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Abstract: Federated learning has been attracting increasing amounts of attention for its potential
applications in disease diagnosis within the medical field due to privacy preservation and its ability
to solve data silo problems. However, the inconsistent distributions of client-side data significantly
degrade the performance of traditional federated learning. To eliminate the adverse effects of
non-IID problems on federated learning performance on multiple medical institution datasets, this
paper proposes a cyclic federated learning method based on distribution information sharing and
knowledge distillation for medical data (CFL_DS_KD). The method is divided into two main phases.
The first stage is an offline preparation process in which all clients train a generator model on local
datasets and pass the generator to neighbouring clients to generate virtual shared data. The second
stage is an online process that can also be mainly divided into two steps. The first step is a knowledge
distillation learning process in which all clients first initialise the task model on the local datasets
and share it with neighbouring clients. The clients then use the shared task model to guide the
updating of their local task models on the virtual shared data. The second step simply re-updates
the task model on the local datasets again and shares it with neighbouring clients. Our experiments
on non-IID datasets demonstrated the superior performance of our proposed method compared to
existing federated learning algorithms.

Keywords: cyclic federated learning; non-IID; distribution information sharing; knowledge distillation

1. Introduction

Deep learning is widely used in clinical scenarios, such as disease screening, health
management, diagnosis and treatment. Obtaining models that can perform various medical
tasks well often requires a large amount of training data; however, due to privacy limitations
in the medical field, it is not possible to pool data from various medical sites to form larger
datasets, which isolates each medical site and means that models can only be trained with a
small amount of local data, resulting in the poor performance of trained models. Federated
learning [1] has been proposed as an effective solution to this problem. Firstly, as a kind
of distributed machine learning, federated learning can jointly train global models for
multiple medical institutions by combining data and annotations from each institution
to expand the sample data volume and the number of annotations [2], thereby making
it possible to solve unbalanced data distributions. Secondly, federated learning does not
require data exchanges among healthcare institutions, which satisfies requirements such as
patient privacy protection, data security and government regulations. Additionally, the
results of federated learning can be shared among medical institutions, which can alleviate
the problem of the uneven distribution of medical resources to a certain extent.

The training process of federated learning involves medical institutions training model
parameters based on local datasets, then sharing model parameters among medical insti-
tutions and finally fusing all model parameters in an aggregated manner to form better-
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performing models. When the data distributions of medical institutions are inconsistent,
i.e., the assumption of independent and identical distribution (IID) is not satisfied among
medical institutions, the complexity of the problem modelling, theoretical analysis and
empirical evaluation of solutions increases, resulting in the degradation of model perfor-
mance [3]. A feasible idea to solve this problem is to share data distributions based on
the model sharing in federated learning, i.e., share the data distribution information of
different medical institutions with other medical institutions. This is similar to the sharing
and exchange of treatment experiences among doctors at multiple medical institutions,
which can improve treatment levels by learning from each other. In addition, there are
certain requirements for data security while keeping shared data.

The initial federated learning framework was the centralised federated learning frame-
work, which faced the problem that it is difficult to find trusted third parties to perform
parameter aggregation [4]. To solve this problem, decentralised federated learning frame-
works have been developed, such as peer-to-peer network structures; however, they have
certain requirements for the computing power of each client. Due to the frequent informa-
tion exchanges between multiple clients, the communication costs are also relatively high.
The decentralised federated learning architectures remove the central server to perform
task model aggregation locally and only exchange information between adjacent clients
on the communication graph, which reduces the probability of network congestion and
communication overheads while improving data privacy protection capabilities. There-
fore, these architectures are very suitable for the model exchange framework of federated
learning and the exchange of shared data.Thus, based on this, our approach is proposed to
improve the task model performance of federated learning for non-IID data.

To sum up, the main contributions of this work can be summarised as follows:

1. A novel unidirectional synchronous cyclic decentralised federated learning framework
and an effective evaluation of the convergence of the model;

2. A new distribution information sharing and knowledge distillation model aggregation
algorithm for the federated task model, which solves the problem of data distribution
inconsistency both at the algorithm level and the data level;

3. The first attempt to use federated learning to diagnose Alzheimer’s disease based on
medical datasets;

4. A way to measure the inconsistent distributions of data features using the maximum
mean difference (MMD).

The rest of our paper is organised as follows. Section 2 introduces related work.
Section 3 details our proposed approach. Section 4 describes the experimental environment
and our experimental results. Section 5 concludes the paper and proposes future work.

2. Related Work

Since federated learning was first proposed, four main types of challenges have
arisen: communication challenges, system challenges, statistical challenges and privacy
challenges [4]. We can refer to these two articles [5,6] for the communication challenges and
system challenges of a cyclic federated learning framework, which have been analyzed and
solved by predecessors. For privacy challenges, we can refer to the solutions in these two
articles [7,8]. The privacy security protection strategies proposed in both papers consist of
a privacy protection module and an attack detection module, while the major difference
between the two is that the first scheme uses a two-level privacy data protection module.
This scheme uses perturbation-based privacy converts categorical values into numeric
and normalizes feature values into a range of [0, 1] before transforming the data using
DL-based encoder techniques, which strengthens privacy and increases the utility of DL
models .The statistical challenges, e.g., the non-independent and identical distribution of
data (non-IID) problem, are some of the most non-negligible challenges in the application
of federated learning in the medical field. Therefore, in this paper, we mainly focus on the
non-IID problems.In response to non-IID problems, existing research has mainly solved the
problems at the algorithm and data levels.
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The algorithm-level solutions mainly include objective function modification and
solution mode optimisation. Objective function modification involves adding regularisation
terms on the client side. A trade-off has been achieved between optimising local models
and reducing the differences between local models and global models to solve the non-
independent homogeneous distribution of data at each node [9–12]. The measure of the
differences between local models and global models by the regularisation terms can be
either the distance between them or the differences in model behaviour. The distance
measures between local and global models are Euclidean distances [9] and weighted
distances [10]. For example, the federated proximal optimisation (FedProx) algorithm that
has been proposed in the literature [9] corrects the client-side drift that occurs in FedAvg
by restricting the Euclidean distances between local models and global models as proximal
terms. This means that the local updates do not excessively deviate from the global models,
which alleviates any inconsistencies in the client-side data and improves the stability of
global model convergence. The federated curvature (FedCurv) algorithm that has been
proposed in the literature [10] uses Fisher information from global models obtained during
the previous rounds of training to weight the distances, which can reduce excessive errors
in the model parameters. The differences in model behaviour between local and global
models can be measured by the degree of inconsistency in the model output distributions
on local datasets or by the gradient of the global models on local datasets. For example, in
the literature [11], the maximum mean discrepancy (MMD) has been used as a metric to
measure the inconsistency in model output distributions on local datasets. The stochastic
controlled averaging (SCAFFOLD) algorithm that has been proposed in the literature [12]
improves the FedProx algorithm by adding a control variable on the client side. This
control variable can take either the gradient norm of global models on local datasets or
the Euclidean distances between local and global models, thus preventing local models
from deviating from the globally correct training direction. These methods can improve
the performance of federated learning for model learning on non-IID datasets to some
extent, but the degree of improvement is limited by the consistency of the client-side data
sampling [3].

In solution optimisation, the good performance of federated learning models is mainly
achieved by improving the server-side aggregation method. The ideal application condi-
tions for federated learning are IID-based datasets (such as the initially proposed FedAvg
algorithm) and weights for clients that are proportional to the number of samples.The accu-
racy of global models is greatly degraded in the case of the inconsistent, unbalanced and
non-independent distribution of client data [13]. For this reason, most scholars have aimed
to improve the shortcomings of aggregation methods for federated averaging algorithms.
Accuracy-based averaging (ABAvg) has been in the literature [14], in which the server-side
tests the accuracy of temporary models on validation datasets to obtain the accuracy of the
models on the client side and then normalises them before aggregating all parameters. The
federated learning with matched averaging (FedMA) algorithm that has been proposed in
the literature [15] uses Bayesian non-parametric methods to match and average weights in
a hierarchical manner. The federated averaging with momentum (FedAvgM) algorithm
that has been proposed in the literature [16] applies momentum when updating global
models on a server. The federated normalised averaging (FedNova) algorithm that has
been proposed in the literature [17] normalises local updates before averaging. However,
these methods have limited success in improving the performance of global models [12], so
some scholars have proposed approaches that evade this problem, such as personalised
federated learning, multitask federated learning and federated meta-learning, which can
also improve the performance of federated learning on non-IID data to some extent.

The source of global model performance degradation is the non-IID problem; thus,
data-level approaches to sharing client-side data have become new options for solving
the non-IID problem. Client-side data sharing can be divided into two types: direct data
sharing and indirect data sharing. In terms of direct data sharing for federated learning, one
approach is to use a global sharing strategy [18–20], in which the server-side shares small
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amounts of public data with the client for training to reduce the variance between trained
local models, thus increasing the robustness and stability of the training process. This
sharing approach relies on task-specific public datasets, and, in practice, there is a risk of
privacy violation during both the acquisition and sharing of public data. Another approach
is to use a local sharing strategy [21,22], in which small amounts of data are shared directly
through trusted communication links between clients; however, this approach also violates
the privacy preservation conventions of federated learning.

Indirectly shared federated learning does not share data directly, but rather makes the
distributions of client datasets consistent by sharing data distribution information on the
client side and then augmenting local training datasets with the shared distribution infor-
mation [23,24]. The data distribution information can be learned using generator networks,
which can be divided into global and local generators, depending on how the generators
are trained. For example, a global generator shared approach has been proposed in the liter-
ature [23] that trains conditional generative adversarial network(CGAN) [25] generators on
central servers and then shares the generators with clients to share distribution information.
However, the data required for training CGANs using central servers are extracted from
all clients, and there is a risk of privacy violation during the transmission of extracted
data from the clients to the server side. A local generator shared approach has also been
proposed in the literature [24] that trains bulldozer distance-based generative adversarial
networks (i.e., Wasserstein generative adversarial networks, WGANs) [23] on local datasets
on the client side and shares them with other clients. An image translation network is then
trained using local generators and other generators to solve the federated learning problem
for client-side heterogeneous data. Implicit data sharing through generators does not cause
any privacy problems and is more practical than direct data sharing because it meets the
need for patient privacy protection in healthcare organisations.

The data-immobile and model-immobile nature of federated learning has led to its
increasingly widespread application in fields with high requirements for sensitive data
protection, such as medicine. To address the problem of the degradation of federal learning
performance due to inconsistent data distributions among federated learning participants,
federated learning for client-side data sharing has become an effective solution strategy.
Among the different options, the approach of sharing data distributions rather than the
data themselves is more appropriate for application because it does not create the risk of
privacy violation. Therefore, we addressed this issue by integrating solutions at both the
data and algorithm levels. See Figure 1 for details of classification guidelines.

Figure 1. Solutions to non-IID problems.

3. The Distribution Information Sharing- and Knowledge Distillation-Based Cyclic
Federated Learning Method

The ultimate goal of federated learning is to jointly train optimal models for multiple
clients; in this paper, we refer to these as task models, which are made by multiple medical
institutions to obtain target models. Task models can be for the diagnosis of diseases, lesion
segmentation, etc. In federated learning, local task models tend to be consistent with global
task models; however, in the case of non-IID local client data, local task models deviate
from global task models. In the existing state-of-the-art circular decentralised federated
learning schemes, the model parameters of nodes are updated after multiple steps of
weighted summation and then averaged, which is a complex and costly communication
strategy. In addition, the weighted average approach to model parameter aggregation
often yields poor task model performance on non-IID datasets because the client data
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distributions of neighbouring nodes may differ significantly and thus, the trained task
models are biased. To address this, a natural idea is to degrade this bias by sharing data
distributions to generate augmented datasets while preserving data privacy and then using
the augmented data to learn the data distributions of other clients to achieve the implicit
aggregation of model parameters. For this purpose, we used generators to learn the data
distribution information of clients and share the local task models of clients, together with
the local data generators, with neighbouring clients. Since both the generators and the task
models carrying the data distribution information of the neighbouring clients were trained
on the same datasets, this facilitated the use of the migration learning idea to aggregate the
task models of two neighbouring clients. Based on this, we proposed a teacher–student
model-based migratory learning approach for task model aggregation. Figure 2 shows a
general block diagram of our proposed approach.

Figure 2. A schematic diagram of our cyclic federated learning method based on distribution
information sharing and knowledge distillation.

Supposing that there are C clients involved in the federated learning task (where G is
the shared generator model parameters that are locally trained offline, and w is the task
model parameters that are dynamic shared weights), the overall process can be divided
into two stages as follows:

Stage 1: The offline process. All clients participating in the federated learning task
train the generator network offline on local datasets to obtain the generator network G that
responds to local distribution information. Then, all clients pass the trained generator G to
the next client in turn. The next client c+1 generates the corresponding virtually shared
local data after receiving the generator from client c before.

Stage 2: The online process, which can be mainly divided into two steps. The first
step is the knowledge distillation learning process, in which all clients first initialise the
task model on local datasets and share it with the next client, and the next client then uses
the shared task model to teach its task model on the data that were virtually shared via
knowledge distillation. The second step simply re-updates the trained task model on local
datasets again and shares it with the next client.

3.1. Distribution Information Acquisition Based on Deep Learning

To eliminate the adverse effects of the non-IID problem on the performance of medical
institution federated learning, an effective approach is to augment the local datasets of
medical institutions by sharing their data distributions. To obtain information about the
data distributions of healthcare institutions, the current state-of-the-art approach is to use
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a generator model with deep learning. Generators are the most effective tools for data
augmentation because they not only learn the distribution information of data effectively
but also generate data that match the real distributions. Generative adversarial networks
(GANs), as one of the current types of mainstream deep neural network generators, are
powerful in terms of image enhancement and image-to-image conversion [22]. Therefore,
we adopted a GAN as a data generator on the main server to obtain the data distribution
information of local clients [26–28] and added conditional information to generate the type
of data that we needed, i.e., the final generator model was a CGAN. Specifically, let the total
number of clients (federated learning participants) participating in the federated learning
task be C, let the local datasets of the c (c = 1, 2, · · · , C) client be Dc = {xi | i = 1, 2, · · · , Nc}
and let Nc = |Dc| be the number of clients in the training sample.The client c trains a
generator and reflects the distribution information Gc of local datasets Dc. Thus, C clients
are trained to obtain C generator models. The distribution of information obtained in this
way is relatively safe from privacy breaches.

3.2. Distribution Information Sharing

The purpose of sharing distribution information is to enable later clients in the cyclic
communication graph to have virtually shared data about the previous client’s data dis-
tribution information, thus enabling two adjacent clients to achieve a consistent distri-
bution of data to improve the performance of task models. To this end, we combined
the features of a cyclic federated learning architecture and model parameters to accom-
plish this process. Let c = 1, 2, · · · , C and let the client c transmit the generator Gc to
the client c+1. When c = C, let c + 1 = 1, thus forming a ring-shaped communication
link. Under the condition of this cyclic communication link, let the client c + 1 receive
the generator Gc from the client c, where Nc = |Dc| is the number of local data points
from the client c. Accordingly, Gc can generate N′c+1 virtually shared data points, i.e.,
D′c+1 =

{
xl | xl = G(zl), l = 1, 2, · · · , N′c+1

}
. Therefore, only the client c+1 has the dis-

tribution information of the client c, which indirectly realises distribution information
sharing while protecting patient privacy. The distribution information sharing process is
schematically illustrated in Figure 3.

Figure 3. A schematic diagram of the distribution information sharing process.

3.3. Task Model Parameter Aggregation

The task model parameter aggregation process focuses on how to use shared distri-
bution information for model parameter aggregation to eliminate the adverse effects of
the non-IID problem on federated learning performance. In our cyclic federated learning
framework, the client c+1 not only receives the task model parameters from the client c
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through a trusted channel but also the generator model Gc. The virtually shared data D′c+1
can be generated locally via Gc. Since D′c+1 have consistent distributions across the local
datasets Dc of the client c, the task model f (x, wc) obtained by the client c after training
using Dc has a good performance. However, the distributions of the local datasets Dc+1 of
the client c+1 are usually not consistent with those of Dc, such that f (x, wc) performs worse
on the local datasets Dc+1 of the client c+1 than on D′c+1. As a result, existing model aggre-
gation algorithms, such as federated averaging and its various improvements, performed
poorly in our cyclic federated learning framework. To this end, we proposed a new method
for model aggregation for federation learning tasks based on knowledge distillation.

Since the locally trained task model of client c has a similar optimal performance on
datasets D′c+1 and Dc, the locally trained task model f (x, wc+1) of client c+1 can be trained
using the local task model f (x, wc) of client c on the datasets D′c+1 to improve performance.
This idea could be implemented using the teacher–student model for migration learning,
as shown in Figures 4 and 5.

Figure 4. A schematic diagram of the teacher–student guided learning approach.

Figure 5. A schematic diagram of the teacher–student guided learning approach.



Electronics 2022, 11, 4039 8 of 17

The training goal of our cyclic federated learning method based on the distribu-
tion of information sharing and knowledge distillation was the minimisation of the total
loss function:

`(w1, w2, · · · , wC) =
C

∑
c=1

Lc+1(wc+1) + λ
C

∑
c=1

Rc+1(wc+1, wc) (1)

where γ is a hyperparameter that controls the propensity of the local task model, wc+1 is
the parameter of the local task model of the client c + 1 (the task model to be trained can be
the same or different for each client), and the loss function corresponding to Lc+1(wc+1)
has the following definition:

Lc+1(wc+1) = ∑
x∈Dc+1

lc+1(x; wc+1) (2)

where lc+1(x; wc+1) is the loss of the task model f (x, wc+1) on the data sample x and
Rc+1(wc+1, wc) ≥ 0 is the difference between the models of the adjacent clients c and c+1
in the cyclic communication graph, which is defined as follows:

Rc+1(wc+1, wc) = αLso f t(wc+1, wc) + βLhavd(wc+1) (3)

where
Lso f t(wc+1, wc) = ∑

x∈D′c+1

lso f t(x; wc+1, wc) (4)

Lhard (wc+1) = ∑
x∈D′c+1

lhard (x; wc+1) (5)

are the knowledge distillation loss and student loss on the datasets D′c+1, respectively
(which are defined in the same way as in the standard teacher–student model), and α and β
are two hyperparameters with values of 0 when the adjacent client models are the same
and values of greater than 0 when they are different; the smaller the difference, the smaller
the value (and vice versa). According to the incremental convex optimisation theory, the
minimisation equation (Equation (1)) can be solved using the following iteration. At the
k-th iteration, the gradient descent update is first performed on the intermediate variable
uc+1:

u(k)
c+1 = w(k−1)

c+1 − αk∇Rc+1

(
w(k−1)

c+1 , w(k−1)
c

)
(6)

where αk is the gradient descent size, and the superscripts k and k+1 denote the values
of the k-th and k-th+1 iterations, respectively. Then, the model parameters are updated
as follows:

w(k)
c+1 = arg min

w
Lc+1(w) +

λ

2αk

∥∥∥w− u(k)
c+1

∥∥∥2
(7)

Using Equation (6), the iteration of u(k)
c+1 learns the behaviour of f

(
x, wk−1

c

)
on the

datasets D′c+1, thus optimising the performance of the local model f
(

x, wk
c+1

)
that was

updated using Equation (7) on the datasets Dc+1 ∪ D′c+1. After multiple further iterations
of training, as shown in Figure 4, all clients can learn the features of the data distributions of
other clients via this cyclic framework, i.e., the training effect of a global model is reached.
Ultimately, the adverse effects of the non-IID problem on medical institution-federated
learning performance can be eliminated.

The above solution process can be described in pseudo-code as shown in Algorithm 1.
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Algorithm 1 Federated learning algorithm based on distribution information sharing and
knowledge distillation.

Input: C clients,each with its own training datasetsDc,generator Gc and its own task model
f (x, wc)

Output: Trained model parameter set {w1, w2, · · · , wC}
1: for c = 1, 2, · · · , C do
2: Client c sends Gc to Client c+1
3: Client c+1 generates virtual shared data D′c+1 with Gc
4: end for
5: for k = 1, 2, · · · , K do
6: for c = 1, 2, · · · , C do
7: Client c sends wc

(k−1) to Client c+1
8: Client c+1 updates u(k)

c+1 according to (3) and (6)

9: Client c+1 updates w(k)
c+1 according to (1) and (7)

10: end for
11: end for

4. Experimental Results and Discussion
4.1. Development Environment and Datasets

Our machine learning model was built by the well-known deep learning framework
PyTorch, version 1.6.0, and Python, version 3.7.1. A self-built cyclic federated learning
framework was used, in which a Kafka cluster was used as the information medium
for model parameter exchange. The generator network used six convolutional layers
with a convolutional kernel size of 4x4.We used two datasets to validate the effectiveness
of the proposed method, one of which was the Alzheimer’s dataset that was used in a
Kaggle competition .For this dataset, we used the pre-trained model VGG16 provided by
torchvision as our classifier network. The second dataset was the MNIST dataset, which
was also used to validate the generality of the proposed method, i.e., the generalisation
ability of the method. For this dataset, we used the two-layer convolutional layer network
used in MOON. The Alzheimer’s dataset, which has a total of 5120 training data points
and 1279 testing data points, has a 1:1 ratio of diseased to non-diseased data in both the
testing and training sets. The MNIST dataset has a total of 60,000 images in the training set
and 10,000 images in the testing set.

4.2. Experimental Parameters

There are various scenarios of non-IID data. In this study, we focused on two of them:
attribute skew and label skew. To study these two different types of data distributions, we
conducted experiments on the two selected datasets. For the Alzheimer’s dataset, due to
its high data latitude and the few types of labels, we used the maximum mean difference
(MMD) to measure the attribute skew of the client data [29]. The maximum mean difference
is mainly used to measure the distance between two data distributions. Given two data
distributions, the square of their MMD can be expressed as:

MMD2(x, y) = ‖E[ϕ(x)]− E[ϕ(y)]‖2 (8)

where φ(•) denotes the mapping to the regenerated Hilbert space (RKHS). The inconsis-
tency of client data distributions was measured by calculating the MMD, and the entire
dataset was divided according to the MMD value to measure the federated learning per-
formance under different MMD values. As for the MNIST dataset, we used the Dirichlet
distribution [30] to divide the non-IID samples because of the many types of labels. Figure 6
shows the Dirichlet distribution when α = 0.5 and the number of clients was 10.
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Figure 6. Dirichlet distribution.

4.3. Algorithm Evaluation

For the two distribution types (attribute skew and label skew), we effectively evaluated
our algorithm on the selected datasets.

4.3.1. Attribute Skew

To study attribute skew, we conducted a correlation experiment on the Alzheimer’s
dataset, the results of which are shown in Table 1 and Figures 7–10. By comparing the
accuracy rates on the testing set that are shown in Table 1, it can be seen that, in different
MMD scenarios, the cyclic federated average-based method had a larger model loss, its
performance was different from that of the centralised learning method, and the training
was unstable. Our proposed method outperformed the cyclic federated average method,
and the performance was close to or attained the centralised learning performance. The
box line plot in Figure 10 shows that the MMD increased from the top left to the bottom
right. By dynamically increasing the MMD, we could see that as the MMD increased
(i.e., as the data distribution became more inconsistent), the model performance of the
cyclic federated average method degraded faster and deviated greatly from the centralised
learning performance, while the performance of our proposed method was better than
that of the federated average, and the deviation from the centralised learning performance
was slower.

Table 1. The top-1 accuracy of different MMD values on the Alzheimer’s dataset.

Data Division
ID MMD CFL_DS_KD CFL_FedAvg CL

1 0.514 79.95% 78.97%

79.22%

2 1.029 79.56% 78.11%
3 1.283 78.73% 77.24%
4 1.546 78.60% 72.20%
5 1.803 78.77% 75.37%
6 2.059 78.05% 70.00%
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Figure 7. The accuracy of the different methods on the testing set after different amounts of commu-
nication rounds.

Figure 8. The accuracy of the different methods on the testing set after different amounts of commu-
nication rounds.

Figure 9. A performance comparison of the different methods under different MMD values.
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Figure 10. A performance comparison of the different methods under different MMD values.

Additionally, to further verify the effectiveness of our method, the output differences
between the proposed method and the centralised learning method were analysed. When
the difference was smaller, it meant that the proposed method was closer to the centralised
learning performance. From Figure 11, it can be seen that the output performance difference
between our method and the centralised learning method was almost 0, which effectively
illustrated the beneficial effects of our method.

Figure 11. The difference between the CFL_DS_KD and CL method outputs.

4.3.2. Label Skew

The superior performance of our method was effectively demonstrated after several
experiments on the Alzheimer’s dataset. To further demonstrate the performance of our
proposed method in the case of label skew, we also conducted corresponding comparative
experiments on the public MNIST dataset. Comparisons were made between our proposed
method and the state-of-the-art federated learning algorithm MOON and the mutual
learning method Def_KT within a centreless federated learning framework. As shown
in Figure 12 and Table 2, α is the Dirichlet distribution coefficient, and the smaller its
value, the more inconsistent the data distribution. From the experimental results, it can
be seen that the classification accuracy of our proposed method on the testing set was
almost comparable to the centralised learning method and higher than those of MOON [31],
Def_KT [32] and FedAvg. Thus, the superiority of our proposed method was effectively
demonstrated, both on a medical dataset and a publicly available natural dataset.
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Figure 12. A performance comparison of the different methods when α = 0.5.

Table 2. The top-1 test accuracy with α = 0.5 and α = 0.1 on MNIST datasets.

Method α = 0.1 α = 0.5

MOON 95.7% 98.1%
CFL_FedAvg 97.1% 98.1%

Def_KT 95.2% 99.0%
CFL_DS_KT 98.9% 99.1%

4.3.3. Convergence Evaluation

The convergence of centralised federated learning has been effectively proven, whereas
that of centreless cyclic federated learning frameworks has not yet been proven. Therefore,
in addition to the performance of the selected methods described above, we also experi-
mentally evaluated the convergence of our cyclic federated learning architecture. We used
two parametric numbers to find the differences in weights between clients. The weight
differences could be expressed as follows:

Dl =
1
C

C

∑
c=1

∥∥∥wl
c+1 − wl

c

∥∥∥
2

(9)

Di
l =

1
C

C

∑
c=1

∥∥∥wl
c+1i− wl

ci
∥∥∥

2
(10)

Equation (9) represents single-layer weight differences, and Equation (10) represents
single-weight differences in each layer, where wl

c denotes the c-th client’s i-th layer weight
and wli

c denotes the i-th weight difference in the i-th layer of the c-th client. We conducted
experiments on the Alzheimer’s dataset. Figure 13 shows the single-layer weight differ-
ences, in which it can be seen that as the amounts of communication rounds increased, the
weight differences degraded sequentially and eventually stabilised. Figures 14 and 15 show
the single-layer single-weight differences, in which it can be seen that the largest weight
difference was in the thirteenth convolutional layer, and the maximum difference was only
0.0035 (i.e., close to 0) and reached convergence.
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Figure 13. The single-layer weight differences.

Figure 14. The single-weight differences in each layer.

Figure 15. The single-weight differences in each layer.

The output variance could be expressed as follows:

DM =
1
C

c

∑
c=1
‖ f (wc+1; x)− f (wc; x)‖2 (11)

where f (wc; x) denotes the output of the model of the c-th client under the input sample
x. The output difference results are shown in Figure 16, in which the diagnosis difference
represents the differences between the diagnosis results and the input data. The disease
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output difference referred to the output differences between the results that were diagnosed
as diseased, and the model output difference referred to the overall differences between
the model outputs. It can be seen from the results that the output differences were small on
the whole, i.e., very close to 0. Therefore, from the above experiments, we could conclude
that the convergence of our proposed method was effectively evaluated. At present, the
model is convergent.

Figure 16. The output differences.

5. Summary

To address the non-IID problem in medical institution federated learning that cannot be
effectively solved using existing federated learning techniques, this paper proposed a cyclic
federated learning method (CFL_DS_KT) based on distribution information sharing and
knowledge distillation. This is a novel and effective federated learning approach and, to the
best of our knowledge, the first time we have used this unidirectional synchronous cyclic
decentralised federated learning framework and effectively evaluated the convergence of a
model with this structure. The experimental results also show that the task model achieves
convergence under our proposed approach. Furthermore, in contrast to existing scholarly
research solutions, we solve the non-IID problem by optimising the solution through the
solution approach of distribution sharing and knowledge distillation. By considering both
data-level and algorithm-level optimisation approaches, we achieve better performance
of the federation learning model under non-IID while safeguarding client data privacy.
In our extensive experiments on medical and public datasets, CFL_DS_KT shows a good
improvement over various state-of-the-art methods, and its accuracy is closer to that of
centralised learning. Further improvements in privacy preservation were achieved due to
using a cyclic federated learning method. It also provided the idea of training federated
learning models on heterogeneous data, which could eliminate data heterogeneity by
transforming the data distribution information from one client to another.

However, our proposed approach has some shortcomings. When the client data is
extremely heterogeneous, it is difficult to train a good generator to generate high-quality
images due to the small amount of training data. Additionally, it is not suitable to train
federated learning models with large numbers of clients as this could increase breakpoint
failures and model training cycle times. Therefore, this method would mainly be suitable
for federated learning across medical institutions.
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