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Abstract: Wavefront-modulated beams such as vortex beams have attracted much attention in the
field of target recognition due to the introduced degrees of freedom. However, traditional wavefront-
modulated beams are doughnut shaped, and are not suitable for radar detection or tracking. To solve
this problem, a linear wavefront phase-modulated beam with a maximum radiation intensity in the
center was proposed in a previous study. In this paper, we continue to study target characteristics
under the linear wavefront phase-modulated beam. Through analysis of the target scattering based
on the physical optics (PO) method, we find that a part of the monostatic or bistatic radar cross-section
(RCS) of the target could be obtained by changing the phase gradient of the modulated beam. Taking
this part of RCS for feature extraction, we recognize the plates and trihedral corner reflectors through
the support vector machine (SVM) method. For data visualization, we use the t-distributed stochastic
neighbor embedding (t-SNE) method for data dimensionality reduction. The results show that the
recognition probability of the plates and trihedral corner reflectors can reach 91% with an antenna
array having an aperture of 20 wavelengths when the signal-to-noise ratio (SNR) is 20 dB, while the
traditional plane beam cannot classify these two targets directly.

Keywords: target recognition; feature extraction; wavefront modulation; phase gradient; RCS

1. Introduction

Radar target recognition plays an important role in military reconnaissance [1], au-
tomatic driving [2], security imaging [3], geologic examination [4], and ocean remote
sensing [5]. In target recognition, increasing the dimension of features can improve the
recognition accuracy [6]. For example, when a polarimetric feature is introduced into
radar target recognition, a dataset with one more dimension can be obtained, which can
improve recognition accuracy [7]. D. Perissin used polarization information to distinguish
urban-targets [8]. V. Vassilev made it possible to infer the ground surface type by using
a polarimetric radar [9]. G. Xiong utilized polarization information to distinguish a ship
target through a deep network [10]. The polarization characteristics also have limits. For
example, when different targets share the same polarization scattering matrix, such as
plates and trihedral corner reflectors, it is difficult to distinguish them in the polarization
dimension [11]. Jafari. M found that the polarization characteristics of the plates and
trihedral corner reflectors are the same and cannot be distinguished [12]. For the same
reason, the plates and trihedral corner reflectors are not used together in the polarization
calibration of the polarization synthetic aperture radar [13,14]. Therefore, it is difficult
to classify the plates and trihedral corner reflectors through polarization or amplitude
characteristics of the target.

In recent years, wavefront-modulated beams have attracted much attention. Similar to
the polarization of electromagnetic waves, wavefront-modulated beams can also increase
the number of feature dimensions and therefore could improve target recognition perfor-
mance [15]. Random phase coding (RPC) is one of the wavefront-modulating methods
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mostly used for imaging, but the radiating intensity of an RPC beam is not focused [16].
Vortex beams carrying orbital angular momentum (OAM) are another type of wavefront-
modulated beam. When vortex beams are used instead of plane beams, the scattering
results are different due to the spiral phase gradient [17]. S. Qiu used a vortex beam in
spinning object detection [18]. L. Bu used the vortex beam to detect and image high-speed
targets [19]. Z. Wu studied the scattering characteristics of targets under vortex beams
and concluded that the characteristics of targets were different when changing the OAM
mode [20]. Compared with plane beams, vortex beams improve the ability of information
acquisition and target detection [21–23]. B. Tang found that OAMs can carry more infor-
mation than plane waves when passing through the chaff clouds [24]. Y. Liao found that
using vortex beam detection can reduce the effects of clutter [25]. By using the OAM radar,
C. Zhang realized that the vortex beam improves the receiving signal-to-noise ratio (SNR)
of stealth targets [26,27]. Therefore, vortex beams could increase the feature dimension
by modifying the OAM mode. However, the vortex beams are doughnut shaped. Fur-
thermore, when the OAM mode changes, the maximum radiation direction of the vortex
beam also changes. These defects are not conducive to radar detection or forward-looking
imaging [28].

To solve this problem, a linear wavefront phase-modulated beam was proposed [29].
Similar to vortex beams, the phase-modulated beam also brings an extra feature dimen-
sion with a linear phase distribution in the azimuth or elevation angle direction and the
maximum radiation intensity in the center. In the literature [29], a modulated field with a
single-phase gradient is used to measure the three-dimensional velocity of the target. In this
study, we analyze the phase distribution of a target in the modulated beam and recognize
the target using multiple modulated beams with different phase gradients. Through the
theoretical analysis, we conclude that by changing the phase gradient of the modulated
beam, a part of the monostatic or bistatic target radar cross-section (RCS) could be obtained
when the target is stationary relative to the radar. A full-wave simulation was conducted in
FEKO to obtain the simulation data of the plates and trihedral corner reflectors through
the modulated beam. The classification rate of both plates and trihedral corner reflectors
through support vector machine (SVM) can reach 95%.

The innovation of this paper is as follows: First, we can obtain a part of the RCS of the
target by changing the phase gradient of the modulation field when the target and the radar
are relatively stationary, and therefore increase the dimensionality of the target features.
Second, by extracting the features from the additional RCS, we can improve the target
recognition accuracy performance with this extra dimension for targets such as plates and
trihedral corner reflectors.

The rest of this paper is organized as follows: In Section 2, we analyze the scattering
characteristics of targets when changing the phase gradient of the modulated beam and
propose the feature extraction method. In Section 3, we use FEKO for simulation and
classify targets according to simulation data. Finally, we draw the conclusion in Section 4.

2. Method
2.1. Linear Wavefront Phase-Modulated Beam

Figure 1 shows the coordinate system for the array antenna and the target. O is the
geometric center of the array antenna. O1 is the geometric center of the target. d is the
distance between O and O1. The position vector of the n-th antenna units is rn = ynŷ. P is
any point on the target. r is the vector position of the beam point. θ and φ are the spherical
coordinate angles of r.
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Figure 1. The coordinate system of the antenna array and target.

The linear wavefront phase-modulated beam can be generated by the antenna array,
and the generation method is proposed in [29]. The radiation electric pattern of the array
shown in Figure 1 can be expressed as

F =
N

∑
n=1

Inejkr′n =
N

∑
n=1

Inejk(x′n sin θ cos φ+y′n sin θ sin φ), (1)

where r′n is the location of the n-th antenna unit; N is the number of antenna units; In is
the feeding coefficient of the n-th antenna,; k is the wavenumber vector, which is given by
k = k sin θ cos φx̂+ k sin θ sin φŷ+ k cos θẑ, k = 2π/λ; and the unit position r′n = x′n x̂+ y′nŷ.
Therefore, the phase pattern of F is

α = angle(F) = arctan
imag(F)
real(F)

= arctan ∑ In sin[kr′n]
∑ In cos[kr′n]

.
(2)

When the target is in the far field of the antenna and θP is close to 0, the phase at P can be
simplified as

αP = α(θ = θP, φ = φP) ≈
∑ In sin[kPr′n]
∑ In cos[kPr′n]

≈ kOxθP cos φP + kOyθP sin φP,
(3)

where Ox = ∑ Inx′n/ ∑ In and Oy = ∑ Iny′n/ ∑ In are the equivalent feeding positions of
the array along x and y directions, respectively. Therefore, the phase gradient of point P is

α′ =
∂α

∂θ

∣∣∣∣
θ=θP

= kOx cos φP + kOy sin φP (4)

From formula (4), when φP = 0, the phase gradient is along the azimuth angle (kOx),
and when φP = π/2, the phase gradient is along the elevation angle (kOy). By changing
the feeding coefficient of each unit (In), the equivalent feeding positions (Ox and Oy) also
change, and the magnitude and direction of the phase gradient of the generated beam can
be adjusted accordingly.

Figure 2 compares the pattern of linear wavefront phase-modulated beam and the
plane beam. The beams are generated by a uniform circular array (UCA). The position
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of the n-th unit in Cartesian coordinates is (a sin φn, a cos φn, 0), where n = 1, 2, . . . , 8,
a = λ/2 is the radius of the circular array, and φn = (n− 5)π/8. The amplitude coefficients
of the modulated beams and the plane beam are shown in Table 1.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Comparison between the plane beam and the modulated beam. (a) The pattern of the plane
beam. (b) The phase pattern of the plane beam. (c) The pattern of the modulated beam I. (d) The
phase pattern of the modulated beam I. (e) The pattern of the modulated beam II. (f) The phase
pattern of the modulated beam II.

Table 1. Relative amplitude coefficients of beams.

N-th unit 1 2 3 4 5 6 7 8

Plane 1 1 1 1 1 1 1 1

Modulated I 0.1 0.55 1 1.45 1.9 1.45 1 0.55

Modulated II 1 0.55 0.1 0.55 1 1.45 1.9 1.45

The range of the azimuth and elevation directions is [−20◦, 20◦].
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2.2. Scattering Characteristics

To analyze the scattering characteristics of the target, the physical optics (PO) method [30]
was introduced. The PO method is convenient for studying the effect of target surface phase
on scattering characteristics. For the bistatic RCS situation, the scattering characteristic of
the target under the plane beam can be expressed as

ES
bi(θ, φ) = −jk

ejkd

4πd
E0

N

∑
n=1

Jnej(k′0−k′)rn An, (5)

where S is the surface of the target irradiated by the beam. S is divided into N small
triangles Tn, and n = 1, 2, . . . , N. E0 is the incident electric field. Jn, rn, and An are the
central current, position vector, and area of the n-th triangle, respectively. k′0 is the incident
wavenumber vector, k′0 = k sin θ0 cos φ0 x̂+ k sin θ0 sin φ0ŷ+ k cos θ0ẑ, and k′ is the reflected
wavenumber vector, k′ = k sin θ cos φx̂ + k sin θ sin φŷ + k cos θẑ, rn = xn x̂ + ynŷ + znẑ.

According to (3), the phase on the n-th triangle under the linear wavefront phase-
modulated beam could expressed as

αn = αP|
tan θP=

√
x2

n+y2
n

d ,sin φP=
yn√

x2
n+y2

n

≈ xn
kOx

d
+ yn

kOy

d
= k′1rn,

(6)

where k′1 = x̂kOx/d + ŷkOy/d. Therefore, the scattering field of the target under the
modulated beam could be obtained as

ES
modulated-bi(θ, φ) = −jk

ejkd

4πd
E0

N

∑
n=1

Jne−j(k′0−k′)rn ejαn An

= −jk
ejkd

4πd
E0

N

∑
n=1

Jne−j[k′0−(k′+k′1)]rn An

≈ ES
bi(θ + θ′1, φ + φ′1),

(7)

where θ′1 = arcsin(
√

O2
x + O2

y/d), φ′1 = arctan(Oy/Ox).
For the monostatic RCS, the direction of the received wave is opposite to that of the

transmitted wave, k′0 = −k′, and the scattering characteristic of the target under the plane
beam can be expressed as [30]

ES
mo(θ, φ) = −jk

ejkd

4πd
E0

N

∑
n=1

Jne−2jk′rn An (8)

The scattering field of the target under the modulated beam could be obtained as

ES
modulated-mo(θ, φ) = −jk

ejkd

4πd
E0

N

∑
n=1

Jne2jk′rn ejαn An

≈ ES
mo(θ +

θ′1
2

, φ + φ′1).

(9)

According to (7) and (9), we could measure a part of the target bistatic or monostatic
RCS by changing the wavefront phase gradient of the modulated beam without the relative
movement of the target. The range of the RCS is related to Ox, Oy and d. Therefore, when
the aperture of the array is increased or the distance between radar and target is reduced, a
larger range of the RCS could be obtained.



Electronics 2022, 11, 4044 6 of 13

2.3. Feature Extraction

By changing the phase gradient of the modulated beam, the amplitude and phase of
the target in different linear wavefront phase-modulated beams can be obtained, which
is proven to be related to the RCS of the target. On this basis, we can classify the targets
through the difference in the attitude sensitivity. In order to acquire the features for
classification, we need to extract the features in the amplitude and phase of the targets.

We chose two types of the modulated beam with different magnitude and direc-
tion of the phase gradients. The phase gradient of the first type of beam is α′ = α′m1

,
m1 = 1, . . . , M1, and the direction of the phase gradient is along the y-axis. The phase
gradient of the second type of beam is α′ = α′m2

, m2 = 1, . . . , M2, and the direction is
along the x-axis. To remove the effect of scattering intensity, the amplitude and phase of the
received signals is normalized by the data under plane wave. For a monostatic situation,
after normalization, the amplitude and phase of the target are expressed as

E(θ, φ)|α′=α′m =

∣∣∣∣ ES
modulated-mo(θ,φ)|α′=α′m

ES
mo(θ,φ)

− 1
∣∣∣∣d

ϕ(θ, φ)|α′=α′m = |ϕmodulated-mo(θ, φ)|α′=α′m − ϕmo(θ, φ)|d,
(10)

where ϕmo is the phase of ES
mo. Therefore, the features for classification are expressed as

X = [E|α′=α′m1
, E|α′=α′m2

, ϕ|α′=α′m1
, ϕ|α′=α′m2

], (11)

where m1 = 1, . . . , M1, m2 = 1, . . . , M2.

3. Results

To verify the proposed method, we simulated the plates and trihedral corner reflectors
in FEKO to obtain receiving signals with different wavefront phase gradient. Then, we
used these features to verify formulas (7) and (9) while classifying the two targets.

3.1. Scattering Characteristics of Plates and Trihedral Corner reflectors

First, we used FEKO for the full-wave simulation to verify formulas (7) and (9).
The simulation process is shown in Figure 3.

Set the trihedral corner 

reflectors and the plates 

models for simulation

 Measure the bistatic and 

monostatic RCS of the  target

Measure the echo of the target 

in the modulated beams with 

different phase gradients

Obtain the fitting bistatic and 

monostatic RCS through 

formula 7 and 9

Compare the RCS and the 

fitting RCS

Figure 3. The simulation process.

The simulation model of the plate and the trihedral corner reflector is shown in
Figure 4.
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(a)

x

y

0.1m

(b)

x

y

z

a

d

Target

Receiving array

Plane beam

(c)

Figure 4. The simulation model. (a) The model of the plate. (b) The model of the trihedral corner
reflector. (c) The overview of simulation.

The position of geometric center of the target in Cartesian coordinate is (0, 0, 0).
The working frequency is 17GHz. In the initial angle, the transmitting plane beam prop-
agates along the z-axis in a negative direction, k′0 = kẑ. The receiving antenna array is a
uniform circular array (UCA). The antenna unit is the electric dipole. The position of n-th
unit in Cartesian coordinate is (a sin φn, a cos φn, 2), where n = 1, 2, . . . , 8, a = λ/2 is the ra-
dius of the circular array and φn = (n− 5)π/8. The amplitude coefficients of the receiving
antenna array are shown in Table 2, where t = 0.45(m− 5)/4, m = 1, 2, . . . , 8, 9. From For-
mula (4), the phase gradient of the modulated beam is α′ = 0, ± 0.3, ± 0.6, ± 0.9, ± 1.2.

Table 2. Relative amplitude coefficients of the receiving array (forst type).

N-th unit 1 2 3 4 5 6 7 8

receiving 1 −2t 1 −t 1 1 + t 1 + 2t 1 + t 1 1 − t

For the bistatic RCS simulation, the receiving antenna array rotates along the y-axis
around the geometric center of the object in a range of [2◦, 3◦], and the angle interval is
0.1◦. The transmitting plane beam remains stationary. The bistatic RCS is ES

bi(θ ∈ [2◦, 3◦],
φ = 90◦). By changing the phase gradient of the modulated beams, from (7), the fitting
bistatic RCS data is ES

modulated-bi(θ ∈ [2◦, 3◦], φ = 90◦)|α′m , m = 1, 2, . . . , 9. Figure 5 pro-
vides a comparison of the bistatic RCS and the fitting bistatic RCS of the plate and trihedral
corner reflector through (7).
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Figure 5. Comparison of the plate and trihedral corner reflector bistatic RCS. (a) The RCS amplitude
of the plate. (b) The RCS amplitude of the trihedral corner reflector. (c) The RCS phase of the plate.
(d) The RCS phase of the trihedral corner reflector.

For the monostatic RCS simulation, the receiving antenna array and transmitting plane
beam rotate along the y-axis around the geometric center of the object in a range of [2◦, 3◦],
and the angle interval is 0.1◦. The monostatic RCS is ES

mo(θ ∈ [2◦, 3◦], φ = 90◦). By chang-
ing the phase gradient of the modulated beams, from (9), the fitting monostatic RCS is
ES

modulated-mo(θ ∈ [2◦, 3◦], φ = 90◦)|α′m , m = 1, 2, . . . , 9. Figure 6 provides a comparison
of the monostatic RCS and the fitting monostatic RCS of the plate and trihedral corner
reflector through (9).

In Figures 5 and 6, the RCS is obtained by rotating the receiving array with a total of
11 data points. After rotating the receiving array, the fitting RCS is obtained by changing
the phase gradient of the modulated beam using (7) and (9). There are nine fitting RCS
points near each RCS point. For the plates and trihedral corner reflectors, the simulation
results show that the RCS data and fitting RCS data have high consistency.
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Figure 6. Cont.
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Figure 6. Comparison of the plate and trihedral corner reflector monostatic RCS. (a) The RCS
amplitude of the plate. (b) The RCS amplitude of the trihedral corner reflector. (c) The RCS phase of
the plate. (d) The RCS phase of the trihedral corner reflector.

3.2. Classification

To classify the plates and trihedral corner reflectors, we use simulation to obtain the
amplitude and phase of the target in different linear wavefront phase-modulated beams.
The classification process is shown in Figure 7.

Set trihedral corner reflectors 

and plates models for 

simulation

 Measure the fitting RCS 

of the target in the 

modulated beams with 

different phase gradients

Feature extraction

Use SVM method to classify 

targets

 Measure the RCS of the 

target with Plane beam

Extract the amplitude as 

the classification feature

Compare the results of 

classification

Figure 7. The classification process.

Take the monostatic RCS as an example. The working frequency is 17 GHz. The targets
parameters are shown in Table 3.

The receiving antenna array and transmitting plane beam rotate along the y and x-
axis in a range of [−5◦, 5◦], from which 231 angles are selected as datasets. We use the
method presented in Section 2.3 to extract the features of the trihedral corner reflectors
and the plates. The amplitude coefficients of the receiving antenna array of the first type
of beam are shown in Table 2, where t = 0.45(m1 − 3)/2, m1 = 1, . . . , 5, and the phase
gradient of modulated beam is α′ = 0,±0.6,±1.2 according to formula (4). The amplitude
coefficients of the receiving antenna array of the second type beam are shown in Table 4,
where t = 0.45(m2 − 3)/2, m2 = 1, . . . , 5, and the phase gradient of modulated beam is
α′ = 0,±0.6,±1.2 according to formula (4).
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Table 3. The type of the targets.

Type Distance (m) Length of Side (m)

Trihedral 2 0.125

Trihedral 2 0.1

Trihedral 4 0.05

Plate 2 0.1

Plate 4 0.025

Plate 6 0.05

Table 4. Relative amplitude coefficients of the receiving array (second type).

N-th unit 1 2 3 4 5 6 7 8

receiving 1 1 − t 1 − 2t 1 − t 1 1 + t 1 + 2t 1 + t

Then, the SVM was selected as the classification method. The SVM method is excellent
at solving non-linear and binary classification problems [31]. The time complexity of
SVM is O(n3d), where n is the number of features, and d is the dimension of features [32].
From formula (11), the dataset X was selected as the classified data. A total of 20% of
the data were randomly selected as the test set, and the rest of the data were used as the
training set. We used the “fitcsvm” function in MATLAB to achieve classification, where
the kernel function was set to “rbf”. The classification rate is shown in Table 5. The average
classification rate reaches 95%, indicating that this method is effective for classifying plates
and trihedral corner reflectors.

As a comparison, we used plane beam to classify the trihedral corner reflectors and the
plates, and the amplitude of RCS was selected as a classification feature. The classification
rate is shown in Table 5. The characteristic distribution is shown in Figure 8.

Number of data points

R
el

at
iv

e 
am

p
li

tu
d

e 
(d

B
)

Plate

Trihedral

Figure 8. The characteristic distribution of the plane beam (the number of data is 1386).

From Table 5, the target recognition rate of the modulated beam is better than that
of the plane beam. The recognition effect of the plane beam depends on the amplitude of
these two targets.

For data visualization, it is necessary to reduce the dimensionality of features. When
the relationship between features is complex polynomial, a nonlinear dimension reduction
algorithm is needed, such as t-SNE. t-SNE can increase the probability of similar targets
being selected, thus maintaining the difference between data at high dimensions [33].
X is the high-dimensional dataset. After dimensionality reduction, we can acquire the
low-dimensional datasets Y = [y1, y2]. The cost function C is
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C = ∑
i

∑
j

pj|i log
pj|i
qj|i

, (12)

pj|i is the conditional probability between xi and xj, and qj|i are the joint probabilities
between yi and yj. t-SNE aims to minimize the cost function C. We used the “tsne”
function in MATLAB to achieve dimensionality reduction, where the algorithm was set to
“barneshut”. The visualization of dataset Y is shown in Figure 9.

Table 5. The classification rate of the modulated beam and plane beam.

Average of Multiple

Experiments

Predicted Class

Plate Trihedral

Actual class

(Modulated beam)

Plate 100% 0%

Trihedral 1.45% 98.55%

Actual class

(Plane beam)

Plate 67.39% 32.61%

Trihedral 33.09% 66.91%

y1

y
2

Plate

Trihedral

Figure 9. The visualization of the features of the plates and trihedral corner reflectors after dimen-
sionality reduction (the number of data is 1386).

From Figure 9, the boundary of the two data groups was clear.
Next, we discuss the impact of signal-to-noise ratio (SNR) on this work. In order to

discuss the recognition effect under different SNRs, we chose the antenna array with an
aperture of 20λ, which has a phase gradient for feature extraction of α′ = 0, ± 12.3, ± 24.6.
The recognition accuracy at different SNRs is shown in Figure 10.

12141618202224

SNR/dB

0.75

0.8

0.85

0.9

0.95

R
ec

o
g

n
it

io
n

 a
cc

u
ra

cy

Figure 10. Average recognition accuracy at different SNRs.
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The results show that the recognition accuracy is 91.67% when the SNR is 20 dB.

4. Conclusions

In this paper, we study the scattering characteristics of a target under a linear wavefront
phase-modulated beam to improve the target classification accuracy. Theoretical analysis
and simulation show that a part of the RCS of the target can be obtained by changing
the phase gradient of the modulated beam when the target is stationary relative to the
radar. Utilizing multiple modulated beams with different phase gradients, we propose
a feature extraction method to recognize the plates and the trihedral corner reflectors.
The results show that the average classification rate reaches 95%, while the traditional plane
beam cannot classify these two targets directly. Furthermore, the classification rate can
reach 91% with an antenna array that has an aperture of 20 wavelengths when the SNR is
20 dB. In summary, the feature information of the target is increased by introducing the
linear wavefront phase-modulated beam and therefore improves the target recognition
result. To further improve the accuracy of target recognition, a larger phase gradient or a
large-aperture antenna would help.
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