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Abstract: In response to the problems of low accuracy and poor noise immunity of the traditional
fault diagnosis method for rolling bearing fault diagnosis due to the complex and variable operating
conditions of rolling bearings and the large noise interference during bearing signal acquisition, a
rolling bearing fault diagnosis model based on VMD–RP–CSRN is proposed. Firstly, the initial feature
extraction of the bearing signal is carried out by variational modal decomposition (VMD), which is
then converted into a two-dimensional image with fault features by recurrent plot (RP) coding, and
then the feature images are input to a channel split residual network (CSRN) for feature extraction
and fault classification. In order to verify the accuracy and noise immunity of the proposed method
for the diagnosis of bearing faults under complex working conditions, experiments on the selection
of parameters in the CSRN model were conducted on the bearing dataset of Jiangnan University,
and experiments on the diagnosis of bearing faults under complex working conditions and noise
immunity of CSRN were carried out and compared with other commonly used methods. The
proposed bearing fault diagnosis method based on VMD–RP–CSRN combines VMD and RP to retain
the fault features in the original signal to the maximum extent and stress the hidden features in the
signal. The proposed channel split operation realizes the extraction of hidden features by selecting the
main operating channel of the three-channel feature image, and makes more fault features participate
in the feature extraction of the diagnosis model. The experimental results demonstrate that the
proposed method is at least 1.2% better than the comparison method, and has better noise immunity.
In addition, experiments on the fault diagnosis capability of the model with different data set sizes
and the diagnosis of variable speed bearing data by the model show that the proposed method has
better generalization performance and diagnosis capability.

Keywords: bearing fault diagnosis; variational modal decomposition; recurrent plot; channel split
residual network

1. Introduction

A rolling bearing is the core part of rotating machinery. Its running condition is related
to whether the rotating machinery can work safely and stably. In order to ensure the
safety and stability of machinery operation, it is important to carry out fault diagnosis and
online monitoring of rolling bearings [1]. The diagnostic accuracy of the traditional fault
diagnosis method is very dependent on the effectiveness of the fault feature extraction. In
the face of complex and changing working conditions, the feature extraction method is
obviously insufficient for the extraction of fault features, which leads to the unsatisfactory
diagnosis effect and poor noise immunity of the traditional fault diagnosis method for
multi-condition bearing faults [2]. Therefore, it is important to study a fault diagnosis
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method that can make up for the lack of feature extraction algorithm, has high diagnostic
capability for bearing faults and has strong noise immunity.

Traditional fault diagnosis methods achieve the extraction of fault signals and fault
diagnosis by performing time–frequency domain analysis on the original bearing fault
signals. For example, the fault features are extracted by empirical modal decomposi-
tion (EMD) [3], ensemble empirical modal decomposition (EEMD) [4], singular value
decomposition (SVD) [5], and wavelet transform (WT) [6], and then diagnosed by back
propagation (BP) neural networks [7], support vector machines (SVM) [8], etc. Although
these methods can usually carry out effective bearing fault diagnosis, they are not effective
for fault diagnosis under complex operating conditions and noise interference, and have
poor robustness.

With the development of deep learning, its powerful feature extraction capability
has led to a new solution to the bearing fault diagnosis problem [9]: fault classification
by encoding a one-dimensional bearing fault signal into a two-dimensional image and
then feeding it into a convolutional neural network [10]. Commonly used data conver-
sion methods include EMD binarization [11], G. Angular Difference Fields (GADF) [12],
multiwavelet transform [13], Signal-to-Image Mapping (STIM) [14], etc., and have been
used in bearings. In order to further improve the diagnostic accuracy of bearing faults,
Che Changchang et al. [15] used the bearing data to construct grey-scale map fault samples
and input them into a deep residual shrinkage network for fault diagnosis, which solved
the degradation problem of the multilayer network model and improved the diagnostic
accuracy by adding residual shrinkage blocks. This avoids feature loss and increases the
accuracy. Dechen Yao et al. [16] added reverse residual blocks to the network to increase
data dimensions before feature extraction, avoiding feature loss and improving accuracy.
To address the problem of variable operating conditions, Ke Zhang et al. [17] proposed
a multi-mode convolutional neural network, which used multiple parallel convolutional
layers to extract fault features and then transformed the 1D data of rolling bearings under
different frequency conversion conditions into 2D time–frequency gray scale maps by Con-
tinuous Wavelet Transform (CWT), and put them into a multi-mode convolutional neural
network. When the bearings are operated under different loads, the same fault features
under different loads are only different in terms of feature frequencies, which are difficult
to distinguish effectively, and it is difficult for the above fault diagnosis methods to extract
these features effectively, resulting in poor diagnostic accuracy of the diagnostic model.

In order to highlight the features in the bearing vibration signals, so that the diagnostic
model can make a more accurate diagnosis of bearing faults, some scholars carry out a
secondary extraction of bearing fault features after feature extraction, and select representa-
tive features as the fault classification basis. Jovan Gligorijevic et al. [18] decomposed the
bearing vibration signal into several interested sub-bands through wavelet decomposition,
and took the standard deviation of the obtained wavelet coefficient as the representative
feature to realize the accurate diagnosis of bearing faults. Aleksandar Brkovic et al. [19]
made wavelet decomposition of bearing vibration signals, extracted the standard devia-
tion as a measure of average energy and the logarithmic energy entropy as a measure of
disorder degree from the interested sub-bands as representative features, and used the
scattering matrix to optimize their dimensions, achieving 100% diagnostic accuracy in the
early bearing fault diagnosis.

VMD, proposed by Konstantin Dragomiretskiy in 2014, is an adaptive and completely
non-recursive approach to modal variational and signal processing, which can adaptively
match the optimal center frequency and finite bandwidth of each mode in the search and so-
lution process according to the given number of modal decompositions, and can achieve the
effective separation of the intrinsic modal components and the signal. The optimal solution
of the variational problem is obtained by dividing the frequency domain. In the bearing
fault diagnosis, Hongjiang Cui et al. [20] decomposed the bearing vibration signal into a
series of intrinsic mode functions by VMD, then classified the fault features of maximum
correlation kurtosis deconvolution, and obtained a better fault diagnosis accuracy. After
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decomposing the original signal into mode components and dividing the mode matrix into
sub-matrices, Chang Liu et al. [21] extracted the local feature information contained in each
sub-matrix into singular value vectors using singular value decomposition, constructed
the singular value vector matrix corresponding to the current fault state according to the
position of each sub-matrix, and finally completed the identification and classification of
fault types by the convolutional neural network.

In order to improve the diagnostic accuracy of bearing faults, and to give full play to the
feature extraction algorithm’s ability to extract bearing fault features and the convolutional
neural network’s powerful adaptive feature extraction ability for images, a new fault data
processing method based on the combination of VMD feature extraction algorithm and
recursive graph data coding method is proposed: VMD–RP, which converts bearing faults
into two-dimensional after coding them by VMD–RP, and combines the channel split
residual network (CSRN) to perform adaptive feature extraction on them to achieve fault
classification. The main contributions of this paper are as following:

1. Combine VMD feature extraction algorithm with RP image coding to transform fea-
ture extraction of fault data into two-dimensional images and enhance the correlation
between time series data. On the premise of fully retaining the features contained in
the original fault signal, the hidden features in the signal are mined through VMD
and expressed through RP.

2. Build the channel split mechanism, improve the residual network, make full use
of the differences of features in different channels of two-dimensional images, and
selectively highlight the channels, so as to fully express the hidden feature information
in the channels and fully extract the hidden features of RP images.

2. VMD Principle

The VMD algorithm is an adaptive non-recursive modal decomposition method. The
method uses the alternating direction multiplier algorithm to iterate sequentially to find
the optimal solution of the constrained variational model, thus obtaining the intrinsic mode
function (IMF) with K central frequencies of ωk. The decomposition process of the VMD
can be summarized as follows: Where µk and ωk respectively represent each mode signal
and the center frequency, α is the quadratic penalty factor, ˘ is the Lagrange operator.

Step 1: Initialisation
{

µ1
k
}

,
{

ω1
k
}

, λ1, n← 0 ;
Step 2: Let n = n + 1 and k = k + 1 and update µ̂n+1

k and ωn+1
k by Equations (1) and (2)

respectively. Then stop iterating when k = K.

µ̂n+1
k (ω) =

f̂ (ω)−∑i 6=k µ̂n+1
i (ω) + λ̂(ω)

2
1 + 2α(ω−ωk)

(1)

ωn+1
k =

∫ ∞
0 ω

∣∣∣µ̂n+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣µ̂n+1
k (ω)

∣∣∣2dω

(2)

Step 3: Update λ̂n+1 from Equation (3):

λ̂n+1(ω) = λ̂n(ω) + τ

(
f̂ (ω)−∑

k
µ̂n+1

k (ω)

)
(3)

Step 4: Given ε > 0 stop the iteration when Equation (4) is satisfied. Otherwise, repeat step
2 to step 4.

ε > ∑
k

||µ̂n+1
k − µ̂n

k ||
2
2

||µ̂n
k ||

2
2

(4)

where the parameters K and α are pre-defined parameters; in this paper K = 2000, α = 4,
chosen with reference to literature [22].
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3. Recurrent Plot

The specific algorithm flow of recurrent plot [23] is as follows:

(1) The collected time series signals are reconstructed in phase space. Phase space re-
construction is the basis and first step of recurrent plot analysis. For the time series
(x(1), x(2), x(3), · · · x(n)) with signal length N, the corresponding reconstruction
space obtained by time delay is:

X(i) = [X(i), X(i + τ), · · ·X(i + (m− 1)τ)] (5)

in which i = 1, 2, 3, · · · , N− (m− 1)τ, τ is time delay, m is the embedding dimension,
and X(i) is used to reconstruct the phase space of the vector. The optimal time
delay τ and the optimal embedding dimension m are obtained by the method of
autocorrelation function.

(2) Calculate the Euclidean norm of any two vectors in the reconstructed phase space.

Di,j||Xi − Xj || i, j = 1, 2, 3, · · · , N − (m− 1)τ (6)

(3) Calculate and reconstruct the recursive value of phase space and construct the recur-
sive matrix of phase space.

Ri,j = Θ
(
ε− Di,j

)
i, j = 1, 2, 3, · · · , N − (m− 1)τ (7)

ε is a recursive threshold constant and is usually set as 15% of the standard deviation
of the original time series, and Θ(•) is the Heaviside function:

Θ(x) =
{

0 x ≤ 0
1 x > 1

(8)

Draw a recursive graph of time series signals. When Ri,j = 0, (i, j) is denoted as a light
point; when Ri,j = 1, (i, j) is denoted as a dark point. The recurrent plot of time series signal
is a dot plot drawn in Cartesian coordinate system with time series label i as the horizontal
axis and time series label j as the vertical axis. The points and lines in the recursive graph
are distributed in the whole graph in a certain law, indicating that there are deterministic
components in the signal, which can be used for type identification.

The fault data are encoded and converted into a 2D image by RP after VMD feature
extraction, and the encoded image is shown in Figure 1. Figure 1a shows the fault data
converted directly by RP to 2D image without VMD extraction, and Figure 1b shows the
fault data converted by RP to 2D image after VMD extraction.
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Figure 1. RP conversion image. (a) RP conversion image; (b) VMD–RP conversion image.

4. Channel Split Residual Network

The training effect of convolutional neural network decreases significantly with the
increase of network depth. In order to improve the training effect, the residual neural
network (Resnet) proposed by HE [24] can effectively improve the performance of deep
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neural network without extra computation by introducing the residual module, whose
structure is shown in Figure 2, and the identity operation means no operation is performed.
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Figure 2. Schematic diagram of residual structure.

In order to further improve the feature extraction capability of the residual network
and enhance the performance of the deep neural network, this paper proposes a channel
split residual network by constructing a channel split (CS) layer instead of the first convo-
lutional layer in the original residual network, and the flow chart of the CS layer is shown
in Figure 3. Firstly, the 1D bearing vibration signal is converted into a three-channel 2D
picture containing the fault characteristics by the picture conversion method, and then the
three-channel picture is input to the network for channel splitting, one of the three channels
is selected as the primary operation channel, and the other two channels are secondary
operation channels. The channel mixing operation is illustrated in Figure 4. After that,
the secondary operation channel is expanded to three channels by convolution. Finally,
expanded primary operation channels are stacked n times so that the number of channels is
the same as the number of channels in the first convolutional layer of the residual network,
and then the secondary operation channels are spliced after the primary operation channels.
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The final CSRN are shown in Figure 5 where the fault data is input into the CSRN for
feature extraction and fault classification after being transformed into a feature image by
the RP through VMD feature extraction.
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5. Experimental Data Sets

In order to evaluate the diagnostic accuracy of the proposed VMD–RP–CSRN method
for bearing faults, data from the Jiangnan University bearing dataset was selected for
experimental validation in this paper. This dataset contains all the operating data of the
bearings under different loads.

5.1. JNU Bearing Data

JNU bearing data [25] contain bearing faults at 600 r/min, 800 r/min, and 1000 r/min.
The bearing operation at different speeds is considered different tasks. For each speed
there are four types of data: inner ring failure, outer ring failure, rolling element failure,
and normal data, with a sampling frequency of 50 kHz. A total of 10 types of data were
selected for each of the three types of failure data and the normal data for the 600 r/min
operating condition as the multi-service bearing data set used for the experiments. The
specific experimental setup is shown in Figure 6.



Electronics 2022, 11, 4046 7 of 15Electronics 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

  
(a) (b) 

Figure 6 Experiment setup for the rolling bearing fault diagnosis. (a) Illustration of the rotation ma-
chinery and (b) the motor in the field. 

5.2. Feature Map Generation Method 
Firstly, the data on the JNU data bearing set was extracted by VMD, then the ex-

tracted data was transformed by RP into a feature map, and the resulting feature images 
were divided into training and test sets according to a ratio of 7:3 for the transformed data 
set. The data interception method is shown in Figure 7. 

VMD

Stride

RP

Number of sampling points

am
pl

itu
de

 
Figure 7. Data interception schematic. 

In order to fully sample the fault features, the interception length of each data sample 
was set to 4096 sampling points, and overlap sampling for data expansion was used; the 
overlap sampling steps were set to 2048, 1024, and 512 respectively, and divided into train-
ing and test sets according to the ratio of 7:3. The specific data set distribution is shown in 
Table 1. 

Table 1. Dataset specific division. 

  2048 1024 512 

JN 
600 r/min 168:75 336:150 680:292 
800 r/min 168:75 336:150 680:292 

1000 r/min 168:75 336:150 680:292 

Figure 6. Experiment setup for the rolling bearing fault diagnosis. (a) Illustration of the rotation
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In this dataset, an inductor motor (Mitsubishi SB-JR) used in a centrifugal fan system
was used for the faults diagnosis test. The nameplate of the machine was 3.7 kW three-
phase induction motors, with Vmax = 220 V, P = 4 pole pairs, and rated speed S = 1800 rpm.
Rated slip and frequency were 6.5% and 60 Hz. An accelerometer (PCB MA352A60) with
a bandwidth from 5 Hz to 60 kHz and 10 mV/g output was used to measure the vertical
vibration signals in the normal, outer-race defect, inner-race defect, and roller element
defect states, respectively. The vibration signals measured by the accelerometer were
transformed into the signal recorder (Scope Coder DL750) after being magnified by the
sensor signal conditioner (PCB ICP Model 480C02). The sampling frequency of the signal
measurement was 50 kHz, and the sampling time was 20 s.

5.2. Feature Map Generation Method

Firstly, the data on the JNU data bearing set was extracted by VMD, then the extracted
data was transformed by RP into a feature map, and the resulting feature images were
divided into training and test sets according to a ratio of 7:3 for the transformed data set.
The data interception method is shown in Figure 7.
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In order to fully sample the fault features, the interception length of each data sample
was set to 4096 sampling points, and overlap sampling for data expansion was used; the
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overlap sampling steps were set to 2048, 1024, and 512 respectively, and divided into
training and test sets according to the ratio of 7:3. The specific data set distribution is shown
in Table 1.

Table 1. Dataset specific division.

2048 1024 512

JN
600 r/min 168:75 336:150 680:292
800 r/min 168:75 336:150 680:292

1000 r/min 168:75 336:150 680:292

6. Experimental Verification

The deep learning framework used for the experiments was Pytorch 1.8.1, and the
equipment used was fitted with a RTX3060 graphics card and an i7 11800H CPU. In terms of
optimizer, Adam is an excellent optimizer because it can dynamically and smoothly adjust
the learning rate of each parameter and can quickly handle the sparse gradient problem of
convex functions. In order to eliminate the influence of the optimizer performance on the
experimental results of the activation function, we choose Adam as the optimizer for the
model used in our experiments. Under the condition of ensuring the normal operation of
the program, we sought to make full use of the performance of the hardware by opening
four threads at the same time when inputting images. Multi-threading represents that the
model can be trained at a faster speed; at the same time, each thread input 16 images at one
time, i.e., num-workers = 4, batch-size = 16.

6.1. Model Performance Validation

In order to verify the improvement effect of CS layer on the diagnostic accuracy of the
model, Jiangnan bearing data containing 10 fault states was selected as the experimental
object, and RP and VMD–RP were adopted to convert the fault data and input into the
residual network for training and diagnosis, respectively. At this time, the data conversion
step was 4096, and the experimental results are shown in Figure 8. When VMD–RP was
used to convert the data, the fault diagnosis accuracy of the residual network was 91.1%,
which was a 2% improvement compared to the direct conversion of the fault data using RP.
When the CS layer was added to the model and the feature maps generated using VMD–
RP were input to the model for training and fault classification, the diagnostic accuracy
achieved by the model was 92.9% when the main operating channel in the CS layer was
channel 2, which was 1.5% and 1.4% higher than when channel 1 and channel 2 were
selected as the main operating channels, respectively, and 1.8% higher than when the CS
layer was not added. Diagnostic accuracy is the demonstration of the ability of the CS
layer to improve the fault diagnostic accuracy of the model. C1, C2, and C3 represent the
CSRN models constructed with channels 1, 2, and 3 as the main operational channels for
the channel split operation, respectively.

In order to demonstrate the diagnostic capability of VMD–RP–CSRN for bearing
faults, the two-dimensional images generated when the data interception step was 512
were taken as the experimental data, used RP and VMD–RP to encode the data respectively
and then input them into Resnet for fault diagnosis. The experimental results are shown
in Figure 9. For RP, the fault diagnosis accuracy achieved by the model was 96.1%, which
is 2.1% higher than that when RP is used as the data conversion method; when the data
encoding method was VMD–RP and the diagnosis model was CSRN, the diagnosis accuracy
achieved by the model was 97.8%, which is 1.7% higher than that when Resnet is used
as the diagnosis model. In addition, to highlight the superiority of the VMD–RP–CSRN
diagnostic model, 1DCNN, MTF–CNN [26], and GADF–CNN were used to diagnose the
fault data as a comparison, and it can be seen from Figure 9 that the proposed diagnostic
method improved the fault diagnosis accuracy by 1.2%, 15.5%, and 13.7%, respectively,
compared with the comparison method.
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6.2. Model Noise Immunity Experiments

When bearings are in actual operation, the bearing data is inevitably disturbed by
noise during acquisition and has an impact on the fault diagnosis performance of the model.
In this paper, Gaussian white noise with different signal-to-noise ratios was added to the
original vibration signal to simulate the noise environment in actual operating conditions,
and fault diagnosis experiments were conducted using the added noise data to verify the
noise immunity of the model. In this paper, the signal-to-noise ratio (SNR) was used as a
measure of the noise level, which is defined in Equation (9):

SNR = 10lg
(

Ps
Pn

)
(9)

where Ps is the signal power and Pn is the noise power. In this paper, noise of −6 db,
−4 db, −2 db, 2 db, 4 db, and 6 db were added to the original data, and the VMD–RP–
CSRN is used for fault diagnosis. Due to the excellent performance of 1DCNN, MTF–CNN
and GADF–CNN in the field of bearing fault diagnosis, we chose the above methods to
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conduct the bearing data after adding noise. The diagnostic experiments were compared
with the proposed method in this paper to highlight the performance of the proposed
model. The experimental results are given in Table 2. The proposed method achieved an
average diagnostic accuracy of 95.52% in six noise cases, which is 11.7%, 34.25%, and 24.6%
higher than that of the comparison methods, and the diagnostic accuracy of the proposed
method was 93.2% when SNR = −6 db, at which time the highest diagnostic accuracy
achieved in the comparison method was 70.7, which was 22.5% lower than that of the paper.
The highest diagnostic accuracy achieved in the comparison method was 70.7, which was
22.5% lower than that of the proposed method, thus demonstrating the superiority of the
proposed method in terms of noise immunity.

Table 2. Experimental results of the VMD–RP–CSRN model for noise.

SNR
Fault Diagnosis Accuracy: %

VMD–RP–CSRN 1DCNN MTF–CNN GADF–CNN

−6 db 93.2 70.7 30.2 60.1
−4 db 94.9 76.6 32.8 63.3
−2 db 94.9 79.8 52.2 69.8
2 db 95.9 89.9 83.4 76.7
4 db 97.4 92.5 84.8 76.4
6 db 96.8 93.4 84.2 79.2

Mean 95.52 83.82 61.27 70.92

6.3. Analysis of the Generalisation Performance of the Model for Different Speed Scenarios

The accuracy of the diagnostic model of diagnosing bearing faults at different speeds is
a very important indicator of the diagnostic performance of the model. In order to verify the
superiority of the proposed model in diagnostic performance at different rotational speeds,
three different rotational speeds were used to build the training set and test set respectively,
where A represents the bearing fault data at 600 r/min, B represents the bearing speed
of 800 r/min, and C represents the bearing speed of 1000 r/min. A→ B represents the
training set built with data set A and the test set built with data set B. The training set
B was used to construct the test set. In this paper, 1DCNN, MTF–CNN, GADF–CNN,
and VMD–RP–CSRN models were used for comparison to highlight the generalization
performance of the models, and the experimental results are presented in Table 3. Mean1
represents the mean of the results of constant speed experiments and Mean2 represents the
mean of the results of the variable speed experiments.

Table 3. Experimental results on the generalization performance of the VMD–RP–CSRN model.

Fault Diagnosis Accuracy: %

VMD–RP–CSRN 1DCNN MTF–CNN GADF–CNN

A→ A 97.3 93.0 94.4 91.1
A→ B 95.5 89.2 80.3 69.3
A→ C 96.7 84.7 78.4 73.7
B→ A 95.0 91.7 68.3 77.8
B→ B 98.9 96.6 97.4 92.9
B→ C 96.7 96.5 87.8 80.0
C→ A 96.5 88.3 66.3 81.7
C→ B 96.2 94.9 95.5 85.0
C→ C 99.2 94.3 96.1 91.9
Mean 96.89 92.13 84.94 82.6
Mean1 98.47 94.63 95.97 91.97
Mean2 96.10 90.88 79.43 77.92

When both the training and test sets had the same speed, i.e., 600 r/min, the proposed
method achieved a diagnostic accuracy of 97.3%, which is 4.3%, 2.9%, and 6.2% higher
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than that of the comparison methods. In terms of average accuracy, the average diagnostic
accuracy of the proposed method is 98.47% with constant speed, which is 3.84%, 2.5%, and
6.5% better than the comparison methods. The diagnostic performance of this method
is better than the comparison methods when the speed of the data in the training and
test sets is different. With the speed of the training set A and the speed of the test set
B, the diagnostic accuracy of this method is 95.5%, which is 6.3% higher than that of the
best 1DCNN and 26.2% higher than that of the lowest GADF–CNN. In terms of average
accuracy, the method achieved 96.10% diagnostic accuracy at variable speed, which is
5.22%, 16.67%, and 18.18% better than the comparison methods. The analysis of the above
comparative experimental results demonstrates that the proposed VMD–RP–CSRN method
has better generalization performance in the diagnosis of bearing faults at different speed.

6.4. Performance Analysis of the Model at Different Dataset Sizes

The amount of fault data collected during the actual operating conditions of the
bearings is usually very limited, resulting in the model not being able to obtain high
diagnostic accuracy. Therefore, fault diagnosis performance of the model of small data sets
is also an important indicator to evaluate its comprehensive performance. In order to verify
the diagnostic performance of the proposed VMD–RP–CSRN model under small data sets,
this paper conducted diagnostic experiments on the bearing data set of Jiangnan University
with a 50% scale training set and a 10% scale training set for training and a constant scale
test set respectively. At 50% of the training set size, there were 340 samples of each fault
in the training set, and the number of samples of each fault in the test set taken for the
experiment was still not 292; at 10% of the training set size, there were 68 samples of each
fault in the training set, and the number of samples of each fault in the test set was still not
292. The results of the diagnostic experiments at 50% and 10% of the training set size are
given in Tables 4 and 5, respectively.

Table 4. Experimental results of model diagnosis at 50% training set size.

Fault Diagnosis Accuracy: %

VMD–RP–CSRN 1DCNN MTF–CNN GADF–CNN

A→ A 95.8 78.6 94.2 86.6
A→ B 94.6 67.9 76.5 68.1
A→ C 97.0 63.7 78.2 71.1
B→ A 92.0 73.4 69.7 76.2
B→ B 98.2 85.9 96.3 91.7
B→ C 97.0 77.5 83.3 76.2
C→ A 93.0 63.6 70.0 76.9
C→ B 93.3 75.5 87.4 77.5
C→ C 98.3 75.3 94.3 87.9
Mean 95.47 73.49 83.32 79.13
Mean1 97.43 79.93 94.93 88.73
Mean2 94.48 70.27 77.52 74.33

At a training set size of 50%, the proposed method achieved average diagnostic
accuracy of 95.47%, which was 12.15% better than the MTF–CNN, which has the best
diagnostic performance among the comparison methods. When the speed of the training
set and the speed of the test set are the same, the proposed method achieved an average
diagnostic accuracy of 97.43%, which was 17.5%, 2.5% and 8.7% higher than that of the
comparison methods. The proposed method achieved 94.48% average diagnostic accuracy
when the training and test sets have different rotational speed, which was 24.21%, 16.96%,
and 20.25% better than the comparison methods.
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Table 5. Experimental results of model diagnosis at 10% training set size.

Fault Diagnosis Accuracy: %

VMD–RP–CSRN 1DCNN MTF–CNN GADF–CNN

A→ A 92.0 60.0 80.9 76.1
A→ B 80.0 56.8 75.9 71.2
A→ C 80.8 47.1 77.6 67.6
B→ A 82.6 58.8 67.8 74.3
B→ B 90.3 69.2 92.4 79.9
B→ C 86.8 51.3 82.5 64.1
C→ A 83.8 52.1 62.4 71.2
C→ B 87.6 58.1 86.9 68.8
C→ C 96.7 53.7 88.5 73.2
Mean 86.73 56.34 79.43 71.82
Mean1 93.00 60.97 87.27 76.4
Mean2 83.60 54.03 75.52 69.53

At a training set size of 10%, the proposed method achieved an average diagnostic
accuracy of 86.73%, which was 7.3% better than the MTF–CNN with the best diagnostic
performance among the comparison methods. When the speed of the training set and the
speed of the test set were the same, the proposed method achieved an average diagnostic
accuracy of 93.00%, which was 32.03%, 5.73%, and 16.6% higher than that of the comparison
methods. When the speed of the training and test sets were different, the proposed method
achieved an average diagnostic accuracy of 83.60%, which was 29.57%, 8.08%, and 14.07%
higher than that of the comparison methods.

In summary, the proposed method can still achieve very good diagnostic results when
the training set sample is reduced, and has better stability than the comparison methods.

7. Fault Diagnosis of Variable Speed Bearings

When a bearing works in a variable speed situation with a fault, it is difficult to
extract the bearing fault features; the change in speed causes the fault features to change
immediately, and the model has low accuracy in classifying the fault. In order to achieve
accurate fault diagnosis of variable speed bearings, a fault dataset was generated by
converting variable speed bearing fault data through VMD–RP, the training set and test set
were divided according to a 7:3 ratio, and the fault classified by CSRN was used for feature
extraction and fault classification.

SQV Dataset [27,28]. The experimental data set used the SQ (Spectra Quest) com-
prehensive mechanical failure simulation test bench to simulate the failure of the outer
and inner rings of the motor bearing. The data acquisition time for each test was 15 s,
consisting of a complete acceleration/deceleration process from standstill to 3000 rpm
and then a steady deceleration to 0. The number of training sets and the number of test
sets consisted of the original variable speed data set transformed by VMD–RP to form the
feature map data set according to a 7:3 division (Table 6). The experimental results are
shown in Table 7. For the original variable speed data, the proposed method achieved 99.3%
diagnostic accuracy, which is 39%, 19.9%, and 5.1% better than the comparison methods. In
terms of noise immunity, six experiments with different noise additions were conducted in
this paper, and the proposed method achieved an average diagnostic accuracy of 98.62%
in the six noise experiments, which was 25.1% better than the comparison methods. The
average diagnostic accuracy of the proposed method in the six noise experiments was
98.62%, which was 25.82%, 25.12% and 5.74% higher than that of the compared methods. It
can be observed that the proposed VMD–RP–CSRN bearing fault diagnosis method has
excellent diagnostic performance for variable condition bearing faults, and also has very
good noise immunity performance.
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Table 6. SQV variable speed bearing sample distribution.

Bearing Condition Tags Number of Training Sets Number of Test Sets

Normal(NC) 0 700 300
Inner light (IF_1) 1 700 300

InnerModerate (IF_2) 2 700 300
InnerSevere (IF_3) 3 700 300
Outer light (OF_1) 4 700 300

OuterModerate (OF_2) 5 700 300
OuterSevere (OF_3) 6 700 300

Table 7. Experimental results on the noise immunity of the model to variable speed datasets.

SNR
Fault Diagnosis Accuracy: %

VMD–RP–CSRN 1DCNN MTF–CNN GADF–CNN

−6 db 96.9 71.1 60.8 87.7
−4 db 97.2 73.1 68.2 90.9
−2 db 99.0 74.3 70.7 92.1
Origin 99.3 60.3 79.4 94.2
2 db 99.5 72.8 81.9 94.6
4 db 99.6 74.1 82.4 95.2
6 db 99.5 71.4 77.0 96.8

Mean value of
noise

experiments
98.62 72.80 73.50 92.88

8. Conclusions

For traditional fault diagnosis in rolling bearings, actual operating conditions are
complex and variable; bearing signal acquisition noise interference and other problems
lead to low accuracy of the bearing fault diagnosis method, poor anti-noise results, and
other problems. To address these problems, this paper proposes a method based on a VMD–
RP–CSRN rolling bearing fault diagnosis model. Firstly, after the initial feature extraction
of the bearing signal by VMD, the decomposed signal is converted into a two-dimensional
picture with fault features after coding by RP, and then the feature picture is input to CSRN
for feature extraction and fault classification. The specific work and related conclusions are
as follows:

1. Simple feature extraction of the original bearing signal by VMD is followed by RP
coding to generate a 2D picture containing fault features and then input to CSRN
for fault feature extraction and classification, ultimately achieving 97.8% diagnostic
accuracy, a 1.7% improvement in diagnostic accuracy compared to when the CSRN
model was not used, and a 3.8% improvement in diagnostic accuracy compared to
the original data coded by RP.

2. Experiments on the generalization performance of the proposed model under different
complex operating conditions as well as experiments on the diagnosis of bearing faults
under different sizes of training sets show that the VMD–RP–CSRN model has better
generalization and stable performance than other algorithms.

3. The proposed model achieves 99.3% diagnostic accuracy in variable speed bearing
fault diagnosis experiments, with a minimum improvement of 5.1% compared to
the comparison methods, and 98.62% accuracy in noise immunity, with a 5.74%
improvement in diagnostic accuracy compared to the comparison methods.

In addition, when using VMD–RP for fault data conversion in this paper, certain values
are set for preset parameters in VMD. Although VMD has been verified in relevant literature
with excellent performance, its application in bearing fault diagnosis is still uncertain to
some extent. In future research, we should try to use particle swarm optimization algorithm
to carry out adaptive optimization on VMD, so that VMD can extract fault features more
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effectively. At the same time, it is also of certain research significance to transform bearing
fault signals into two-dimensional feature images after multi-feature extraction by fusion.
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