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Abstract: In the recent years, deep learning has been widely used in process monitoring due to
its strong ability to extract features. However, with the increasing layers of the deep network,
the compression of features by the deep model will lead to the loss of some valuable information
and affect the model’s performance. To solve this problem, a fault detection method based on
a discriminant enhanced stacked auto-encoder is proposed. An enhanced stacked auto-encoder
network structure is designed, and the original data is added to each hidden layer in the model
pre-training process to solve the problem of information loss in the feature extraction process. Then
the self-encoding network is combined with spectral regression kernel discriminant analysis. The
fault category information is introduced into the features to optimize the features and enhance the
discrimination of the extracted features. The Euclidean distance is used for fault detection based
on the extracted features. From the Tennessee Eastman process experiment, it can be found that
the detection accuracy of this method is about 9.4% higher than that of the traditional stacked
auto-encoder method.

Keywords: deep learning; SAE; spectral regression kernel discriminant analysis; fault detection

1. Introduction

The improvement of science and continuous growth of the economy causes increasing
scale of the process industry and closed coupling degree so that the abnormalities and
faults of any equipment in system such as power system and industrial equipment will
affect the system’s normal operation [1–3]. Therefore, fault detection should run during the
whole processing industry, it is an indispensable part of process monitoring and plays a
vital role to ensure safety and stable operation of the whole process industrial system.

Fault detection methods are mainly divided into model-based methods, knowledge-
based methods, and data-based methods. Among them, model-based methods and
knowledge-based methods detect faults by establishing a system operation mechanism
analysis model and an expert knowledge base. However, the complex structure and large
scale of modern process industry increase the difficulty to acquire mechanism knowledge
and establish a mechanism model, which brings significant challenges to detect faults of
processing industry systems [4]. Therefore, traditional analytical model-based methods and
knowledge-based methods are often unable to establish an accurate analytical model and
expert knowledge model, and it is difficult to monitor the system in real-time effectively.

With the development of modern detection and sensing technology, sensor signals
such as voltage, current, flow and pressure in industrial systems can be collected with
large scale [5–8]. Therefore, fault detection methods based on data-driven have developed
rapidly, such as principal component analysis (PCA), linear discriminant analysis (LDA),
independent component analysis (ICA), and other multivariate statistical methods that
have been widely investigated by different scholars [9–11]. However, variables of industrial
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process often provide more complex correlations and nonlinearity. Using linear methods
will lead to unsatisfactory results. Therefore, many researchers combined kernel methods
with traditional multivariate statistical methods to deal with nonlinear problems, such as
kernel principal component analysis (KDA) [12,13].

However, kernel method needs to artificially determine the kernel width, which means
kernel methods are still unable to solve the nonlinear problem fundamentally. Moreover,
the above multivariate statistical methods are relatively shallow while extracting features
from large data. Some useful information will be submerged, which affects the detected
performance [14]. Comparatively, deep learning provides more expressive performance,
which can extract more useful nonlinear features for highly complex systems. Therefore,
after the deep learning method was proposed in 2006, it received extensive attention from
scholars [15,16]. Deep learning can deeply extract nonlinear features of data by using
deep model composed of multiple processing layers and nonlinear activation functions.
The typical methods include convolutional neural networks (CNN), deep belief networks
(DBN), and stacked auto-encoder (SAE) [17–19]. These methods extract high-dimensional
feature information from data layer by layer through its complex network structure, which
can describe the original object more accurately.

In recent years, deep learning has been widely used in fault detection and diagnosis.
Chen et al. redefined the objective function of nonlinear canonical correlation analysis
(CCA) and gave a generalized solution. Then, the introduced method combined with a
unilateral neural network. Consequently, a fault diagnosis method based on Single-Side
CCA was proposed to improve the diagnostic performance [20]. Yuan et al. proposed
an entropy-weighted nuisance attribute projection method to eliminate the interference
information in the feature space and then combined it with neural network to diagnose
fault of rolling bearings [21]. In addition, the researchers proposed a multivariate intrinsic
multiscale entropy to analyze the irregularity and complexity of the Lorentz signal of bolted
joints and constructed a convolutional neural network to achieve monitoring of bolted
joints [22]. Liu et al. proposed a highly sensitive feature selection framework based on DBN
and implemented fault detection on this framework. This method eliminated the redundant
features in the DBN network and improved the fault detection performance [23]. Wang et al.
proposed a stacked supervised auto-encoder to obtain deep features for fault classification
and applied it to industrial process fault diagnosis [24]. To decrease the difficulty of label
acquisition, Ma et al. proposed a consistency regularization auto-encoder framework based
on an encoder-decoder network to realize fault classification [25]. Huang et al. proposed a
distributed variational auto-encoder fault detection method. By establishing DVAE models
for local and neighboring units of system to describe the complex relationship between each
unit, the detected effect under missing data is improved [26]. Jiang et al. also established
SAE to mine the relevant features between process variables, and detected the sample state
through two-dimensional nonlinear and dynamic information to realize the fault diagnosis
of nonlinear batch process [27]. Although deep learning can deeply extracts features that
is applied to detect and diagnose faults, it still has some drawbacks. According to the
information bottleneck theory, the depth of the network model becomes deeper, the model’s
compression of features will lead to the loss of information in the original data, resulting in
a decline in the performance of the fault detection model [28].

This paper proposes a fault detection method based on discriminant enhance SAE
(DESAE) to extract information in the original data effectively. Constructing an enhanced
SAE (ESAE) network will reduce the loss of valuable information in the feature extraction
process. In the pre-training process. This method combines original data with hidden
layer’s features of the network and stacks multiple enhanced AE networks to mine valuable
information in the data layer by layer. Then, the introduced method combines ESAE with
spectral regression kernel discriminant analysis (SRKDA), and adds the fault category
information, into the features. additionally, and the features are optimized to enhance
the discrimination of the extracted features. Finally, the Euclidean distance and sliding
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window function are used for fault detection to eliminate the influence of noise on detection
statistics. The main contributions of this paper are as follows:

1. SAE can learn the nonlinear features of data. However, when the deep model performs
feature extraction, some valuable information in the original data may be lost due
to the deeper network layers, which affects detected performance. In this paper, an
ESAE network is constructed, which adds the original data into the hidden layer of
the pre-training process and reduces the loss of valuable information in the feature
extraction process.

2. Since SAE network is an unsupervised learning model, its training process only
considers the reconstructed data’s global error information and lacks the guidance
of labels. In this paper, ESAE and SRKDA are combined to introduce fault category
information into features and optimize features to enhance the discrimination of
features and improve the performance of detection models.

3. Based on the characteristics obtained by the above model, Euclidean distance is used
to measure the difference between normal data and fault data, and the sliding window
function is applied to reduce the influence from noise interference on detection statis-
tics. Considering the unknown distribution of actual industrial data, kernel density
estimation (KDE) is implemented to design the control limitation of statistics.

The remainder of paper structure is shown as follow: Section 2 simply introduced SAE.
In Section 3 described monitoring process by using DESAE. Section 4 presented experiment
that implementing introduced algorithm into TE process and concluded in Section 5.

2. Stacked Auto-Encoder

Auto-encoder (AE) is a standard feed-forward neural network. The network input
to the hidden layer can be regarded as an encoding process. Moreover, from the hidden
layer to the output layer is considered a decoding process. The encoded data will be
reconstructed to the original data by decoding process. The AE minimizes the mean square
error (MSE) of input and output by training network to achieve data feature extraction. The
feature extraction of AE usually provides three different manifestations: Firstly, the nodes
from hidden layer are less than from input layer and output layer, and the extracted features
are the compressed dimension reduction representation of the training data; secondly, the
hidden layer nodes are larger than the input layer and output layer, and the extracted
features are the high-dimensional representation of training data; Thirdly, the hidden layer
node is equal to the input node, the feature is an equal-dimensional representation of
training data. The encoding and decoding process of AE is:{

h = σ(W1x + b1)

x̂ = σ(W2h + b2)
(1)

where x = [x1, x2, · · · xm]
T ∈ Rm and x̂ = [x̂1, x̂2, · · · x̂m]

T ∈ Rm are the input layer and
output layer of the AE network respectively. h = [h1, h2, · · · , hv] ∈ Rv is the hidden layer
of the network. W1 ∈ Rv×m and b1 ∈ Rv are the weight matrix and offset vector of hidden
layer. Similarly, W2 ∈ Rv×m and b2 ∈ Rv are the weight matrix and bias vector of the
output layer, respectively. σ(·) is the neuron activation function, generally using sigmoid
and tanh functions.

SAE is a deep learning model stacked by auto-encoders. It deletes the decoding part
after training the AE and inputs the hidden layer parameter obtained by the first AE into
the second AE for training to obtain a new feature representation. After repeating the above
steps several times, the desired SAE model can be obtained. The model structure is shown
in Figure 1. After the network pre-training process, the corresponding hidden layers of each
AE are stacked to form a deep auto-encoder network with multiple hidden layers. Similar
to traditional AE, the parameters of the network are fine-tuned using the backpropagation
method by calculating the error between the network output layer and the input layer. As



Electronics 2022, 11, 3993 4 of 15

a typical deep learning network, SAE has better feature extraction ability than AE, and its
pre-training steps can avoid problems such as over-fitting of network training.
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Figure 1. SAE Network Structure Diagram: (a) Schematic diagram of SAE pre-training stage;
(b) Schematic diagram of SAE fine-tuning stage.

3. Process Monitoring Method Based on Discriminant Enhanced SAE
3.1. Enhanced SAE

Based on its underlying concept, SAE can effectively extract the deep features in the
data and has the characteristics of fast convergence. However, according to the information
bottleneck theory, ability of feature extraction by can still be improved. As the depth of
the neural network increases, the relevant information of the features extracted by the
network and the original data will decrease. Therefore, in order to retain more original
data information in the process of feature extraction, this paper proposes an ESAE network.
The network trains the original data as additional information of the hidden layer in the
pre-training stage. It can make the original data fully participate in the coding processso
that more information related to the original data can be retained in the feature extraction
process. Its network structure is shown in Figure 2.

ESAE is similar to SAE in the training process, divided into pre-training and reverse
fine-tuning. In the pre-training, the hidden layer data of each AE is used as the input for
the next AE. Moreover, the original data is added to enhance the training process, as shown
in the blue circle in Figure 2. In the pre-training process, ESAE first inputs the original data
xdata into AE1 for training to obtain the hidden layer data h(1) of the AE1. The training
method is shown in Equation (1). Then, the hidden layer h(1) of AE1 is combined with the
original data as the input x(2) =

[
h(1), xdata

]
of AE2. The AE2 trained in the same way as

AE1 to obtain the hidden layer h(2). Repeat the above steps to reach the depth of the model
set. In the ESAE reverse fine-tuning, the network parameters obtained in the network
pre-training are used as initialization parameters to construct a deep network with multiple
hidden layers. The MSE between the input layer and the output layer is calculated as the
global parameter in the cost function inverse fine-tuning network.
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Figure 2. ESAE Network Structure Diagram.

3.2. Detection Model Based on Discriminant Enhanced SAE

ESAE can effectively extract the features of the data and freely select the feature
dimension. However, since the algorithm is an unsupervised learning method, only the
global reconstruction information of the data is considered, and the label information of the
data is not involved. Therefore, this paper combines ESAE with SRKDA to effectively use
the advantages of unsupervised learning and supervised methods to improve the feature
extraction of process data.

Kernel discriminant analysis is a nonlinear extension of linear discriminant analysis. Its
main purpose is to project linear discriminant analysis into high-dimensional feature space
to solve the nonlinear problems. The feature extracted by ESAE is h = [h1, h2, · · ·hm] ∈ Rn,
and there are c categories in the sample. The objective function of linear discriminant
analysis is calculated as:

aopt = arg max
aTSba
aTSwa

(2)

where Sb donates between-class covariance matrix and Sw denotes within-class covariance
matrix in the feature space, which can be calculated as Equations (3) and (4) respectively.

Sb =
N

∑
k=1

p
(

µ(k) − µ
)(

µ(k) − µ
)T

(3)

Sw =
N

∑
k=1

p

(
mk

∑
i=1

(
h(k)

i − µ(k)
)(

h(k)
i − µ(k)

)T
)

(4)

Maps the features h = [h1, h2, · · ·hm] ∈ Rn to the feature space F using nonlinear
mapping φ:

φ : Rn → F

Then, between-class covariance matrix (Sφ
b ), within-class covariance matrix(Sφ

w), and
total scatter covariance matrix (Sφ

t ) in the nonlinear feature space are calculated as:

Sφ
b =

c

∑
k=1

mk

(
µ
(k)
φ − µφ

)(
µ
(k)
φ − µφ

)T
(5)

Sφ
w =

c

∑
k=1

(
mk

∑
i=1

(
φ
(

h(k)
i

)
− µ

(k)
φ

)(
φ
(

h(k)
i

)
− µ

(k)
φ

)T
)

(6)
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Sφ
t =

m

∑
i=1

(
φ(hi)− µφ

)(
φ(hi)− µφ

)T (7)

where µφ is the mean vector of the whole sample in the feature space F , µ
(k)
φ is the mean

vector of the k-class sample in the feature space F .
Let v be the projection function of the feature space. The objective function in the

feature space can be expressed as:

vopt = arg max
vTSφ

b v

vTSφ
t v

(8)

Transform Equation (8) into solving eigenvalue problem:

Sφ
b v = λSφ

t v (9)

Since the eigenvectors are linear combinations of φ(hi), there exist coefficient αi
such that

v =
m

∑
i=1

αiφ(hi) (10)

Let α = [α1, · · · , αm]
T , the objective function can be rewritten as:

αopt = arg max
αTKWKα

αTKKα
(11)

Similarly, transform Equation (11) into solving eigenvalue problem:

KWKα = λKKα (12)

where Kij = k
(
hi, hj

)
is the kernel matrix. W can be defined by the following equation:

Wij =


1

mk
, if hi and hj belong to the kth class

0, otherwise
(13)

Simplify the eigenvalue problem in Equation (12) by using spectral regression tech-
nique, we have

Wy = λy (14)

Then

KWKα = KWy = Kλy = λKKα (15)

where y = (K + δI)α, I is the unit matrix, δ ≥ 0 is a regularization parameter. In the feature
space, the projection function can be expressed as:

f (h) = 〈v, φ(h)〉 =
m

∑
i=1

αiK(h, hi) (16)

After obtaining the projection matrix, the latent variable to the new sample xnew are
calculated as:

Tnew = K(h, hnew) · v (17)

In the projection space, the average value of normal samples is used as the reference
value. Euclidean distance measures the difference between the test sample and the reference
value as the detection statistics. The calculation method is as follows:
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Td =

√√√√ k

∑
i=1

(
Ti

new − Ti
aver
)2 (18)

where Ti
new is the i-dimensional feature of the new sample, and Ti

aver represents the average
value of the i-dimensional feature corresponding to the normal sample.

Moving average window is often used in process control to avoid the impact of sudden
noise in the measurement variables on the results as much as possible. In addition, the
method can consider the influence of the previous state on the current state, smooth the
statistics, and reflect the actual situation of the current statistics. Through the calculation of
the moving average window, the detection statistics can be calculated as:

Statistics(n) =
Td(n− N + 1) + · · ·+ Td(n− 1) + Td(n)

N
(19)

where N is the width of the sliding window.
Since the statistic is not limited by specific distribution, the control limit of the statistic

is calculated by using KDE. The Gaussian function is selected as the kernel function, and
the KDE function can be calculated as:

p(x) =
1

nh
√

2π

n

∑
i=1

exp
(
− (x− xi)

2h2

)
(20)

where h =
(
4σ̂5/3n

)1/5 ≈ 1.06σ̂n1/5, σ̂ is the standard deviation of the sample. The
cumulative distribution function can be calculated as:

F(a) = P(x ≤ a)=
∫ a

−∞
f (x)dx = 1− α (21)

where α is the significance level. The control theory of fault detection can be computed
by Equation (21). When the detection statistics of the detected sample exceed the control
theory, the system is judged to be in fault state.

3.3. Detection Process

The method proposed in this paper mainly consists of offline training and online
detection, as shown in Figure 3. Its main steps are as follows:

Offline training:

1. The historical data are collected as training samples and standardized.
2. Input standardized data into ESAE to extract representative features h.
3. The feature h is projected into the feature space F to obtain the feature vector φ(h).
4. The Sφ

b , Sφ
w and Sφ

t of feature h are calculated respectively.
5. The generalized feature solving problem is transformed into a regression framework

to solve the projection function Equation (16).
6. The KDE is used to calculate the control limit of detection statistics.

Online detection:

1. Collect online data as the testing samples. The testing samples are standardized with
the same mean and variance as the training samples.

2. Obtaining the features hnew of standardized testing samples.
3. The feature hnew is projected into the feature space F to obtain the feature vector

φ(hnew).
4. Calculate the Test set feature projection by Equation (17)
5. Calculate detection statistics by Euclidean distance and sliding window function.
6. Calculate the fault detection rate if a fault is detected.
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Figure 3. Detection flowchart of DESAE.

4. Case Study
4.1. TE Process

TE process, the simulated system of actual industrial system that was implemented,
was applied to verify the effectiveness of proposed method. This system was widely
employed in process control, multivariate statistical fault detection and diagnosis [29].
TE process mainly includes five central operating units such as condenser, compressor,
separator, continuous stirring-type reactor, and stripping tower. Its process flow chart was
shown on Figure 4.

TE process contained 41 process variable and 12 control variable(XMV1 to XMV12).
The process variable contained 19 component variable and 22 measured variable (XMEAS1
to XMEAS22). When monitoring TE process with constant mixing speed at 50% and
sampled data under normal working condition and fault working condition. Then, 21 fault
datasets under 21 fault working conditions were obtained, as shown in Table 1. Every
sampling dataset contained 960 samples. Besides, faults would be injected in the 161st
sampling point. The fault detection rate (FDR) and average fault alarm rate (AvFAR)
was regarded as evaluation standard, which were calculated by Equations (22) and (23)
separately.
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Figure 4. Tennessee Eastman process flowchart.

Table 1. Faults in the Tennessee Eastman process.

Number Disturbances Type

1 A/D feed ratio changes, B composition constant Step
2 B feed ratio changes, A/D composition constant Step
3 D feed temperature changes Step
4 Reactor cooling water inlet temperature changes Step
5 Condenser cooling water inlet temperature changes Step
6 A feed loss Step
7 C head pressure loss Step
8 A/B/C composition changes Random
9 D feed temperature changes Random
10 C feed temperature changes Random
11 Reactor cooling water inlet temperature changes Random
12 Separator cooling water inlet temperature changes Slow drift
13 Reactor dynamic constants changes Slow drift
14 Reactor valve Sticking
15 Separator valve Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown
21 Stable valve in stream 4 Constant

FDR(i) =
The number of faults data detected correctly in fault i

The number of faults data
(22)

AvFAR(i) =
The total number of normal data detected wrongly

The number of normal data
(23)

In the TE process. Fault3, 9 and 15 were ignored while analyzing the result of pro-
cess monitoring, because their mean, variance and peak value had not changed obvi-
ously [30–32]. While monitoring process, confidence limitation of detection statistics was
set to be 0.99. DESAE algorithm’s performance was verified by comparing performance of
monitoring results by using PCA, KPCA, GLPP and SAE. The FDR was shown in Table 1
and AvFAR was shown in Table 2. According to Tables 2 and 3, using proposed method
to monitor process provided higher FDR than using other compared methods, especially
while detecting Fault6, 7, 11, 12, 17, 18, 19.
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Table 2. FDR of PCA, KPCA, GLPP, SAE and DESAE on TE process.

PCA KPCA GLPP
SAE DESAET2 SPE T2 SPE T2 SPE

Fault1 99.25 99.75 99.75 99.5 99.5 99.75 99.25 99.63
Fault2 98.5 98.63 98.38 98.5 97.62 98.75 98.75 98.63
Fault4 27.75 100 99.88 97.88 15.75 97.38 90.75 99.88
Fault5 23.75 33.25 31.5 29.13 100 32.13 100 99.87
Fault6 98.75 100 99.75 100 100 99.5 100 100
Fault7 100 100 100 100 54.62 100 100 100
Fault8 97.25 96.87 98.62 97.62 98 97.75 96.13 97.75
Fault10 25.37 44.5 53.87 56.5 92 54.87 22.25 77.5
Fault11 45 69.12 74.12 70.13 26 74.12 74 86.38
Fault12 98.37 95.13 99.5 98.88 99.87 99 97.13 99.75
Fault13 94.5 95.13 94.87 94.5 94.5 95.75 92.37 95.25
Fault14 98.88 99.88 100 100 94.25 100 99.88 99.87
Fault16 11 43.25 38.37 49.5 94.5 39.63 15.25 86.75
Fault17 75.88 95.63 95.5 92 85.12 93 88 96.5
Fault18 89 90.12 90.63 89.88 89.87 90.87 89.25 91.25
Fault19 6.25 20.38 27 17.25 89.88 20.38 13.5 95.38
Fault20 27.87 55.75 63.5 53.13 91 61 42.13 80.87
Fault21 39.5 49.75 43.63 47 58.37 42 31.38 45.25
avFDR 62.27 77.06 78.27 77.3 82.27 77.55 82.31 91.7

While considering the fault alarm rate, there is no obvious change in the data of
Fault16 in the observation, detecting Fault16 is often less effective than detecting other
faults [33,34]. Fault16 sacrifices part of the false alarm rate, thereby improving the detection
rate. As shown in Table 2, the average false alarm rate of this algorithm is not optimal, but
it is within the acceptable range.

Table 3. AvFAR of PCA, KPCA, GLPP, SAE and DESAE on TE process.

PCA KPCA GLPP
SAE DESAET2 SPE T2 SPE T2 SPE

avFAR 0.42 3.44 3.64 1.42 2.3 3 2.08 1.5

Fault5 will happen if there exist step changes in cooling water’s temperature of the
condenser’s entrance. Simultaneously, the impulse response will happen on the exit of the
temperature isolator. The negative feedback system will cause some variables to return to
normal if faults had happened serval times. However, the temperature of the cooling water
is still abnormal, which means faults had still existed. Fault5 was shown in Figure 5. There
will exist faults in the 161st sampled data and some variables will return to the normal state
in the 350th sampled data.According to Figure 5, PCA and GLPP methods in the figure
cannot correctly identify faults under the system negative feedback mechanism. While the
proposed method can effectively reflects the failure of the condenser cooling water inlet
temperature after the negative feedback is stabilized.

If feed C was fed into the inlet of stripper, its temperature will influence change
of working condition in the stripper. Consequently, Fault10 happened. Nevertheless,
the temperature change will affect the production of the stripper and most methods can
only monitor the change of temperature without considering other fault variables, which
degrade the performance of detection. According to Figure 6 which demonstrates perfor-
mance of detecting Fault10, PCA, GLPP and SAE methods all have obvious false positives in
the detection process. While DESAE provided effective detection performance of detection
results, there is no false alarm.
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(a) (b)

(c) (d)

Figure 5. Comparison of detection results for Fault5: (a) Fault detection by PCA; (b) Fault detection
by GLPP; (c) Fault detection by SAE; (d) Fault detection by DESAE.

(a) (b)

(c) (d)

Figure 6. Comparison of detection results for Fault10: (a) Fault detection by PCA; (b) Fault detection
by GLPP; (c) Fault detection by SAE; (d) Fault detection by DESAE.

Fault19 is an unknown fault which will not influence results of process variable. The
adjusted threshold would allow the change of variable [35]. Figure 7 shows the detection
results of Fault19. It can be seen from the figure that PCA, GLPP, and SAE algorithms do
not extract some essential features of Fault19 well due to their unsupervised characteristics,
so these algorithms cannot effectively detect Fault19. The DESAE proposed combines
unsupervised and supervised characteristics to effectively extract the essential features so
that the detection performance is further improved.
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(a) (b)

(c) (d)

Figure 7. Comparison of detection results for Fault19: (a) Fault detection by PCA; (b) Fault detection
by GLPP; (c) Fault detection by SAE; (d) Fault detection by DESAE.

4.2. Feature Visualization Analysis Based on t–SNE

Since the DESAE algorithm introduces label information to enhance the feature expres-
sion ability in the process of feature extraction. Therefore, this section will use t-distributed
stochastic neighbor embedding (t–SNE) to visualize the features proposed by the algorithm
to observe the enhancement effect of label information on features.

According to different fault types such as step, slow change, viscosity and unknown
faults, Fault1, 2, 5, 6, 7, 13, 14, 19 are selected for the experiment. The visualization
result of extracting features by t–SNE is shown in Figures 8 and 9. According to Figure 8,
original data is mixed up between the variables without feature extraction. In addition,
visualization result of extracting features by PCA, GLPP, SAE and the proposed method are
shown in Figure 9a–d. As shown in Figure 9, the visualization result of extracting features
by compared method provided better performance of separation than result of original
data. However, fault types cannot be shown in the features for the reason that PCA, GLPP
and SAE are unsupervised learning algorithm. Consequently, the visualization results are
still mixed. However, features of fault type were extracted by adding supervised part into
the DESAE algorithm, which provides better performance of monitoring.

Figure 8. The t–SNE visualization results of Original data.
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(a) (b)

(c) (d)

Figure 9. Comparison of t–SNE visualization results of fault features: (a) Visualization results of PCA
extracted features; (b) Visualization results of GLPP extracted features; (c) Visualization results of
SAE extracted features; (d) Visualization results of DESAE extracted features.

5. Conclusions

This paper considers the problem that nonlinear features of monitoring data in the
process industry are difficult to extract and some valuable information is lost. An industrial
fault detection method based on DESAE is proposed. During the process of pre-training
model, the features in the hidden layer of AE network are combined with the original data
as the input of the next AE network, and the deep features in the data are extracted layer by
layer to solve the problem of valuable information loss in the feature extraction process. In
addition, the proposed method uses the SRKDA method to optimize features extracted by
ESAE using label information to make the features discriminative. Finally, the Euclidean
distance between the features that needs to be measured and normal features are calculated
to detect faults. The sliding window function is applied to eliminate noise interference on
the monitoring statistics, which improves the detected effect.

The DESAE method is applied to the TE process for verification, and the average fault
detection rate is 91%. The discrimination of features is verified by t–SNE visualization. The
experimental results show that the detection rate of this method is 9.4% higher than that of
traditional SAE. In addition, because DESAE can extract high-order features of monitoring
data, this method can also detect other types of equipment in the process industry, such as
open circuit and short circuit fault detection of converters in power systems.
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