coding has also increased. The use of various machine learning tools to
solve optimization problems is also a major research direction. Especially in rate control,
machine learning can discover rules from huge data sets, and, by extracting various features,
a fitted model can be trained to replace the rate-distortion model, resulting in more accurate
bit estimation and better rate-distortion performance.

3.4.1. Traditional Machine Learning Methods

Traditional machine learning methods can more accurately predict bit allocation and
related parameters with the help of classical models or algorithms. Wang et al. [56] used
four traditional machine learning methods: support vector regression (SVR), random forest
regression (RFR), gaussian process regression (GPR), and artificial neural networks (ANN)
to extract four highly descriptive features to capture the relationship between the video
content and rate-distortion model and improve the accuracy by 8.65% with an affordable
computational complexity increase. Gao et al. [57] proposed an optimal interframe mode
rate control method based on support vector machine (SVM) to classify and assign bits to
CTU of different frames, which mainly solved the problem of unreasonable bit allocation.
While maintaining the stability of bit rate, the average PSNR value also increased by 0.18
dB. Hsieh [58] et al. proposed a machine learning method with low hardware complexity,
and the average PSNR increased by 0.82 dB; the average BD-BR increased by 15.62%. Wei
Gao [59] et al. used the RBF kernel-based ε-SVR method for initial QP prediction, and
achieved significant progress in rate-distortion performance, reflecting the effectiveness of
machine learning methods. In addition, Sun et al. [60] proposed a second-order model to
simulate the relationship between bit rate and constant speed factor under the framework
of quadratic coding, extracted machine learning features, and used it to accurately estimate
model parameters.

3.4.2. Deep Learning Methods

The convolutional neural network (CNN) has become a popular neural network
in recent years. It has achieved great success in the fields of artificial intelligence and
signal processing, and also provided a novel and promising solution for image and video
compression. The network is well-trained based on massive image and video samples
labeled for specific tasks in an end-to-end strategy. The trained neural network can then
solve the classification, recognition, and prediction tasks of test data well, and has efficient
adaptation. In recent years, CNN-based deep learning methods have also been gradually
applied in rate control. The deep learning method can extract the pixel-related information
of each frame or each CTU and input it into the CNN network to realize bit allocation and
bit control. Lu et al. [61] proposed a rate control method for HEVC intra-frame coding
based on the CNN, applying a CNN at the CTU level to achieve accurate QP prediction
while maintaining the same reconstructed image quality, reducing the BDBR by an average
of 1.33%. They also proposed a CTU-level bit allocation and bit control method based
on a CNN. The training of the CNN was done using a natural image UCID dataset and
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RAISE dataset and predicted the model parameters of each CTU. The BD-rate of the Y
component was reduced by 0.7% on average, and the BD-rate of the U and V components
was reduced by more than 2%. Xu et al. [62,63] designed a rate-distortion modeling method
for HEVC that differs from the traditional CNN with a full CNN. By learning an end-to-end
pixel-to-pixel map from the original image to the SSIM map, representing the distortion, it
proved the possibility of achieving an R-D relationship. Cheng et al. [64] proposed a rate
control method called the content adaptive rate factor (CARF) at the GOP level on the x265
encoder to adjust the constant rate factor (CRF) value of each GOP. Compared with the
average bit rate (ABR) mode of x265, CARF’s method reduces PSNR, VMAF, and SSIM by
4.12%, 5.35%, and 5.73%, respectively.

3.4.3. Reinforcement Learning Methods

Reinforcement learning is a branch of machine learning used to describe and solve
problems in which agents learn strategies to maximize rewards or achieve specific goals in
the process of interacting with the environment. The fact that reinforcement learning has
been around for decades shows that it is not a new technique. Deep reinforcement learning
is particularly suitable for high-dimensional state spaces but existing reinforcement learning
methods are very difficult with regard to the design of feature selection. However, since
deep reinforcement learning can learn the main features of the data from different levels, it
can successfully solve complex tasks only with underlying prior knowledge. Common deep
learning algorithms include the DQN (deep Q network), A3C (asynchronous advantage
actor-critic), DDPG (deep deterministic policy gradient), SAC (soft actor-critic), TD3 (twin
delayed DDPG), PPO (proximal policy optimization), etc., and can solve a large number
of discrete and continuous problems. When reinforcement learning is combined with
rate control, a new structure is created, as shown in Figure 4. It is mainly composed of
five parts (agent, environment, action, reward, and state). The agent selects an action
for the environment, and the environment accepts the action and changes its state while
at the same time generating a reinforcement signal (reward or punishment) back to the
intelligence, which then selects the next action based on the reinforcement signal and the
current state of the environment; the principle of selection is to increase the probability of
receiving positive reinforcement (reward). Rate control is viewed as a Markov decision
process (MDP) problem, which can be solved by the Bellman equation.
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The reinforcement learning model will replace the rate-distortion model for reasonable
allocation. With the previous rate control process, we find that the QP decision is a discrete
problem. The reinforcement learning method suitable for solving discrete problems is
used to train the model. According to the state information of each frame or each CTU
before coding, the corresponding action (QP) is made, and good performance is finally
achieved. However, the exact set up of the environment and the choice of reward are
also difficult to achieve to make reinforcement learning algorithms effective. Hu et al. [65]
first proposed applying the reinforcement learning method of Q-learning to HEVC rate
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control. The basic task was to determine the quantization parameters at the CTU level.
As an environment, to train a neural network model, the performance of this method is
comparable to that of a well-optimized representation algorithm, initially showing the
potential of reinforcement learning in the field of rate control. Zhou et al. [66] introduced the
A3C algorithm for dynamic video sequences and applied it to frame-level and CTU-level
rate control, mainly through offline learning and prediction methods to extract action unit
features from the encoder. Controlled performance indicators were used to assign action
weights and finally determine the frame-level and CTU-level quantization parameters,
achieving a better subjective and objective quality and smaller bit rate errors than the
reference software HM16.19. Ho et al. [67] implemented the DDPG method in the x265
encoder and established a dual-criticism network framework for two types of criticism:
rate criticism and distortion criticism. This method can achieve a 4.9–5.0% bit rate savings
and BD-PSNR gain of 0.22–0.24 dB. Ren et al. [68] developed methods based on deep
reinforcement learning combining the frame and region of interest (ROI) bit allocation
processes and proposed an ROI-based DDPG rate control algorithm. This method improved
the quality of ROI with stable bit rate fluctuations when VVC encoding was performed for
game videos. Gao et al. [69] also proposed a PPO algorithm to train a deep reinforcement
learning model and used it for the low-latency video communication aspect of HEVC. This
method is not only used for QP decisions but also applied to target bit allocation, which
achieves better low-latency transmission performance while maintaining the accuracy of
rate control.

3.5. Rate Control in Specific Scenarios

Different application scenarios will have different requirements for rate control, so the
optimization conditions and goals are also different. For specific scenarios, rate control still
needs to design new algorithms to adapt. Li et al. [70] proposed a regional-level and CTU-
level optimized bit allocation method in the scenario of logo insertion into video, which
saved an average of 4.46% of BD-rate, while the speed loss was only 2.26%. Li et al. [71]
proposed a weighted CTU-level bit allocation algorithm for a projected 360-degree video
compression scene, considering the matrix projection format, and established a more stable
rate control model. The relevant 360-degree video index results showed that the method has
a better subjective and objective quality and less bit error. Victor Sanchez et al. [72] specially
performed an ROI lossless coding rate control for digital pathological images which could
accurately obtain the overall bit rate. Zupancic et al. [73] proposed a two-pass rate control
method for the scenario of ultra-high-definition television (UHDTV). In comparison with
the variable bit rate mode of the customized HM fast codec, an average lower compression
loss was achieved.

High dynamic range (HDR) video can provide a more dynamic range and image
details than ordinary images and can better reflect the visual effects of the real environment.
HDR video usually uses 10-bit encoding and is currently being researched and selected
more. Bai et al. [74] established a CTU-based brightness-bit relationship model for HDR
video which can achieve a −4.4% BD-rate improvement. Daniel et al. [75] proposed a
rate control method of multiple R-λ models, using a set of three different R-λ models to
correspond to three types of rate-distortion feature regions distinguished by brightness,
especially for areas with high brightness, to increase the reconstruction quality of HDR
content. Mir et al. [76] also proposed a new λ-QP relationship model suitable for HDR
content which can well estimate the relationship between HDR distortion and the bit
rate used. For HDR video test sequences, the method achieved up to 1.36 dB average
PU-PSNR improvement. Zhou et al. [77] proposed a rate control algorithm based on the
rate-distortion model of the visual difference predictor, which was used for parameter
estimation and reducing the rate error. The results of multiple HDR indicators can reduce
the bit rate by about 3% on average.



Electronics 2022, 11, 4052 13 of 22

3.6. Rate Control under Extended Standards

As early as H.264/AVC, there have been scalable video coding (SVC) and multi-view
video coding (MVC) to provide an extended version of HEVC and also establish the Joint
Collaborative Group for the Development of 3D Video Coding Extensions (JCT-3V) to work
on multi-view and 3D video coding extensions to other video coding standards for HEVC.
The second version of HEVC was completed in October 2014. In the second version, JCT-VC
proposed a format range extension (RExt) and scalability extension (SHVC) successively,
while JCT-3V proposed a multi-view extension (MV-HEVC). In the third version, completed
in February 2015, JCT-3V proposed a 3D-HEVC. The latest VVC standard has included
extended content. These extended standards mainly deal with the emergence of new
video formats such as UHD, high dynamic range, and wide color gamut. Li et al. [78]
proposed the λ-domain bit rate control algorithm of SHVC which provides an optimal bit
allocation method for each layer and has a smaller rate error and better rate-distortion
performance. Fiengo et al. [79] treated frame-level bit allocation as a convex optimization
problem and proposed an efficient algorithm to achieve MV-HEVC rate control, which
has better performance in rate-distortion. Li et al. [80] proposed a new CTU-level R-λ
model parameter prediction method, derived an accurate power model to represent the
target bit rate relationship between the base view and the slave view, and developed a new
linear model to allocate the target bit rate of P-frames in the slave view; the overall method
outperformed other advanced methods. Abolfathi et al. [81] proposed a new method for a
free-view video rate allocation based on MV-HEVC. The appropriate bit rate was allocated
to each view through the distance between different view directions. This method is similar
to the rate control method in the λ domain. Compared with the algorithm, it can achieve
higher coding efficiency. Tan et al. [82] proposed a new dependent view distortion model
to study the dependence relationship between the synthetic view and the encoded view,
make relevant bit allocation and an effective initial QP decision, and finally achieve a better
rate-distortion performance than the standard algorithm of 3D-HEVC. Song et al. [83]
improved the 3D-HEVC algorithm according to the prediction weight generated by the
MAD prediction error and proposed a CTU-level rate control algorithm based on the
weight-based R-λmodel, which is similar to the rate control benchmark based on the R-λ
model in the HTM software. Compared with the algorithm, it has higher rate control
accuracy and rate-distortion performance.

4. Discussion

Rate control techniques have been around for a long time, but the overall mode of
operation has not changed significantly. As shown in Figure 5, even though the reference
software has transitioned from HM to VTM, the reference software in VVC, like HEVC,
still uses the R-λ model. This also proves that the R-λ model performs better compared
to other models. Therefore, most studies have been based on this model for algorithm
improvement. When the R-λ model is truly abandoned, the model-free approach may
become mainstream.

To demonstrate the effectiveness of rate control, we tested video sequences with
different resolutions using the reference software JM [84], HM [85], and VTM [86]; the
corresponding versions are JM19.0, HM16.26, and VTM18.0, respectively. The YUV video se-
quences used for the experiments were all taken from the official recommended videos [28].
The experiments set the target bit rate to 100,000, the number of input video frames to 50,
and the encoding configuration to include LDB, LDP, and RA, as detailed in Figure 6. Only
the JM software uses the default configuration and does not support higher resolution
video. Among the SDR video sequences chosen are RaceHorses (416 × 240), PartyScene
(830 × 480), ChinaSpeed (1024 × 768), vidyo1 (1280 × 720), Kimono1 (1920 × 1080), and
Traffic (2560 × 1600). From Figure 6a, it can be seen that the average PSNR values of VTM
and HM are much higher than those of JM. The PSNR values of both LDB and LDP do not
differ much from each other. From Figure 6b, the BRE values of VTM and HM are generally
smaller than the BRE values of JM, and the degree of BRE variation is greater under the



Electronics 2022, 11, 4052 14 of 22

RA configuration. The average BRE of the reference software is now around 0.001, which
means that the bit allocation accuracy is already very high. The actual time spent shows
VTM > HM > JM. It is worth mentioning that the time complexity increase has little to do
with the rate control process. In general, the performance of the reference software HM
and VTM are significantly better than that of JM in all aspects when the rate control is on,
which is also the result of the difference between the models. The reference software HM
and VTM both use the R-λmodel with little difference between them (see Appendix A for
specific test effects). (If you carefully observe the background, you will find that the image
quality from left to right improves).
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The goal of rate control experiments in video coding can be different from other
experiments, for experiments such as intra-frame prediction or inter-frame prediction, the
goal is to save time in the rate-distortion process with controlled losses. However, the goal
of rate control is to improve the rate-distortion performance under various constraints. For
those videos with large scene changes, the enhanced effect of bitrate control can only be
fully realized.

As shown in Tables 3 and 4, the current research on rate control has gradually trans-
formed from HEVC to VVC. This is because the use of HM reference software as an
experimental reference is still dominant. Now, the research on the reference software of
VVC is still in its infancy. Almost all studies will use the hierarchical structure to carry out
comparative experiments and various algorithms to pursue an average BD-rate with higher
negative values and lower RBE values. Their algorithms will almost always compare the of-
ficial reference software HM and VTM, and among the three known levels of bit allocation,
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the frame level and CTU level are the most studied, and the GOP level is relatively less. A
comparison of standard reference software experiments reveals that some experiments can
achieve significant performance improvements within an acceptable range of reduced bit
rate accuracy. Similarly, the bit allocation accuracy in RA configurations will vary greatly.

Table 3. Performance comparison of RC algorithms in recent years (1).

Method Anchor Configuration Level Hierarchical
Structure

Average
BD-Rate (%) BRE (%)

Guo 2019 [35] HM16.17_RC LDB/LDP Frame Enable/disable −3.70/−3.20 0.061/0.072
Li 2018 [36] HM12.0_RC RA Frame Enable −3.41 6.80

Zhang 2019 [33] Li 2018 [36] LDB/LDP GOP Enable −5.80/−5.07 29.87/28.41
Zhou 2019 [42] HM16.19_RC LDB CTU Enable/disable −3.10/−5.0 2.86/0.69
Zhou 2020 [45] HM16.19_RC LDB Frame/CTU Enable −3.30 2.30
Mao 2021 [54] VTM3.0_RC LDB/RA GOP/Frame Enable −2.96/4.36 0.35/2.18

Table 4. Performance comparison of RC algorithms in recent years (2).

Method Anchor Configuration Level Hierarchical
Structure

Average
BD-Rate (%)

Y/U/V
BRE (%)

Li 2017 [62] HM16.9 AI CTU / 1.10/4.30/4.50 1.07
Hu 2018 [65] HM16.15 AI Frame / 2.80/−0.30/0.30 0.27

Chen 2020 [52] VTM2.0_RC AI Frame / −0.77/-/- 0.06
Zhou 2020 [66] HM16.19 LDB Frame/CTU Enable −3.60/−0.90/−0.10 0.05
Liu 2021 [38] Li 2018 [36] RA Frame/CTU Enable −0.91/−1.50/−1.23 0.17

5. Challenges and Prospects
5.1. End-to-End Rate Control

Because the traditional R-λmodel follows a fixed bit allocation and bit implementation
strategy, it always has limitations in the performance of videos with large complexity
differences. Gao et al. [87]. then found that there can be an imbalance between intra- and
inter-frame coding. This is because it is difficult to capture the overall quality when encod-
ing. Zhou et al. [88] proposed a Lagrange multiplier approach to obtain optimal closed-form
solutions of quantization parameters of coding units starting from the perspective of solv-
ing convex optimization problems and achieved good results. If a model-free method
can be used instead of a model-based method, and a series of decisions can be directly
completed by directly extracting image information, it may become a major breakthrough
in the future. At present, artificial intelligence algorithms can be used as an alternative
method. However, there are still many difficulties to achieve this goal.

5.2. Rate Control for Various Types of Videos

Most studies use standard test sequences, exemplified by VVC. The standard test
sequence is divided into A1, A2, B, C, D, E, and F categories. These videos are mainly
composed of 480 p, 720 p, 1080 p, 2 k, and 4 k. Therefore, for ordinary videos, this paper
only considers the size of the resolution and the frame rate. In fact, there are still many
kinds of videos worthy of in-depth studies, such as HDR video, projection 360-degree video,
3D video, VR video, and so on. There has been a lot of related research on HEVC in the past,
but it is a difficult problem to extend the VVC rate control to these fields. Zhao et al. [89]
achieved bit rate savings of up to 11.77% in the latest standard VVC for 360-degree video
types divided into different regions at the frame level according to demand. Although the
exploration has not really begun, multiple types of videos relevant to rate control have the
ability to be applied to VVC.
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5.3. Perceptual Rate Control Method Based on VMAF

Among them, VMAF, as a new evaluation index, adopts the SVM-based nuSVR algo-
rithm. During the running process, according to the pre-trained model, each video feature
is given different weights, and a score is generated for each frame. Finally, the average
algorithm is used to summarize, and the final score of the video is calculated, which ranges
from 0 to 100. At present, VMAF is widely used in rate-distortion optimization [90–94], but
it is rarely used as a guide for rate control; most of them are used to evaluate performance.
VMAF is a new and mainstream objective video evaluation standard. In terms of perceptual
rate-distortion performance, it has advantages over single PSNR and SSIM, so it shines
in rate-distortion optimization. Rate control is in turn closely linked to rate-distortion
optimization. Therefore, we think it is a good choice for use in the perceptual rate control
algorithm.

5.4. Rate Control Method Based on Point Cloud

In the auto drive system, lidar is an environmental sensing device. The point cloud
data collected by lidar plays an important role in detecting three-dimensional targets,
feeding back whether there are nearby obstacles, and relaying how far away objects are
from the front of the vehicle. The research on point cloud compression is also the latest
focus. Li et al. [95] proposed a point cloud compression algorithm based on geometry
and achieved good performance in G-PCC reference software. Liu et al. [96] proposed
a region-based 3D point cloud compression algorithm with an average bit rate error of
only 3.7%. Wang et al. [97] predicted basic unit (BU) parameters through a CNN-LSTM
neural network to improve rate-distortion performance and subjective dynamic point cloud
quality. Rate control algorithms related to point cloud compression are also gradually
attracting attention.

5.5. Application-Oriented Rate Control

As we all know, there is a large gap between reference software and industrial software,
because (1) the audiences are different and therefore have different needs, and (2) reference
software is closer to the theoretical level than industrial software and often cannot take into
account the practical difficulties encountered. The process of establishing a future fast VVC
encoder is also still advancing [98]. For real-time mobile video coding, Hsieh et al. [99]
implemented a rate control design related to motion estimation based on an improved
machine learning scheme. Hsieh et al. [100] also proposed a hardware-oriented CBR control
algorithm which was used for H.265/efficient video coding of a multiprocessor system on
chip (MPSoC). Quality of experience (QoE) [101] is often considered a goal for real-time
video streaming applications. Therefore, most of the current video coding rate control
problems are source coding optimization control problems under the assumption of the
given channel bandwidth, and the future research direction also includes the joint opti-
mization of the channel and source coding in many heterogeneous network environments.
Application-oriented bit rate control will also be a focus in the future.

6. Conclusions

As an important module in the whole process of video coding, rate control is used
to find a balance by coordinating the relationship between rate and distortion on a macro
level, so as to solve the problems of excessive video quality fluctuations in various complex
scenarios. Rate control is mainly composed of two steps, bit allocation and bit realization.
Bit allocation includes GOP-level bit allocation, frame-level bit allocation, and CTU-level
bit allocation. Bit implementation is mainly accomplished by adjusting various parameters
to determine the frame-level and CTU-level quantization parameters, and then handing it
over to the encoding process to complete. In recent years, the rate control algorithms of
HEVC and VVC have not changed much on the whole and are still designed with the R-λ
model as the main body. Although VVC has a great improvement in technology compared
to HEVC, due to its own coding structure, the complexity of the VVC encoder is 7.5 times
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or even 34 times that of the HM encoder in different configurations [102], which means that
the time cost will be more expensive to study VVC code in the future and is the biggest
obstacle to rate control technology. At present, the exploration of the rate control algorithms
of HEVC and VVC is multi-directional, with some focus on SDR video [28] and some focus
on HDR video [103], while some focus on the subjective perceptual rate control and others
focus on the objective rate control. In addition, some focus on basic paper methods, while
others focus on new methods of artificial intelligence. From the perspective of the entire
research status, the current VVC rate control research is still in its infancy, and there are few
pieces of literature available for reference. Therefore, it would be a good choice to migrate
the mature theory of HEVC to VVC.
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