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Abstract: Meticulous learning of human emotions through speech is an indispensable function
of modern speech emotion recognition (SER) models. Consequently, deriving and interpreting
various crucial speech features from raw speech data are complicated responsibilities in terms of
modeling to improve performance. Therefore, in this study, we developed a novel SER model via
attention-oriented parallel convolutional neural network (CNN) encoders that parallelly acquire
important features that are used for emotion classification. Particularly, MFCC, paralinguistic, and
speech spectrogram features were derived and encoded by designing different CNN architectures
individually for the features, and the encoded features were fed to attention mechanisms for further
representation, and then classified. Empirical veracity executed on EMO-DB and IEMOCAP open
datasets, and the results showed that the proposed model is more efficient than the baseline models.
Especially, weighted accuracy (WA) and unweighted accuracy (UA) of the proposed model were
equal to 71.8% and 70.9% in EMO-DB dataset scenario, respectively. Moreover, WA and UA rates
were 72.4% and 71.1% with the IEMOCAP dataset.

Keywords: speech emotion recognition; convolution neural network; attention; deep learning;
modeling

1. Introduction

Recently, the advancement of artificial intelligence (AI) has been triggering further
development of the current human–machine communication trend. Particularly, speech
emotion recognition (SER) has become increasingly important for researchers to understand
and distinguish real human speech characters. Improvement in SER puts its applicable
domains, which includes entertainment, monitoring drivers’ behaviors, voice assistant,
medicine, call centers, and online education, to the next stage of development. Current
business domains utilize the effectiveness of SER through modern conversational systems,
such as Google Assistant, Siri, and Alexa, to assist and attract their clients. Auspiciously
recognizing emotional positions of people also helps to improve their business achieve-
ments. Feelings expressed via speech must be accurately identified and appropriately
handled to provide more natural and transparent interactions between computers and
people. However, building an effective SER is a complex and arduous effort owing to
the utterance levels and abstract emotions [1]. Moreover, determining a methodologically
felicitous algorithm is crucial in realizing and achieving a performance superior to that
of the established benchmarks. Particularly, classic SER methods cover several concrete
stages from inputting and preprocessing audio data to feature extraction and emotion
classification (Figure 1).

Electronics 2022, 11, 4047. https://doi.org/10.3390/electronics11234047 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11234047
https://doi.org/10.3390/electronics11234047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3594-0137
https://orcid.org/0000-0001-5360-3479
https://orcid.org/0000-0001-7351-625X
https://orcid.org/0000-0003-0184-7599
https://doi.org/10.3390/electronics11234047
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11234047?type=check_update&version=2


Electronics 2022, 11, 4047 2 of 14Electronics 2022, 11, x FOR PEER REVIEW 2 of 15 
 

 

 
Figure 1. Steps of classic SER systems. 

Support vector machine (SVM) [2,3], hidden Markov model (HMM) [4,5], Gaussian 
mixture model [6], and other methods [7,8] are representatives of classic SER methods. 
The classic methods typically begin by extracting numerous acoustic characteristics, in-
cluding prosodic features (frame level, duration, energy, and pitch). Other important 
speech features, such as spectral, voice quality, and Teager energy operator (TEO) [9], are 
integrated to develop SER models using special mathematical functions. Nevertheless, 
the classic methods cause low accuracy performance, expensive computation, and ef-
fortful identification of various emotional cases [10]. Further, clarifying manually based 
on psychologists and sound specialists [11], neglecting time-domain features of raw au-
dio data [12], and missing certain essential features during a feature extraction step [13] 
are common drawbacks of the classic SER models. However, the current trends of deep 
neural networks that are applied in the SER research field have demonstrated consider-
ably remarkable efficiency and mitigated aforementioned problems. The automated ex-
traction of emotional characteristics of the raw audio speech and understanding the re-
lationships between those characteristics are the capabilities of learning algorithms in 
speech emotion identification. In comparison with classic approaches, it has demon-
strated superior efficiency. For example, the authors of ref. [14] proposed a hybrid model 
based on long short-term memory (LSTM) and convolutional neural networks (CNNs) to 
apply time representation. However, despite their time representation, the duration of 
the speech was not managed and solved. Because, emotions may change with time dur-
ing the continuous speech, and the changes may result in losing valuable information 
when an input speech data is segmented. On persistent SER, [15] developed a CNN 
model with two downsampling/upsampling structures and changing dilation factors of 
various layers. The changing factors may affect a model’s performance and cause an 
overfitting problem. Therefore, to handle and lessen the problems, the model’s complex-
ity and number of parameters should be cut down. In addition, SER modeling with at-
tention mechanism [11], transfer learning [16], and other deep neural networks [17,18] are 
illustrations of the current trends of AI. They mostly used high-level representations of 
speech features. Despite the advancement of the above mentioned DNN models, feature 
extraction and selection are the main parts of SER. Different speech features may offer a 
variety information on speech emotion. In addition to high-level representations, 
low-level (paralinguistic) feature representations may also have effects on detecting 
emotions and on how well a model works. Several studies use one and/or two sources of 
features to obtain optimized SER models. However, no experimentally approved ap-
propriate set of features exist to build an effective SER model. Moreover, expensive 
computation and memory usage for deployment are the current limitations of the exist-
ing SER models that integrate multimodal features. An appropriate emotion detection 
model may be accomplished by designing effective research methodologies that integrate 
helpful speech emotions according to the methodology. Therefore, we attempted to build 
a novel SER model via attention-oriented parallel CNN encoders that parallelly acquires 
important features that are used for emotion classification by considering significant 
limitations of published methodologies and mitigates SER model performance in terms 
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Support vector machine (SVM) [2,3], hidden Markov model (HMM) [4,5], Gaussian
mixture model [6], and other methods [7,8] are representatives of classic SER methods. The
classic methods typically begin by extracting numerous acoustic characteristics, including
prosodic features (frame level, duration, energy, and pitch). Other important speech fea-
tures, such as spectral, voice quality, and Teager energy operator (TEO) [9], are integrated to
develop SER models using special mathematical functions. Nevertheless, the classic meth-
ods cause low accuracy performance, expensive computation, and effortful identification
of various emotional cases [10]. Further, clarifying manually based on psychologists and
sound specialists [11], neglecting time-domain features of raw audio data [12], and missing
certain essential features during a feature extraction step [13] are common drawbacks of
the classic SER models. However, the current trends of deep neural networks that are ap-
plied in the SER research field have demonstrated considerably remarkable efficiency and
mitigated aforementioned problems. The automated extraction of emotional characteristics
of the raw audio speech and understanding the relationships between those characteristics
are the capabilities of learning algorithms in speech emotion identification. In comparison
with classic approaches, it has demonstrated superior efficiency. For example, the authors
of ref. [14] proposed a hybrid model based on long short-term memory (LSTM) and con-
volutional neural networks (CNNs) to apply time representation. However, despite their
time representation, the duration of the speech was not managed and solved. Because,
emotions may change with time during the continuous speech, and the changes may result
in losing valuable information when an input speech data is segmented. On persistent
SER, [15] developed a CNN model with two downsampling/upsampling structures and
changing dilation factors of various layers. The changing factors may affect a model’s per-
formance and cause an overfitting problem. Therefore, to handle and lessen the problems,
the model’s complexity and number of parameters should be cut down. In addition, SER
modeling with attention mechanism [11], transfer learning [16], and other deep neural
networks [17,18] are illustrations of the current trends of AI. They mostly used high-level
representations of speech features. Despite the advancement of the above mentioned
DNN models, feature extraction and selection are the main parts of SER. Different speech
features may offer a variety information on speech emotion. In addition to high-level
representations, low-level (paralinguistic) feature representations may also have effects on
detecting emotions and on how well a model works. Several studies use one and/or two
sources of features to obtain optimized SER models. However, no experimentally approved
appropriate set of features exist to build an effective SER model. Moreover, expensive
computation and memory usage for deployment are the current limitations of the existing
SER models that integrate multimodal features. An appropriate emotion detection model
may be accomplished by designing effective research methodologies that integrate helpful
speech emotions according to the methodology. Therefore, we attempted to build a novel
SER model via attention-oriented parallel CNN encoders that parallelly acquires important
features that are used for emotion classification by considering significant limitations of
published methodologies and mitigates SER model performance in terms of accuracy. A
minimized AlexNet CNN encoder for MFCC, fully convolutional network encoder for
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speech spectrogram, and CNN encoder for paralinguistic speech features were applied for
their individual purposes and fed to attention mechanisms for further representation. The
following are the contributions of this study:

• Improvement in terms of the model complexity
• Low-level (paralinguistic) feature representation
• Improvement in terms of model generalization
• Management of speeches of varying lengths
• A novel SER methodology that outperforms baseline models in terms of accuracy

The structure for the remainder of this article is as follows. The recent research works
related to generating speech emotional features, pure deep learning SER models, and other
DL methodologies that integrate attention mechanisms are specified in Section 2 of this
article. In Sections 3 and 4, the proposed model is explained in detail, and the verification of
its correctness is provided through empirical results and comparisons against benchmarks,
respectively. Conclusions and future scope are presented in Section 5. Finally, the referenced
literatures are cited, many of which are more recent articles.

2. Literature Overview

A study of emotions in speech is complicated and therefore requires a considerable
effort by the researchers to algorithmically build a perfect model. Currently, various studies
exist to detect people’s emotions by analyzing speech features and effectively classify
those features [19–21]. The steps involved in identifying emotions using raw speech data
include selecting and extracting their features and then classifying the emotions based
on the derived features. Therefore, an appropriate extraction of the features and their
positive correlation have a significant impact on the performance level of the emotion clas-
sification model. In particular, modern SER models have benefited from the development
of numerous innovative feature extraction approaches [22–26]. In ref. [22], modulation
spectrum and frequency features were proposed with the help of amplitude and frequency
modulation, and the two features were successfully integrated to the SER task. The authors
of ref. [26] developed epoch-based features using a windowing technique and provided
supplementary contribution to the SER model. The proposed research helped to increase
the emotion recognition performance. Moreover, current trends and efficiency of deep
learning models have advanced the SER task to the next level and conducted several studies
regarding the task [18,27–30]. Research in ref. [27] suggested a new one-dimensional struc-
ture using LSTM and CNN algorithms to recognize emotions by showing an association
of the semantic and spatial context of speech chunks. Furthermore, ref. [28] showed the
role and strength of the speaker’s temperament and mental health in SER by developing
CNNs. Badshah et al. [30] used CNN based on rectangular kernels with different sizes to
learn features, and the model outperformed baseline SER methods in terms of performance.
In ref. [31], the authors proposed a model with a combination of SVM and deep belief
network to classify emotions and to reveal speech features such as short-term energy, pitch,
zero-crossing rate, formant, and MFCC. The authors in ref. [32] developed a hybrid DNN
that comprises a binary weight network and recurrent neural network to detect common
keywords in speech by considering to reduce energy consumption and space memory.
In addition, several studies have been integrating attention mechanism with DNN for
further development of latest deep learning models in SER [33–38]. In ref. [33], the authors
aimed to solve pattern recognition, model parameters, and data sparsity issues; in addition,
they derived spatial features by combining self-attention mechanism and a dilated CNN
model. The authors in ref. [34] utilized the attention mechanism to improve prediction ac-
curacy and the recursive feature elimination feature selection technique on prosodic speech
features, including frequency, energy, and duration. Li et al. [37] suggested an attention
pooling approach to recognize emotional representations where the representations are
extracted from spectrograms of speech utterances using a deep CNN. The model in [38]
fused the relationship between time and spatial features and intended to autonomously
detect feature representations with the help of attention-based bidirectional LSTM recurrent
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neural networks and fully convolutional networks. Although authors in the aforemen-
tioned literature proposed their unique models for the SER task, certain limitations and
low prediction accuracy challenges remain to be solved. In summary and to the best of our
knowledge, no studies exist on parallel CNN encoders that integrate MFCC, paralinguistic,
and speech spectrogram features to acquire a better model in terms of model complexity
and accuracy. In addition, attention mechanisms that represent the encoded features for
classification were not used. The following sections explain the entire workflow of the
proposed model and prove the experimental results in detail.

3. Proposed Model

This section explains, in detail, the proposed model dedicated to the speech emotion
recognition process. The model comprises exact components where each component
has own effective contribution for emotion prediction. Figure 2 illustrates the entire
modeling process. As illustrated, input speech data were divided into three speech features
where subsequent model components parallelly encode those features. Then, the attention
mechanism was used to receive and analyze the encoded features separately. Subsequently,
all individual utterance features were concatenated as next flow to the consequent layer
where the flow is trained for prediction. In the following subsections, each component of
the proposed model is described in more depth.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 15 
 

 

speech utterances using a deep CNN. The model in [38] fused the relationship between 
time and spatial features and intended to autonomously detect feature representations 
with the help of attention-based bidirectional LSTM recurrent neural networks and fully 
convolutional networks. Although authors in the aforementioned literature proposed 
their unique models for the SER task, certain limitations and low prediction accuracy 
challenges remain to be solved. In summary and to the best of our knowledge, no studies 
exist on parallel CNN encoders that integrate MFCC, paralinguistic, and speech spec-
trogram features to acquire a better model in terms of model complexity and accuracy. In 
addition, attention mechanisms that represent the encoded features for classification 
were not used. The following sections explain the entire workflow of the proposed model 
and prove the experimental results in detail. 

3. Proposed Model 
This section explains, in detail, the proposed model dedicated to the speech emotion 

recognition process. The model comprises exact components where each component has 
own effective contribution for emotion prediction. Figure 2 illustrates the entire modeling 
process. As illustrated, input speech data were divided into three speech features where 
subsequent model components parallelly encode those features. Then, the attention 
mechanism was used to receive and analyze the encoded features separately. Subse-
quently, all individual utterance features were concatenated as next flow to the conse-
quent layer where the flow is trained for prediction. In the following subsections, each 
component of the proposed model is described in more depth. 

 
Figure 2. Workflow of the proposed model. 

  

Figure 2. Workflow of the proposed model.

3.1. CNN-Based Feature Encoders
3.1.1. Parallel CNNs Encoder of MFCC

The parallel CNN encoders aim to stabilize the training phase of time and spectral
data. Moreover, the larger CNN receptive field has a positive correlation with prediction
accuracy [39]. However, a larger receptive field size increases the model parameters, result-
ing in model overfitting [40]. Considering the aforementioned objectives, we constructed
the model components based on three CNNs that are located parallelly to derive different
feature maps from MFCC via altered filter sizes, and the derived features were eventually
concatenated and forwarded to the attention mechanism. In particular, the input speech
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data were normalized to compute the MFCC using a windowing technique to get 64-ms
divided frames. Subsequently, every single 64 ms frame was subjected to Fourier transform.
Then, CNN was trained by an initial 40 coefficients that were computed via inverse cosine
transform on each MFCC frame. To construct the CNN-based three parallel encoders, the
following approaches were employed:
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erates “𝛼” striding in the samples that are applied for the convolution calculation pro-
cess. Consequently, a kernel spatial length of “𝑘 > 0” will increase to “𝛼 𝑘 − 1 + 1”, and 
layers that apply dilations utilize that extended spatial length [39]. Additionally, re-
garding channel or spatial dimensions, convolutions can also be distinguished. The dis-
tinguished convolutions and their analogous counterparts share the same receptive field 
characters. Particularly, the calculation process of the receptive field receives a kernel 
with size of “3” from distinguished 3 × 3  depth-wise convolution. Eventually, all de-
rived encoded MFCC features from each CNN-based encoder were joined and sent to 
attention mechanism 1.  

Deep CNN (adding more layers)
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3×3+9×1+1×11 , compared with utilizing a single CNN-based encoder’s
identical receptive field size. Batch normalization (BN) receives feature-wise actions in the
interpretation time where CNN’s receptive field does not change. The receptive field of each
particular layer is input speech data and its activations yield BN parameters. A convolutional
kernel obtains “spots” from dilations. Because the amount of kernel weights remains identical,
they do not exist anymore and are inapplicable in spatial neighboring of samples. A kernel
diluted by a factor of “α” generates “α” striding in the samples that are applied for the
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to “α(k− 1) + 1”, and layers that apply dilations utilize that extended spatial length [39].
Additionally, regarding channel or spatial dimensions, convolutions can also be distinguished.
The distinguished convolutions and their analogous counterparts share the same receptive
field characters. Particularly, the calculation process of the receptive field receives a kernel
with size of “3” from distinguished 3× 3 depth-wise convolution. Eventually, all derived
encoded MFCC features from each CNN-based encoder were joined and sent to attention
mechanism 1.
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3.1.2. Paralinguistic Feature Encoder for Waveform (PFE)

To maintain the proposed model’s training phase constancy and reinforce its gen-
eralization, the component attempts to occupy the proposed model with paralinguistic
information. We believe that a better performance of the model may be achieved by com-
bining several important features, as demonstrated by several developed models [41,42].
The PFE encoder includes three consecutive convolution layers. The computation of the
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convolutional layer is performed based on Equation (1) where f (x) represents the kernel
function that is conducted on input waveform data.

( f ∗ h)(t) =
T

∑
k=−T

f (t)h(t− k) (1)

The input waveform data were first preprocessed to obtain unit variance and zero
mean, and then, they were divided into 20 s intervals and employed as inputs to the
convolutional layer. Max-pooling operation was then performed to decrease the dimen-
sionality. The convolution kernel size impacts the selection of an effective pooling size, and
an empirically basic approach was selected as expressed in Equation (2).

OR =
KS− 1

KS + PS− 1
(2)

Here, PS denotes the pooling size, KS denotes the kernel size, and OR denotes the
overlap rate. Evidently, the OR should be less than 1, and generally, it is believed to be
around 0.5 when making hand-crafted features. Strides consider the complete information,
whereas max-pooling just considers the most crucial information and discards the irrelevant
data. Therefore, the OR must be maintained below 0.5 to prevent it from obtaining the
same characteristics for subsequent frames. To construct the PFE structure, as illustrated in
Figure 4, the factor for OR is considered, and the value is equal to “0.35”.
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Computations on max-pooling and convolution were performed with greater and
tiny strides and kernel sizes, respectively. Convolution layer 1: To obtain features from
the segmented input waveform data, 64 temporal filters were applied with a KS of “8”.
Max-pooling layer 1: To reduce the signal’s frame rate and maintain the most meaningful
characteristics, max-pooling was utilized with a size of 10, which is identical to the KS of
the first convolutional layer. Convolution layer 2: Channel and kernel sizes in this layer were
“128” and “6”, respectively, aiming to derive more high-level representations. Max-pooling
layer 2: With a size of “8”, the layer is pooled by considering the OR factor that should
be below “0.5”. Convolution layer 3: More high-level representations than the previous
convolution layer are obtained from last convolution layer 3 where filter and kernel sizes
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were “256” and “6”, respectively. Max-pooling layer 3: In the end, max-pooling operation was
performed over time domain with a size of “8”. Eventually, the encoded waveform feature
output from the PFE encoder component of the proposed model was sent to attention
mechanism 1.

3.1.3. Fully Convolutional Network Encoder of Spectrogram

The aim of this component of the proposed model was to prevent the loss of impor-
tant information, and here, a fully convolutional neural network (FCNN) was used to
reach that goal. The FCNN does not require any process for segmentation to deal with
different lengths of speech data. Moreover, several deep-learning based models [43–46]
were developed to build effective utterance features and achieve better accuracy results. In
ref. [45], specific-sized chunks were derived by dividing raw speech spectrograms to meet
CNN specifications. Therefore, every segmented utterance chunk received the emotion
description of the relevant entire utterance. However, the process is not entirely logical
to believe that the entire emotion does not express its meaning in segmented utterance
chunks. We believe that the entire process of dividing speech spectrogram into chunks
leads to loss of speech coherence that represents an altering emotion. Therefore, FCNN is
integrated as a component of the proposed model to mitigate losing information and to
manage different lengths of speech spectrogram. Furthermore, FCNN can process input
data of any size and create appropriate interpreted and learned output. In particular, the
FCNN was extracted from the AlexNet [44], which lost all fully linked layers, and it served
as the component’s encoder (Figure 5) of the proposed model.
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The FCNN comprises five convolutional layers in which a “local response normal-
ization” was used after the first and second layers, and an activation function “ReLU”
was used after each convolutional layer. Avoiding the saturation of ReLU results from its
advantageous quality, i.e., it does not really require the normalization of input data. In case
the ReLU receives positive feeds from certain training datasets, learning will occur within
that neuron. However, we attempted to deliver generalization using a local normalization
approach as expressed in Equation (3).

bi
x,y =

ai
x,y(

k + α ∑
min(N−1, i+ n

2 )

j=max(0, i− n
2 )

(
aj

x,y

)2
)β

(3)

where the constant values of β = 0.75, n = 5, k = 2, and α = 0.0001 are used as hyperparam-
eters of the local response normalization N—all kernels of the corresponding layer. Settings
of convolutional layers are indicated as follows: (“kernel size”× “stride size”× “channels”).
The settings of the first convolutional layer are 11× 4× 96, and the parameters of the second
and third convolutional layers are 5× 1× 256 and 3× 1× 384, respectively, which receive
input after local response normalization and pooling. The fourth layer receives parameters
identical to those of the third layer. The parameters of the fifth layer are 3× 1× 256. The
results of adjacent neuronal groups in the same kernel map are summarized by pooling
layers of CNNs. The FCNN encoder provides three-dimensional array of X× Y× Z with
their respective sizes. The spectrogram’s time and frequency domains are expressed by the
characters “Y” and “X”, respectively, and the size of the channel is represented by “Z”. A set
with a different length that includes “k” components is supposed as the output K = Y×X.
Each component “K” is a Z-dimensional vector that encodes a particular segment of input
speech spectrogram and is expressed by Equation (4).

C = {c1, · · · ck}, ci ∈ RZ (4)

Eventually, encoded speech feature output from the FCNN encoder component of the
proposed model is sent to attention mechanism 2.

3.2. Attention Mechanisms
3.2.1. Attention Mechanism “1”

Attention mechanism “1” was performed with the help of concatenation and attention
mechanism techniques. The concatenation technique is a simple feature merging function
where encoded MFCC feature efm f cc ∈ Rdm f cc and waveform feature efwave ∈ Rdwave are

concatenated. This can be mathematically expressed as follows: econ =
[
efm f cc, efwave

]
.

To accomplish the attention mechanism, linear projection was applied on both the
features to place them in the same dimension “dmw”.

ẽfm f cc = Pm f ccefm f cc + cm f cc

ẽfwave = Pwaveefwave + cwave
(5)

Pm f cc ∈ Rd f w×dm f cc and Pwave ∈ Rd f w×dwave indicate projection matrices of both features.

att1 = αm f ccẽfm f cc + αwaveẽfwave

αj = so f tmax
(

ẽ f jzj√
dmw

)
(6)

where z ∈ Rdmw is the learnable vector of both features.
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3.2.2. Attention Mechanism “2”

Each component of C and time-frequency entities may not evenly contribute to the
emotional classes. Therefore, an attention mechanism technique was applied to capture
crucial components to the emotion utterance, and then they were combined to create its
vector. The attention technique was accomplished through Equations (7)–(9).

wi = vTtan h(Wci + b) (7)

αi =
exp(βwi)

∑L
k=1 exp(βwk)

(8)

ue =
L

∑
i=1

αici (9)

To construct a distinct form of ci, it was sent to multilayer perceptron based on the tanh
activation function owing to its nonlinearity. Subsequently, the relevance weight (wi) was
acquired by calculating the inner product between learnable vector “v” and constructed
distinct vector. Next, normalized relevance weight “αi” was computed using the softmax
function. Eventually, emotion utterance vector “ue” was acquired with the calculation of
sum of C.

4. Empirical Veracity and Discussion
4.1. Datasets

IEMOCAP and EMO-DB datasets were used to evaluate the proposed model and
prove its efficacy over counterparts. The datasets are publicly available and important ones
for research community to model and study in speech emotional recognition task.

4.1.1. IEMOCAP: Interactive Emotional Dyadic Motion Capture Database

The IEMOCAP dataset [47] offers observations of real emotive interactions and com-
prises dialogue (audio) and sentence (text) data. The actors and actresses offered a variety
of improvised imaginary situations that were intended to evoke various emotions. We used
only speech utterances (3784 samples) in dialogue format that depict four main emotion
classes of angry, sad, neutral, and happy. The emotion distribution of the IEMOCAP dataset
is shown in Figure 6.
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4.1.2. EMO-DB: Berlin Emotional Database

The German emotional data, or EMO-DB [48], are publicly accessible. Seven emotion
classes (disgust, sadness, fear, boredom, anger, neutral, and joy) are represented by the
535 overall utterances (samples) in the dataset. A wav file commonly lasts for 3 s. The
emotion distribution of the EMO-DB dataset is shown in Figure 7.
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The emotional classes in both datasets were unbalanced, and all empirical veracities
were taken with five-fold cross validation. Each dataset had a training set randomly made
of 80% of the data and a test set made of 20% of the data. A 16 kHz sampling rate was used
for the input speech data. Because the datasets were unbalanced, weighted accuracy (WA)
and unweighted accuracy (UA) were used as evaluation metrics. The ultimate outcome
was determined by averaging all the empirical findings.

4.2. Software and Hardware Configuration

The proposed approach was implemented using the following software and hardware
configurations, as presented in Table 1.

Table 1. Software and hardware configuration.

Software
Programming tools Python, Pandas,

Keras-TensorFlow

OS Windows 10

Hardware

CPU AMD Ryzen Threadripper 1900X 8-Core Processor 3.80 GHz

GPU Titan Xp 32 GB

RAM 128

The experiments were conducted on Titan Xp 32 GB for 300 epochs and 32 batch
sizes, 128 GB RAM, AMD Ryzen Threadripper 1900X 8-Core with OS Windows 10. The
proposed model was trained and tested via hyperparameters and the Adam optimizer with
a learning rate of 10−4. The learning rate was divided by 10 every 20 epochs.

4.3. Model Performance and Its Comparisons

To indicate the extent to which the suggested approach is better than the competitors,
we compared it with the following benchmarks, and the prediction results are presented in
Table 2.
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1. BLSTM-FCN two-layer attention [38]: Attention-aware BLSTM-RNN and FCN net-
works to learn spatial and temporal representations to predict emotions.

2. Deep CNN 2D [30]: A deep CNN model to derive discriminative features that
uses rectangular kernels of varying shapes and sizes, along with max pooling in
rectangular neighborhoods.

3. ATFNN [49]: Attentive Time-Frequency Neural Network (ATFNN) to learn the dis-
criminative speech emotion feature for SER.

4. SFE [50]: the model aims to design and implement a novel feature extraction method
that can extract features to recognize different emotions.

Table 2. Prediction performance and comparisons.

Models
EMO-DB IEMOCAP

WA in % UA in % WA in % UA in %

BLSTM-FCN
two-layer attention - - 68.1 67

Deep CNN 2D 69.2 67.9 71.2 70.6

SFE 71.1 68.4 - -

ATFNN - - 72.66 64.48

Proposed model 71.8 70.9 72.4 71.1

The proposed model was compared with the selected benchmark deep learning-based
models. In both datasets, the proposed model achieved better weighted accuracy (WA)
and unweighted accuracy (UA) as presented in Table 3 among the models and confusion
matrices presented in Figure 8. Especially, the WA and UA of the proposed model were
equal to 71.8% and 70.9% in the EMO-DB dataset scenario, respectively. Moreover, the WA
and UA rates were 72.4% and 71.1% with the IEMOCAP dataset.
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Table 3. Average accuracy comparisons between models.

Models
Average Accuracy

EMO-DB IEMOCAP

BLSTM-FCN
two-layer attention 86.54 -

Deep CNN 2D 82.20 78.61

SFE 80.32 -

ATFNN 87.5 89.1

Proposed model 89.76 91.18

Table 3 presents a comparison between the emotion recognition accuracy of the pro-
posed model and selected benchmarks.

5. Conclusions and Future Scope

The development of a methodologically felicitous algorithm to acquire valuable speech
features is a crucial task to achieve better model performance over established benchmarks.
Obtaining and interpreting speech features to recognize emotions in speech data might also
be difficult. The main factors that make it hard to design a SER model are extracting useful
features and classifying them correctly. However, the advancement of modern deep learning
algorithms has been mitigating these challenging actions. Therefore, we used attention-oriented
parallel CNN encoders that obtain important features at the same time and those used to
classify emotions to come up with a new SER model. The core of the proposed model relies on
CNN encoders for speech spectrogram, paralingusitic characteristics and MFCC, and attention
mechanisms for further representation and classification. Our model allows managing different-
length speeches, representing low-level (paralinguistic) features. The attention mechanisms
make it possible for the network to concentrate on the emotional parts of the acquired features.
Empirical veracity was executed on EMO-DB and IEMOCAP open datasets, and the results
showed that the proposed model was more efficient than the baseline models. Despite producing
improved recognition outcomes, the proposed model has certain limitations that may be solved
in the future work. Namely, the better performances of the proposed model were obtained
only with EMO-DB and IEMOCAP datasets. Therefore, we would like to obtain and integrate
different visual and audio features, and modify the architecture of the proposed model to apply
for other existing datasets. Furthermore, numerous potential future research areas have been
identified from the current study and may involve the following:

• integrating EGG signals through deep learning algorithms
• combining emotions into a recommendation system [51,52]
• analyzing emotions of visually impaired people [53]
• To enhance speech emotion characteristics’ resilience and discriminability [49]

These types of future studies might be attractive for employment in various other
speech datasets.
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