
Citation: Gong, X.; Feng, T.; Albettar,

M. PEASE: A PUF-Based Efficient

Authentication and Session

Establishment Protocol for

Machine-to-Machine Communication

in Industrial IoT. Electronics 2022, 11,

3920. https://doi.org/10.3390/

electronics11233920

Academic Editor: Adão Silva

Received: 27 October 2022

Accepted: 25 November 2022

Published: 27 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

PEASE: A PUF-Based Efficient Authentication and Session
Establishment Protocol for Machine-to-Machine
Communication in Industrial IoT
Xiang Gong 1 , Tao Feng 1,* and Maher Albettar 2

1 School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
2 Department of Electrical and Computer Engineering, Concordia University Montreal,

Montréal, QC H3G 1M8, Canada
* Correspondence: fengt@lut.edu.cn

Abstract: Machine-to-machine (M2M) communication is one of the critical technologies of the
industrial Internet of Things (IoT), which consists of sensors, actuators at the edge, and servers.
In order to solve the security and availability problems regarding communication between edge
devices with constrained resources and servers in M2M communication, in this study we proposed
an authentication and session establishment protocol based on physical unclonable functions (PUFs).
The scheme does not require clock synchronization among the devices, and it circumvents the
situation where the authentication phase has to use a high computational overhead fuzzy extractor
due to PUF noise. The protocol contains two message interactions, which provide strong security and
availability while being lightweight. The security modelling is based on CPN Tools, which verifies
security attributes and attack resistance in the authentication phase. After considering the design
of the fuzzy extractor and scalability, the proposed scheme significantly reduces the computational
overhead by more than 93.83% in the authentication phase compared with other schemes using PUFs.
Meanwhile, under the guarantee of availability, the communication overhead is maintained at a
balanced and reasonable level, at least 19.67% lower than the solution using XOR, hashing, or an
elliptic curve.

Keywords: M2M; authentication; security protocol; Industrial Internet of Things; CPN Tools; PUF

1. Introduction

The Industrial Internet of Things (IIoT) is a subset of the Internet of Things (IoT),
an intelligent and highly interconnected network of various industrial components [1]
that achieve higher productivity and lower operating costs through real-time monitoring,
automatic management, and control of industrial processes, assets, and operating hours;
applications on production lines are addressed, where machines can communicate with
each other. They can monitor each other and distribute workload, detect wear and tear,
prevent failures, guarantee continuous production, and provide real-time production
data [2]. Originally, the IIoT was proposed to differentiate between industrial and consumer-
facing applications, aiming to combine manufacturing and the IoT. Compared with the
general IoT, the IIoT needs higher stability, availability, and security [3]. However, Gartner
reports that 20% of IoT enterprises have suffered at least one cyber-attack [4]. In recent
years, the IIoT has seen an increasing number of applications in smart cities, oil and gas
refineries, manufacturing and agriculture, and so on. It poses a considerable challenge to
security and privacy.

Sensors are the source of perceiving all “things” in the IIoT, located at the entire
network architecture’s bottom (sensing layer), and connected to the intelligent gateway
of edge measurement to transmit data to the cloud computing network with powerful
processing capabilities [1]; sensors construct a ubiquitous architecture in the current IoT. In

Electronics 2022, 11, 3920. https://doi.org/10.3390/electronics11233920 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11233920
https://doi.org/10.3390/electronics11233920
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9089-7226
https://orcid.org/0000-0003-1611-9017
https://orcid.org/0000-0003-3880-7937
https://doi.org/10.3390/electronics11233920
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11233920?type=check_update&version=1

Electronics 2022, 11, 3920 2 of 23

addition, intelligent edge measurement devices usually instruct the actuators to perform
target actions, such as opening/closing switches, adjusting valves, and so on; it creates a
closed loop between perception and control [5]. Intelligent sensors and actuators all need
to communicate with their connected industrial PCs (IPCs), servers, or intelligent gateways,
which is the generalized machine-to-machine (M2M) communication [6]. The network
schematic of M2M communication is a use case of the industrial Internet unattended
scenario; adopting low-cost resource-constrained devices facilitates ubiquitous monitoring
of devices, but it also brings security and privacy challenges.

M2M communication is a crucial technology for future IIoT applications, which always
attracts the attention of many malicious users [7]. As the ability of attackers continues
to improve, various new attacks emerge one after another; some IIoT networks can even
directly control the physical behavior of intelligent devices, and some trivial damage
behaviors may also cause massive disasters [8]. Therefore, the M2M communication
environment is also one of the leading security battlefields. In addition to installing
firewalls, intrusion detection (IDS), and other macro strategies, the security protection of
communication protocols is also essential. One of the effective ways to protect data is to
transmit it in encrypted form, which requires a feasible authentication and key exchange
protocol [9]. Through the practical and feasible protocol design by cryptography, the
sensing layer nodes and the upper-layer devices authenticate each other and establish a
secure session, fundamentally protecting the security of M2M, which indicates that the
M2M authentication and session establishment process is crucial.

Moreover, considering the cost and volume constraints of the devices, low-cost,
lightweight devices at the edge-side nodes are always preferred [10,11]. It means that
in the framework of M2M, the lightweight design of the sensing layer is one of the pri-
mary considerations when considering the security mechanism. However, in the current
standard implementation scheme, IT Security protocols are often used in the IoT, such
as TLS (Transport Layer Security) and DTLS (Datagram-TLS) [8]. These protocols are
well-known to play an essential role in Internet security; but due to the extremely high
computational and communication overhead, these protocols have poor adaptability in
the limited environment of the IoT [12]; even copying Internet security protocols risks in
IT networks to the IoT [13]. There are almost no standard lightweight security protocols
specifically designed for industrial environments. Therefore, the design of lightweight IoT
protocols has become a prevalent issue; many researchers are trying to improve existing or
design new IoT security protocols to break this status quo.

Physical unclonable functions (PUFs) [14] are a kind of lightweight and low-cost
hardware cryptographic primitive that exploits the unique physical properties of the device
and is known as hardware fingerprinting technology; it is characterized by uniqueness and
unpredictability, and has recently been widely used in secure key storage and agreement
schemes of the IIoT [15,16]. PUFs have become an effective means of key storage in security
protection equipment.

PUFs provide a robust authentication and cryptographic method between devices.
Unfortunately, the PUFs commonly used today are noisy in reality; the response of the
PUFs will be affected by the temperature, voltage fluctuation, chip aging, and other factors;
the same input will produce slightly different outputs, but for cryptography, it must
rely on precisely reproducible keys. Therefore, some error correction techniques should
be implemented in hardware to obtain a reliable PUF response while keeping the light
overhead; a fuzzy extractor [17] is often used in IoT devices to process the results, compute
the results computed by PUF, and consistent outputs are obtained each time. However,
the high computational costs brought by the fuzzy extractor have to be considered in the
constrained environment.

Based on the above, we propose a PUF-based efficient authentication and session
establishment protocol (PEASE). The authentication phase of the protocol is based on
Hash, XOR, and PUF operations; it has the characteristics of low computational and
communication overhead; realizes mutual authentication, session key agreement, and

Electronics 2022, 11, 3920 3 of 23

device identity confidentiality; it can resist many known attacks, such as replay, man-in-
the-middle (MitM), key compromised impersonation (KCI) and desynchronization and so
on (see Section 6.1 for details). CPN Tools is used to model and verify its security based on
formal analysis. Overall, the contributions of this paper are as follows:

• Explored the defects in related works and researched the reasons and solutions.
• Proposed a lightweight and secure IIoT–M2M anonymous mutual authentication and

session establishment protocol.
• Applied the PUF to the M2M scenario and reduced the overhead fuzzy extractors

during the authentication phase.
• Demonstrated the simplified CPN Tools security protocol formal analysis method.
• Achieved a comparison with related works regarding of computational and communi-

cation costs.

The remaining sections are organized: In Section 2, the relevant existing works are
reviewed. The network architecture, design goal, and attack model are introduced in
Section 3. Section 4 introduces the proposed scheme’s specific design; Section 4 models
and analyzes the protocol and the attacker. Section 5 presents a security analysis of the
protocol. Section 7 compares PEASE protocol with similar protocols regarding security and
performance. In the end, a conclusion of the paper is given in Section 8.

2. Related Works

Over the past few years, some interesting authentication protocols for M2M scenarios
in the IIoT have been proposed. However, some of the works still have security problems
or design flaws.

Esfahani et al. [18] have proposed a lightweight authentication mechanism for M2M
communication in the IIoT environment based only on Hash and XOR operations. Their
mechanism has low computational, communication, and storage overhead and was claimed
to be resistant to various attacks; then, several weaknesses have been identified by [19,20]:
the lack of resistance to tampering, impersonation, and replay attacks. Later, Lara et al. [21],
inspired by [18], proposed a lightweight authentication and key distribution (LAKD)
scheme that uses only Hash, XOR, and addition and subtraction construction; however,
this protocol [21] does not explicitly state how to keep synchronization between the sensor
and the gateway; so it cannot resist desynchronization attacks.

Sadhukhan et al. [22] found that the scheme of Zhang et al. [23] has the problem of
massive overhead and user impersonation attacks, and proposed a lightweight smart grid
communication authentication solution based on the elliptic curve [22]. Their scheme is
said to outperform the schemes of [23] concerning security strength and computational
costs. However, due to the use of the CA certificate (which is sent when requested), the
scheme’s computational and communication overhead is still high, which is unsuitable
for the constrained IoT environment. In addition, the content of the CA certificate is
unchanged; the malicious user who intercepts the protocol request can use it to link to any
corresponding device, so the protocol does not provide unlinkability.

Alzahrani et al. [24] proved that the scheme of Noureddine et al. [25] does not have
anonymity and does not provide security against known temporary information, and they
proposed an authentication solution for privacy protection in the context of IoT [24]. The
protocol uses PUF to encrypt the transmitted data, trying to resist the physical capture
attack on the device. The authors claim that their protocol provides perfect forward
security and many other security attributes; on the other hand, their work was later proved
by Chen et al. [26] to be incapable of defending against insider privilege attacks, device
capture attacks, temporary information leakage attacks, and other known attacks. Chen
et al. proposed an enhanced AKA protocol for IoT environment [26] and claimed to satisfy
the security attributes and protocol resistance unsatisfied in [24]; however, the scheme [26]
does not satisfy unlinkability, as the parameter SID is sent in each request, and the PUF
inputs are the same every time, which may cause multiple outputs of the function due to
the noise, resulting in different session keys computed by the two parties.

Electronics 2022, 11, 3920 4 of 23

Panda et al. [27] proposed a secure and lightweight authentication protocol (SLAP).
Their scheme is claimed to be the first protocol that satisfies all the security attributes
required for M2M communication. It uses only symmetric cryptographic operations, XOR,
and hashing operations. However, the AS (authentication server) plays the trusted third
party (TTP) role and knows all the pre-shared information of both parties; as described
in [28], honest and curious TTP is a risk. Moreover, the protocol does not provide resistance
against KCI attacks since its high dependence on the pre-shared key (PSK), in the case of
key compromise, malicious users can obtain all sensors’ IDs and impersonate controllers.
For the same reason, the scheme cannot support perfect forward secrecy.

Recently, Alshareeda et al. [29] proposed a chaotic map-based conditional privacy-
preserving authentication protocol called CM-CPPA. This scheme stores the private key
of trusted authority (TA) on the tamper-proof device (TPD) of all vehicles, which makes
them vulnerable to side-channel attacks; a more powerful attacker model should have
been adopted to guide the design. Hence, it does not have forward (backward) secrecy
and resistance to attacks such as KCI, privileged-insider, and so on. Later, the authors
realized the problem and adopted an improved threat model to enhance the channel
protection method of the scheme so that the improved scheme [30] has more robust security.
However, since the scheme adopts a calculation based on Chebyshev polynomials and aims
at the vehicular network scenario, its application in the constrained M2M communication
environment described in this paper is still limited.

In addition, according to the description of protocol scalability in [28] (Feature P1), we
believe that the schemes given in the design of [18,21,27] lack scalability. That means sensors
and gateways in M2M have a many-to-one relationship; the gateway does not have a direct
identity index due to using pseudonyms after receiving the request, and cannot determine
which sensor the message is sent from, so it cannot find the corresponding calculation
parameters; the subsequent calculation must exhaustively traverse the entire registered
client table and compute the verification one by one. This defect reduces the availability of
the scheme given in [18,21,27], and its performance analysis becomes meaningless due to
the missing cost of exhaustive searches.

Furthermore, a significant problem in distributed systems is clock synchronization [31];
regardless of whether there is a global clock server in the network, the device must have an
additional secure channel to maintain clock synchronization, which increases the computa-
tional and communication overheads of the device; it provides malicious users with another
attack concept, which modifies the device time by trying to attack the time synchronization
protocol; once modified, the device will be automatically denied service according to the
above protocol rules [21,22,26,27]. On the contrary, if there is no global synchronous clock
server and no additional protocol, even without malicious users, equipment in operation
after a period between devices may have a slight clock error. So, a device based on protocols
that need to be clock-synchronized will be disabled.

Nevertheless, due to changes in temperature, power flicker, and so on, PUF for
constrained IoT environments (e.g., SRAM-PUF) may be affected by noise and output
jitter; in the design of PUF-based applications, if it is necessary to obtain accurate output
from the same input multiple times, they should adopt a fuzzy extractor to ensure its
uniqueness. The fuzzy extractor consists of the generation function and the recovery
function; according to the energy efficiency data [32], the overhead imposed by fuzzy
extractors on constrained systems is not to be underestimated. The work of [24,26] uses a
fixed PUF input in each round of the authentication phase, but the authors did not consider
the expenditure calculation of the fuzzy extractor, which causes much lower availability
of these schemes in reality. Therefore, we believe that to adapt to the IoT-constrained
environment if PUFs are adopted, the challenges inputted would not be the same each time;
otherwise, the fuzzy extractor has to be considered to unify the output of the PUF.

Electronics 2022, 11, 3920 5 of 23

3. Preliminaries

It can be seen from the related works that each of them has several unsolved problems;
the M2M security protocol for IIoT edge measurement must provide comprehensive se-
curity while ensuring it is lightweight. In this section, the preliminaries of our work are
introduced in the following subsections.

3.1. Network Architecture

Figure 1 shows the architecture focused on in our work for IIoT M2M communication.
In this paper, sensors, actuators, and other edge nodes are uniformly referred to as Devices.
The upper-layer machines that need to respond directly to the Device, such as intelligent
gateways, IPCs, or servers, are collectively referred to as Supervisors; when authentication
is prescribed, the Devicei (the ith device) initiates the message, and the Supervisor responds;
the relationship between Devices and Supervisor is many-to-one.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 23

3. Preliminaries

It can be seen from the related works that each of them has several unsolved prob-

lems; the M2M security protocol for IIoT edge measurement must provide comprehensive

security while ensuring it is lightweight. In this section, the preliminaries of our work are

introduced in the following subsections.

3.1. Network Architecture

Figure 1 shows the architecture focused on in our work for IIoT M2M communica-

tion. In this paper, sensors, actuators, and other edge nodes are uniformly referred to as

Devices. The upper-layer machines that need to respond directly to the Device, such as

intelligent gateways, IPCs, or servers, are collectively referred to as Supervisors; when

authentication is prescribed, the Devicei (the ith device) initiates the message, and the Su-

pervisor responds; the relationship between Devices and Supervisor is many-to-one.

Figure 1. Illustration of M2M communication in IIoT.

Meanwhile, the architecture and terms of this paper are explained as follows.

• Devices are resource-constrained, while the Supervisor is relatively unconstrained.

• Devicei initiates the protocol request directly to the Supervisor, Devicei does not ac-

cept any request, and the reception of the response is realized within a specific recep-

tion window.

• Devicei and Supervisor have their master key and short-term keys derived from the

master key, respectively. The master key and other keys are stored in the trusted

platform module TPM of the device and supervisor; the short-term key can be up-

dated periodically, and it is generated by PUF or other methods each time, which

prevents the cloning of the key. However, this paper does not discuss the TPM and

the specific derivation method of the initial key.
• A fuzzy extractor consists of generation (.FE Gen) and reproduction (.FE Rec) func-

tions. The .FE Gen takes the PUFs response R as input and outputs key K and helper

data hd , i.e., =(,) . ()K hd FE Gen R . The .FE Rec takes another sample with noised 'R

and the helper data hd as input and outputs the key 'K , i.e., =' . (',)K FEGen R hd ; ='K K

in the case that the Hamming distance is sufficiently close.

• The computing capabilities of devices include random number generation, hash cal-

culation, XOR calculation, and PUF calculation.

• Supervisor includes capabilities for random number generation, hash calculation,

XOR calculation, fuzzy extractor generation, and reproduction.

• The storage of a Device is divided into random access memory (RAM) and non-vol-

atile memory (NVM, i.e., EEPROM).

Figure 1. Illustration of M2M communication in IIoT.

Meanwhile, the architecture and terms of this paper are explained as follows.

• Devices are resource-constrained, while the Supervisor is relatively unconstrained.
• Devicei initiates the protocol request directly to the Supervisor, Devicei does not

accept any request, and the reception of the response is realized within a specific
reception window.

• Devicei and Supervisor have their master key and short-term keys derived from
the master key, respectively. The master key and other keys are stored in the trusted
platform module TPM of the device and supervisor; the short-term key can be updated
periodically, and it is generated by PUF or other methods each time, which prevents
the cloning of the key. However, this paper does not discuss the TPM and the specific
derivation method of the initial key.

• A fuzzy extractor consists of generation (FE.Gen) and reproduction (FE.Rec) functions.
The FE.Gen takes the PUFs response R as input and outputs key K and helper data
hd, i.e.,(K, hd) = FE.Gen(R). The FE.Rec takes another sample with noised R′ and the
helper data hd as input and outputs the key K′, i.e., K′ = FE.Gen(R′, hd); K′ = K in
the case that the Hamming distance is sufficiently close.

• The computing capabilities of devices include random number generation, hash
calculation, XOR calculation, and PUF calculation.

• Supervisor includes capabilities for random number generation, hash calculation, XOR
calculation, fuzzy extractor generation, and reproduction.

• The storage of a Device is divided into random access memory (RAM) and non-volatile
memory (NVM, i.e., EEPROM).

Electronics 2022, 11, 3920 6 of 23

3.2. Design Goal

Our work should achieve the following objectives:

• Efficient authentication: To satisfy the device’s constraints environment, the solution
must avoid high-cost computing solutions. It should be done with only PUF, hash,
and XOR operations.

• Security: The scheme should provide reasonable security, including availability, confi-
dentiality, integrity, forward security, and so on.

• Pseudonym Identity and unlinkable: A potential attacker in a public channel cannot
obtain a device’s true identity and has no way to link to a specific source by tracing
any parts in different messages.

• Scalability: Provides responders with the ability to index the requester’s identity in its
database, ensuring protocol availability.

• Eliminate PUFs noise: Due to the noise problem of PUF at present, the scheme of the
fuzzy extractor should be added to the proposed scheme. However, the overhead
the fuzzy extractor brings cannot be ignored either; it is necessary to consider how to
avoid the high cost.

• Without clock synchronization: The scheme cannot require devices in the M2M envi-
ronment to realize clock synchronization.

• Resistance to known attacks: The solution should have strong attack resist capabilities
to provide security protection in the network of potentially powerful attackers and
resistance to various known attacks, including KCI, internal authorization attacks,
DoS attacks, and so on, as will be explained in the following subsection.

3.3. Attack Model

The Dolev–Yao (DY) model [33] creates a formal verification method based on symbolic
analysis; it is used to find logical flaws that may be contained in security protocols. This
method has been widely used in the past decades to find vulnerabilities effectively at the
design stage; the attacker A described by the DY model can be summarized as having the
following capabilities:

• A has complete control over the network, and can eavesdrop, block, and intercept
any message on the network; A has recorded all messages previously sent between
honest entities.

• A is able to send and resend messages at will and combine and decompose messages.
• A can perform any encryption operation specified in the protocol and decrypt the

encrypted message when the decryption key is known.
• A is a legal system member, meaning A is registered with the system and has all the

security parameters.

Furthermore, with the increasing ability of attackers, the “compromised communica-
tion parties” should also be considered [34]. Similar to the extended Canetti–Krawczyk
(eCK) security model, we consider the case where an attacker obtains various system secrets
separately to make the protocol as secure as possible, one of the following capabilities
against the authentication phase of PEASE protocol should be added to A when different
attacks are verified.

• When A breaks the random number generator, A can directly obtain the operands r1,
r2, Cnew

i and n used for the current round key generation between honest entities.
• When A exposes the non-volatile memory by capturing the Devicei, A can directly

obtain AIDi, Ci and Si. In addition, if the Supervisor is compromised, A can get all
the values in the Supervisor database;

• When verifying the forward secrecy or KCI, A directly obtains the keys DKi and DKS
of the Devicei and Supervisor, as well as the session key SK of the current and previous
rounds. In this case, A obtains the Ri value that will be used in the next handshake by
analyzing the RAM of the Devicei.

Electronics 2022, 11, 3920 7 of 23

4. Proposed Scheme

This section presents the proposed PEASE protocol. Table 1 tabulates the notations
and definitions used in these phases of our work.

Table 1. Notations and Descriptions.

Notations Description

AIDi The pseudonym of Devicei
DKi, DKS Devicei and Supervisor’s respective keys

Ci The PUF challenges of Devicei
Ri The PUF response of Devicei
Si Shared secret between Devicei and Supervisor
Ti The current timestamp obtained by Supervisor
iVi The shared secret used for initialization phase

∆T1, ∆T2
The respective minimum time interval for initialization and

authentication phases
TRe

i , TAuth
i Devicei initialization and authentication timestamps

IRi, ERS
The respective encrypted storage variable Ri of Devicei

and Supervisor
r1, r2, n Random nonce
Hrold

i The hash string of the nonce r1 used in previous round
PUF(.) Physical unclonable functions

FE.Gen(.), FE.Rec(.) Generating and reproducing functions of the fuzzy extractor
h(.) One-way hash function

Xnew The superscript new for a parameter X indicates that the
parameter will be used in the next round of computation

Xold The superscript old of a parameter X indicates that the parameter
has been used in the previous round

X′ The
′

after the parameter X indicates that the parameter is
derived from the value received from the network

X* The * after the parameter X indicates that the parameter was
taken from the database

⊥ Null value
|| The concatenation operation
⊕ The exclusive-OR operation

4.1. PEASE Protocol

The protocol has four phases: (1) device registration phase, (2) device initialization
phase, (3) authentication phase, and (4) device logout phase.

4.1.1. Registration

This phase is carried out by the Devices and the Supervisor over a secure channel. In
this phase, the Devices and the Supervisor exchange the secret; if there is no exception, this
phase is executed only once in the whole life cycle of the device. Figure 2 illustrates the
steps of the device registration phase, and the steps are described as follows:

Step 1: Initially, Devicei randomly generates the first pseudonym AIDi, challenge Ci,
and secret Si. Compute Ri = PUF(Ci), A1 = (Ri||Si)⊕ DKi . Send AIDi, A1 to Supervisor.

Step 2: Supervisor sends A2 = A1
′ ⊕ DKs to Devicei.

Step 3: Devicei sends A3 = A2
′ ⊕ DKi to Supervisor.

Step 4: Supervisor generates a random iVi, gets the current timestamp Ti, computes
(Ri||Si) = A3 ⊕ DKS . Send A4 = h(Ri)⊕ h(Si)⊕ iVi to Devicei. Create an entry for Devicei in
the login device table format< AIDi, AIDold

i , ERi, ERold
i , Si, Sold

i , HVi, Hrold
i , TRe

i , TAuth
i >

in the database with the initial values of < AIDi, ⊥, (Ri ⊕ DKS), ⊥, Si, ⊥, (iVi ⊕ DKS),
⊥, Ti, Ti >.

Step 5: After receiving, Devicei computes iVi
′ = h(Ri)⊕ h(Si)⊕ A4

′, and stores AIDi,
Ci, Si and EVi = iVi

′ ⊕ DKi in NVM.

Electronics 2022, 11, 3920 8 of 23

Electronics 2022, 11, x FOR PEER REVIEW 8 of 23

Step 1: Initially, Devicei randomly generates the first pseudonym
i

AID , challenge
i

C

, and secret
i

S . Compute = ()
i i

R PUF C , = 
1

(||)
i i i

A R S DK . Send
1

,
i

AID A to Supervisor.

Step 2: Supervisor sends = 
2 1

'
s

A A DK to Devicei.

Step 3: Devicei sends = 
3 2

'
i

A A DK to Supervisor.

Step 4: Supervisor generates a random
i

iV , gets the current timestamp
i

T , com-

putes = 
3

(||)
i i S

R S A DK . Send =  
4

() ()
i i i

A h R h S iV to Devicei. Create an entry for

Devicei in the login device table format

 , , , , , , , , ,old old old old Re Auth

i i i i i i i i i i
AID AID ER ER S S HV Hr T T in the database with the initial val-

ues of  ⊥  ⊥ ⊥  ⊥ , ,(), , , ,(), , ,
i i S i i S i i

AID R DK S iV DK T T .

Step 5: After receiving, Devicei computes
=  

4
' () () '

i i i
iV h R h S A

, and stores i
AID

,

i
C

, i
S

 and
= '

i i i
EV iV DK

 in NVM.

Figure 2. PEASE protocol steps in the registration phase (secure channel).

4.1.2. Initialization

When the Devicei is turned on for the first time after the registration is completed;

alternatively, when the Devicei is restarted due to maintenance or battery replacement,

the Devicei’s RAM will load the context for authentication and session establishment. In

these cases, the steps shown in Figure 3 will be executed. This phase is carried out in a

public channel, the detailed steps are as follows:

Step 1: The Devicei computes = ()
i i

R PUF C , = 
ii i

iV E DKV , = 
1

(()|| ())
i i i

B h h S h iV R

and =
2

(|| || ()||)
i i i i

B h AID S h iV R . Send initialization request message
1 2

{ , , }
i

B B AID to

Supervisor.

Step 2: Next, upon receiving the initialization request message, the Supervisor first

locates '
i

AID in its database and subsequently reads and loads * *, , ,
i i i i

ER S HV T (

, , ,
i i i i

ER S HV T when ='
i i

AID AID or , , ,old old

i i i i
ER S HV T when =' old

i i
AID AID) into its

RAM. Hereafter, the Supervisor obtains the current timestamp
i

T and verifies

−  
1

Re

i i
T T T . If the verification is successful, the Supervisor updates Re

i
T with

i
T , com-

putes =  *

1
' (()||)

i i i
R B h h S HV , and verifies =

2
'B *(|| || || ')

i i i i
h AID S HV R ; if successful,

it determines whether ='
i

R *

i S
ER DK is true. If so, send = *

3
('|| || ())

i i i
B h R S h iV to De-

vices, and the step processes are finished. If it is false, compute =(', ') . (')
i i i

k hd FE Gen R ,

= *(,) . ()
i i i S

k hd FE Gen ER DK , = . e (', ')
i i i

XR FE R c R hd , and = *. e (,)
i i S i

YR FE R c ER DK hd ,

Devicei Supervisor

Generate
i

AID ,
i

C ,
i

S
= ()

i i
R PUF C
= 

1
(||)

i i i
A R S DK

1
,

i
AID A

 = 
2 1

'
s

A A DK

2
A

= 
3 2

'
i

A A DK

3
A

Generate
i

iV
Get current timestamp

i
T

= 
3

('|| ') '
i i S

R S A DK

=  
4

(') (')
i i i

A h R h S iV

4
A

=  
4

' () () '
i i i

iV h R h S A
Store

  , , ,(')
i i i i i

AID C S DK iV

Store

 ⊥  ⊥ ⊥ ⊥ , ,(), , , , (), ,' ,' '
i i S i i i i

AID R DK S h iV T T

Figure 2. PEASE protocol steps in the registration phase (secure channel).

4.1.2. Initialization

When the Devicei is turned on for the first time after the registration is completed;
alternatively, when the Devicei is restarted due to maintenance or battery replacement, the
Devicei’s RAM will load the context for authentication and session establishment. In these
cases, the steps shown in Figure 3 will be executed. This phase is carried out in a public
channel, the detailed steps are as follows:

Step 1: The Devicei computes Ri = PUF(Ci), iVi = EVi⊕DKi, B1 = h(h(Si)||h(iVi))⊕ Ri
and B2 = h(AIDi||Si||h(iVi)||Ri) . Send initialization request message {B1, B2, AIDi}
to Supervisor.

Step 2: Next, upon receiving the initialization request message, the Supervisor first locates
AIDi

′ in its database and subsequently reads and loads ER∗i , S∗i , HVi, Ti (ERi, Si, HVi, Ti
when AIDi

′ = AIDi or ERold
i , Sold

i , HVi, Ti when AIDi
′ = AIDold

i) into its RAM. Hereafter,
the Supervisor obtains the current timestamp Ti and verifies Ti − TRe

i > ∆T1. If the verifica-
tion is successful, the Supervisor updates TRe

i with Ti, computes Ri
′ = B1 ⊕ h(h(S∗i)

∣∣∣∣HVi) ,
and verifies B2

′ =h(AIDi
∣∣∣∣S∗i ∣∣∣∣HVi

∣∣∣∣Ri
′) ; if successful, it determines whether Ri

′ =ER∗i ⊕ DKS
is true. If so, send B3 = h(Ri

′∣∣∣∣S∗i ∣∣∣∣h(iVi)) to Devices, and the step processes are fin-
ished. If it is false, compute (ki

′, hdi
′) = FE.Gen(Ri

′), (ki, hdi) = FE.Gen(ER∗i ⊕ DKS),
XRi = FE.Rec(Ri

′, hdi
′), and YRi = FE.Rec(ER∗i ⊕ DKS, hdi), then verify XRi = YRi. If

successful, update ER∗i with Ri
′ ⊕ DKS and send B3 = h(Ri

′∣∣∣∣S∗i ∣∣∣∣h(iVi)) to Devices.
Step 3: After receiving the Message B3, the Devicei verifies B3

′ = h(Ri
∣∣∣∣Si

∣∣∣∣iVi) ,and if
successful, computes IRi = Rnew

i ⊕ DKi, then clears all the RAM’s temp values.

4.1.3. Initialization

In this phase, the Devicei and the Supervisor will communicate following the steps
shown in Figure 4. At the end of this phase, Devicei and Supervisor authenticate each other
and share a key (SK) for encrypted communication in the session.

Electronics 2022, 11, 3920 9 of 23

Electronics 2022, 11, x FOR PEER REVIEW 9 of 23

then verify =
i i

XR YR . If successful, update *

i
ER with '

i S
R DK and send

= *

3
('|| || ())

i i i
B h R S h iV to Devices.

Step 3: After receiving the Message
3

B , the Devicei verifies =
3
' (|| ||)

i i i
B h R S iV ,and

if successful, computes = new

i i i
IR R DK , then clears all the RAM’s temp values.

Figure 3. PEASE protocol steps in the initialization phase. (CP1-4 stand for checkpoints for attack

detection; this will be described in Section 4.2)

4.1.3. Initialization

In this phase, the Devicei and the Supervisor will communicate following the steps

shown in Figure 4. At the end of this phase, Devicei and Supervisor authenticate each

other and share a key (SK) for encrypted communication in the session.

This phase takes place over the public channel and has three steps:

Step 1: When the Devicei intends to communicate with the Supervisor, the Devicei

generate two random numbers
1

r , new

i
C , then computes = ()new new

i i
R PUF C , = 

i i i
R IR DK ,

=  
1 1i i

D S R r , = 
2 1

(||)new

i i
D R h r S , =

3 1
(|| ||)new

i i
D h r R R . Send message =

1 1 2 3
, , ,

i
M AID D D D

as a request to the Supervisor.

Step 2: Next, upon receiving the request message
1

M , the Supervisor first locates

'
i

AID in its database and subsequently reads and loads * *, , ,
i i i i

ER S HV T (, , ,
i i i i

ER S HV T

when ='
i i

AID AID or , , ,old old

i i i i
ER S HV T when =' old

i i
AID AID) into its RAM. Then, the

Supervisor gets the current timestamp
i

T and verifies −  
1

Re

i i
T T T . If the verification

is successful, computes = *

i i S
R ER DK , =  *

11
' '

i i
SD Rr . verifies 

1
(') old

i
h r Hr , if suc-

cessful, next computes =  *

2 1
' ('||)new

i i
R D h r S , =

3 1
('|| ||)new

i i
D h r R R and then verifies

=
3 3

'D D , new

i i
R R . If successful, generate two random numbers

2
r and n , computes

= *

4 1 2
(|| || ')

i i
D h S R r r , = 

5 2
(||)new

i
D n h r R , = *

6 2
(|| ||)

i
D h n S r , =

1 2
(|| || '||)new

i i
SK h R R r r

and = *(,) (|| ||)new new

i i i
AID S h SK n S , where new

i
AID and new

i
S are obtained by splitting the

Devicei Supervisor

= ()
i i

R PUF C
= 

ii i
iV E DKV

= 
1

(()|| ())
i i i

B h h S h iV R
=

2
(|| || ()||)

i i i i
B h AID S h iV R

1 2
, ,

i
B B AID

 Find *

i
ER (

i
ER / old

i
ER),

*

i
S (

i
S / old

i
S),

i
HV , Re

i
T with '

i
AID

Get current timestamp
i

T
Check −  

1

Re

i i
T T T

Update Re

i
T with

i
T

=  *

1
' (()||)

i i i
R B h h S HV

Check
2
'B ≟ *(|| || || ')

i i i i
h AID S HV R

if  *'
i i S

R ER DK {
=(', ') . (')

i i i
k hd FE Gen R

= *(,) . ()
i i i S

k hd FE Gen ER DK
= . e (', ')

i i i
XR FE R c R hd
= *. e (,)

i i S i
YR FE R c ER DK hd

Check
i

XR ≟
i

YR
Update *

i
ER with '

i S
R DK }

= *

3
('|| || ())

i i i
B h R S h iV

Check

3
'B ≟ (|| ||)

i i i
h R S iV

= 
i i i

IR R DK

3
B

CP3

CP4

CP1

CP2

Figure 3. PEASE protocol steps in the initialization phase. (CP1-4 stand for checkpoints for attack
detection; this will be described in Section 4.2).

Electronics 2022, 11, x FOR PEER REVIEW 10 of 23

hash string equally. Finally, computes = new new

i i
ER R EK ， update field

 , , , , , , ,old old old old auth

i i i i i i i i
AID AID ER ER S S Hr T with corresponding values

 * *

1
, ', , , , , ('),new new new

i i i i i i i
AID AID ER ER S S h r T in database. Send =

2 4 5 6
, ,M D D D to Devicei.

Step 3: After receiving
2

M Devicei computes = 
2 1 4
' (|| ||)

i i
r h S R r D and

= 
2 5

' ('||)new

i
n h r R D , then verifies =

6 2 2
' ('|| || ')

i
D h n S r , if successful, next computes

=
1 2

(|| || || ')new

i i
SK h R R r r , = new

i i i
IR R DK and =(,) (|| '||)new new

i i i
AID S h SK n S . Replace

the corresponding values with new

i
AID , new

i
C and new

i
S in the NVM. At this point, the pro-

tocol authentication phase was completed, and both parties mutually authenticated and

established a secure channel with SK as the subsequent symmetric encryption key.

Figure 4. PEASE protocol steps in the authentication phase (unsecure channel). (CP1-4 stand for

checkpoints for attack detection; this will be described in Section 4.2)

4.1.4. Device Logout

During operation, the Devices are allowed to apply for logout from the Supervisor

through a public channel, if the Device fails or other reasons require active logout, the

Devicei sends a unique format of
1

M to the Supervisor, which is =new

i i
R R in the

1
M

message; the rest is the same as the Devicei calculation in the authentication phases. When

the Supervisor receives the request and determines it is a logout request, it records the

Node Gateway
Generate

1
r , new

i
C

= ()new new

i i
R PUF C

= 
i i i

R IR DK
=  

1 1i i
D S R r
= 

2 1
(||)new

i i
D R h r S

=
3 1

(|| ||)new

i i
D h r R R

1 2 3
, , ,

i
AID D D D

Find *

i
ER (

i
ER / old

i
ER),

*

i
S (

i
S / old

i
S), old

i
r , Auth

i
T with '

i
AID

Get current timestamp
i

T
Check   −

2

Auth

i i
T T T

= *

i i S
R ER DK
=  *

11
' '

i i
SD Rr

Check 
1

(') old

i
rHh r

=  *

2 1
' ('||)new

i i
R D h r S

Check =
3 1
' ('|| ||)new

i i
D h r R R

Check new

i i
R R

Generate two nonces
2

r , n

= *

4 1 2
(|| || ')

i i
D h S R r r

= 
5 2

(||)new

i
D n h r R

= *

6 2
(|| ||)

i
D h n S r
=

1 2
(|| || '||)new

i i
SK h R R r r

= *(,) (|| ||)new new

i i i
AID S h SK n S

Update database

4 5 6
, ,D D D

= 
2 1 4
' (|| ||)

i i
r h S R r D

= 
2 5

' ('||)new

i
n h r R D

Check
6
'D ≟

2
('|| || ')

i
h n S r

=
1 2

(|| || || ')new

i i
SK h R R r r

=(,) (|| '||)new new

i i i
AID S h SK n S

= 
i

new

i i
IR R DK
Update NVM

CP3

CP4

CP1

CP2

Figure 4. PEASE protocol steps in the authentication phase (unsecure channel). (CP1-4 stand for
checkpoints for attack detection; this will be described in Section 4.2).

Electronics 2022, 11, 3920 10 of 23

This phase takes place over the public channel and has three steps:
Step 1: When the Devicei intends to communicate with the Supervisor, the Devicei

generate two random numbers r1, Cnew
i , then computes Rnew

i = PUF(Cnew
i), Ri = IRi ⊕

DKi, D1 = Si ⊕ Ri ⊕ r1, D2 = Rnew
i ⊕ h(r1

∣∣∣∣Si) , D3 = h(r1
∣∣∣∣Rnew

i

∣∣∣∣Ri) . Send message
D3 = h(r1

∣∣∣∣Rnew
i

∣∣∣∣Ri) . M1 = AIDi, D1, D2, D3 as a request to the Supervisor.
Step 2: Next, upon receiving the request message M1, the Supervisor first locates

AIDi
′ in its database and subsequently reads and loads ER∗i , S∗i , HVi, Ti (ERi, Si, HVi, Ti

when AIDi
′ = AIDi or ERold

i , Sold
i , HVi, Ti when AIDi′ = AIDold

i) into its RAM. Then,
the Supervisor gets the current timestamp Ti and verifies Ti − TRe

i > ∆T1. If the verifi-
cation is successful, computes Ri = ER∗i ⊕ DKS, r1

′ = D1
′ ⊕ S∗i ⊕ Ri . verifies h(r1

′) 6=
Hrold

i , if successful, next computes Rnew
i = D2

′ ⊕ h(r1
′∣∣∣∣S∗i) , D3 = h(r1

′∣∣∣∣Rnew
i

∣∣∣∣Ri) and
then verifies D3 = D3

′, Rnew
i 6= Ri . If successful, generate two random numbers

r2 and n, computes D4 = h(S∗i
∣∣∣∣Ri

∣∣∣∣r1
′)⊕ r2 , D5 = n⊕ h(r2

∣∣∣∣Rnew
i) , D6 = h(n

∣∣∣∣S∗i ∣∣∣∣r2) ,
SK = h(Rnew

i

∣∣∣∣Ri
∣∣∣∣r1
′∣∣∣∣r2) and (AIDnew

i , Snew
i) = h(SK

∣∣∣∣n∣∣∣∣S∗i) , where AIDnew
i and Snew

i
are obtained by splitting the hash string equally. Finally, computes ERnew

i = Rnew
i ⊕ EK,

update field < AIDi, AIDold
i , ERi, ERold

i , Si, Sold
i , Hrold

i , Tauth
i > with correspond-

ing values < AIDnew
i , AIDi

′, ERnew
i , ER∗i , Snew

i , S∗i , h(r1
′), Ti > in database. Send

M2 = D4, D5, D6 to Devicei.
Step 3: After receiving M2 Devicei computes r2

′ = h(Si||Ri||r1)⊕ D4 and n′ = h(r2
′||Rnew

i)
⊕D5, then verifies D6

′ = h(n2
′∣∣∣∣Si

∣∣∣∣r2
′) , if successful, next computes SK = h(Rnew

i

∣∣∣∣Ri
∣∣∣∣r1

∣∣∣∣r2
′) ,

IRi = Rnew
i ⊕ DKi and (AIDnew

i , Snew
i) = h(SK

∣∣∣∣n′∣∣∣∣Si) . Replace the corresponding values
with AIDnew

i , Cnew
i and Snew

i in the NVM. At this point, the protocol authentication phase
was completed, and both parties mutually authenticated and established a secure channel
with SK as the subsequent symmetric encryption key.

4.1.4. Device Logout

During operation, the Devices are allowed to apply for logout from the Supervisor
through a public channel, if the Device fails or other reasons require active logout, the
Devicei sends a unique format of M1 to the Supervisor, which is Rnew

i = Ri in the M1
message; the rest is the same as the Devicei calculation in the authentication phases. When
the Supervisor receives the request and determines it is a logout request, it records the
event in the logout device table and deletes the corresponding data entry from the login
device table.

4.2. Attack Detection

Verifications of the Supervisor in the steps described above are referred to as check-
points in the following (represented as CP1-CP4 in the Figures 3 and 4); if any of the
verifications fail, the Supervisor records the event and does not perform any more compu-
tations. In addition, it can provide the system with the capability of protocol-level attack
detection. Next, we illustrate the situation when the verification of these checkpoints fails.

According to Table 2, the countermeasures can be set for specific exceptions at the
implementation. All errors should be handled by the supervisor or alarmed to the upper
layer for decision-making. Suppose multiple verification errors occur in a short period; in
that case, measures such as temporarily blocking the channel can be taken to reduce the
impact of attacks on the system.

Electronics 2022, 11, 3920 11 of 23

Table 2. Checkpoint validation failure description.

Checkpoint Initialization Phase Authentication Phase

CP1

No record for AIDi
′ was found. An

unsynchronized device attempted the
request. Impersonation and replay

attacks are possible

No record for AIDi
′ was found.

An unsynchronized device
attempted the request.

Impersonation and replay attacks
are possible

CP2 Attempt to initialize in a short period, the
system may be under replay attack

If authentication is attempted in a
short period of time, the system

may be under replay attack

CP3
The message is incomplete or tampered

with. May suffer from tampering,
impersonation attacks

Duplicate messages are received
and the system suffers from

replay attack

CP4
The Ri

′ is incorrect, and the device fails.
It may be attacked by device capture and

information is lost.

The message is incomplete or
tampered with. May suffer from

tampering, impersonation attacks.

5. Security Verification

We used CPN Tools to model the protocol and the attacker. State space was used
to verify the security, improving and simplifying the work method [34]. The modeling
was carried out top-down, but considering that too many layers may affect the overall
readability, we no longer layered the same entity in the modeling. The model mainly
focuses on the protocol’s authentication and session establishment process, including a
top-level model and three second-layer model subpages. The CPN Tools model files of this
paper are found in the supplementary material, which contains all CPN models and the
definition of color sets and functions. Therefore, the definitions of color sets and functions
are not listed below.

The top-level model is shown in Figure 5.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 23

event in the logout device table and deletes the corresponding data entry from the login

device table.

4.2. Attack Detection

Verifications of the Supervisor in the steps described above are referred to as check-

points in the following (represented as CP1-CP4 in the Figures 3 and 4); if any of the ver-

ifications fail, the Supervisor records the event and does not perform any more computa-

tions. In addition, it can provide the system with the capability of protocol-level attack

detection. Next, we illustrate the situation when the verification of these checkpoints fails.

According to Table 2, the countermeasures can be set for specific exceptions at the

implementation. All errors should be handled by the supervisor or alarmed to the upper

layer for decision-making. Suppose multiple verification errors occur in a short period; in

that case, measures such as temporarily blocking the channel can be taken to reduce the

impact of attacks on the system.

Table 2. Checkpoint validation failure description.

Checkpoint Initialization Phase Authentication Phase

CP1

No record for '
i

AID was found. An

unsynchronized device attempted

the request. Impersonation and re-

play attacks are possible

No record for '
i

AID was found. An

unsynchronized device attempted

the request. Impersonation and re-

play attacks are possible

CP2

Attempt to initialize in a short pe-

riod, the system may be under re-

play attack

If authentication is attempted in a

short period of time, the system may

be under replay attack

CP3

The message is incomplete or tam-

pered with. May suffer from tam-

pering, impersonation attacks

Duplicate messages are received

and the system suffers from replay

attack

CP4

The '
i

R is incorrect, and the device

fails. It may be attacked by device

capture and information is lost.

The message is incomplete or tam-

pered with. May suffer from tam-

pering, impersonation attacks.

5. Security Verification

We used CPN Tools to model the protocol and the attacker. State space was used to

verify the security, improving and simplifying the work method [34]. The modeling was

carried out top-down, but considering that too many layers may affect the overall reada-

bility, we no longer layered the same entity in the modeling. The model mainly focuses

on the protocol’s authentication and session establishment process, including a top-level

model and three second-layer model subpages. The CPN Tools model files of this paper

are found in the supplementary material, which contains all CPN models and the defini-

tion of color sets and functions. Therefore, the definitions of color sets and functions are

not listed below.

The top-level model is shown in Figure 5.

Figure 5. Top-level model of PEASE protocol. Figure 5. Top-level model of PEASE protocol.

The top-level model consists of three alternative transitions; according to the protocol
rules, the Device sends requests, and the Supervisor processes and responds; the whole
process consists of one interaction.

5.1. Baseline

The security verification baseline would first be established before modeling the
attacker; that means we modeled the protocol in regular operation (without an attacker).
The modeling calls the XOR and hash functions provided in SML/NJ library supported by
CPN Tools, and all parameter color set types are STRING.

Figure 6 shows the Device model subpage.

Electronics 2022, 11, 3920 12 of 23

Electronics 2022, 11, x FOR PEER REVIEW 12 of 23

The top-level model consists of three alternative transitions; according to the protocol

rules, the Device sends requests, and the Supervisor processes and responds; the whole

process consists of one interaction.

5.1. Baseline

The security verification baseline would first be established before modeling the at-

tacker; that means we modeled the protocol in regular operation (without an attacker).

The modeling calls the XOR and hash functions provided in SML/NJ library supported by

CPN Tools, and all parameter color set types are STRING.

Figure 6 shows the Device model subpage.

Figure 6. The Device model subpage.

The model includes the whole process of Devicei sending requests and processing

responses. The simulation execution of the model starts with the transition For-

mat_Mssage1_Send, which takes the data from place Nonvolatlle_Memory and IRi. It

combines the message according to the
1

M rule, then sends the message to the network

by the interface place S_TX.

When receiving the response, the interface place S_RX obtains the
2

M token, the

transition CheckPointD fires, checks whether D6 and D6’ are equal, and terminates the

operation if not satisfied. If it is satisfied, the values of r2 and n2 are calculated. Then the

transition Update_Values is triggered, which computes SK into memory, computes AID,

Sinew, and updates the values in Nonvolatlle_Memory.

The Supervisor model page is shown in Figure 7.

The model simulates the process of the Supervisor receiving a request and sending a

response according to the protocol rules. First, the interface place G_RX obtains the token;

if the received AID’ has the corresponding AID value in the database, the transition Syn-

chronized is triggered, and the corresponding Si and ER values in the place Database are

extracted and put into place G_RAM as the AID and ER values of the current round; if the

received AID’ has the corresponding AIDold value in the Database, the transition

Non_Synchronized is triggered, and the corresponding Siold and ERiold values in the

database are extracted and put into memory as the AID, S and ER values for the current

round calculation. After that, transition Checkpoint3 is fired, which checks whether r1

calculated from received D1 is equal to the last received r1 value in the record, and aborts

the run. If not, it calculates R and fires transition CheckPoint4, which checks whether D3’

Figure 6. The Device model subpage.

The model includes the whole process of Devicei sending requests and process-
ing responses. The simulation execution of the model starts with the transition For-
mat_Mssage1_Send, which takes the data from place Nonvolatlle_Memory and IRi. It
combines the message according to the M1 rule, then sends the message to the network by
the interface place S_TX.

When receiving the response, the interface place S_RX obtains the M2 token, the
transition CheckPointD fires, checks whether D6 and D6’ are equal, and terminates the
operation if not satisfied. If it is satisfied, the values of r2 and n2 are calculated. Then the
transition Update_Values is triggered, which computes SK into memory, computes AID,
Sinew, and updates the values in Nonvolatlle_Memory.

The Supervisor model page is shown in Figure 7.
The model simulates the process of the Supervisor receiving a request and sending

a response according to the protocol rules. First, the interface place G_RX obtains the
token; if the received AID’ has the corresponding AID value in the database, the transition
Synchronized is triggered, and the corresponding Si and ER values in the place Database
are extracted and put into place G_RAM as the AID and ER values of the current round;
if the received AID’ has the corresponding AIDold value in the Database, the transition
Non_Synchronized is triggered, and the corresponding Siold and ERiold values in the
database are extracted and put into memory as the AID, S and ER values for the current
round calculation. After that, transition Checkpoint3 is fired, which checks whether r1
calculated from received D1 is equal to the last received r1 value in the record, and aborts
the run. If not, it calculates R and fires transition CheckPoint4, which checks whether
D3’ and D3 are equal and whether R and Rnew are equal. The equality of D3 and D3’
is the condition for the protocol to continue to run, while the equality of R and Rnew
is the token obtained by the place LO on behalf of the device logout. Then, if there is
no interruption, the transition Calulate_update_values is fired. It calculates and updates
the database according to the rules. Finally, the Fomat_Message2_and_Send transition is
triggered, which calculates the values of D4, D5, D6 and formats them as Message2 to be
sent to the interface place G_TX.

Electronics 2022, 11, 3920 13 of 23

Electronics 2022, 11, x FOR PEER REVIEW 13 of 23

and D3 are equal and whether R and Rnew are equal. The equality of D3 and D3’ is the

condition for the protocol to continue to run, while the equality of R and Rnew is the token

obtained by the place LO on behalf of the device logout. Then, if there is no interruption,

the transition Calulate_update_values is fired. It calculates and updates the database ac-

cording to the rules. Finally, the Fomat_Message2_and_Send transition is triggered, which

calculates the values of D4, D5, D6 and formats them as Message2 to be sent to the inter-

face place G_TX.

Figure 7. The Supervisor model subpage.

The model is executed step-by-step, strictly, according to the protocol rules, and at

most, one transition is enabled at any time. Currently, there is no attacker, and the net-

work is reliable. Through the state space computation, the number of nodes is 11, the

number of arcs is 10, and the dead marking is 1, indicating that there is only one possible

path. It lays the foundation for the following attacker modeling.

5.2. Attacker Modeling

According to the DY model, the attacker completely controls the network, so we de-

scribe the DY attacker at the network in the model. Since the attacker of DY is also one of

the legitimate members, the attacker has a legitimate shared secret with Supervisor; the

replace transition network in Figure 5 is the carrier of the attacker model.

Moreover, in this article, we adopt the method of incremental verification. First, val-

idate the
1

M message; after receiving the
1

M sent by Supervisor, the attacker calculates and

combines
1

M , which conforms to the protocol rules at will according to the data owned

by the knowledge base; then sends it to the Supervisor, sets a breakpoint when the attacker

Figure 7. The Supervisor model subpage.

The model is executed step-by-step, strictly, according to the protocol rules, and at
most, one transition is enabled at any time. Currently, there is no attacker, and the network
is reliable. Through the state space computation, the number of nodes is 11, the number of
arcs is 10, and the dead marking is 1, indicating that there is only one possible path. It lays
the foundation for the following attacker modeling.

5.2. Attacker Modeling

According to the DY model, the attacker completely controls the network, so we
describe the DY attacker at the network in the model. Since the attacker of DY is also one
of the legitimate members, the attacker has a legitimate shared secret with Supervisor; the
replace transition network in Figure 5 is the carrier of the attacker model.

Moreover, in this article, we adopt the method of incremental verification. First,
validate the M1 message; after receiving the M1 sent by Supervisor, the attacker calculates
and combines M1, which conforms to the protocol rules at will according to the data owned
by the knowledge base; then sends it to the Supervisor, sets a breakpoint when the attacker
receives M2, computes the state space, and searches for the legitimacy of all messages
responded to by the Supervisor.

After that, the verification of M2 is carried out. In this case, to reduce the amount
of useless state space, the attacker’s processing of M1 will only send messages that the
Supervisor can respond to in the previous verification. Instead of setting breakpoints, the
model continues to search through the state space to find all messages that do not terminate
due to the failure of Device CheckPoint4. Finally, it verifies and determines their validity.

In the two-step verification process, if an illegal M1 is found to be responded to, the
Supervisor entity rule in the protocol is proved to have a design flaw. If an illegal M2 is

Electronics 2022, 11, 3920 14 of 23

responded to, it verifies that the design of the Device entity rule of the protocol is defective;
when a design defect is found, the attacker’s attack trace can be extracted by setting the
observation place.

The model subpage of the attacker is shown in Figure 8.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 23

receives
2

M , computes the state space, and searches for the legitimacy of all messages re-

sponded to by the Supervisor.

After that, the verification of
2

M is carried out. In this case, to reduce the amount of

useless state space, the attacker’s processing of
1

M will only send messages that the Super-

visor can respond to in the previous verification. Instead of setting breakpoints, the model

continues to search through the state space to find all messages that do not terminate due

to the failure of Device CheckPoint4. Finally, it verifies and determines their validity.

In the two-step verification process, if an illegal
1

M is found to be responded to, the

Supervisor entity rule in the protocol is proved to have a design flaw. If an illegal
2

M is

responded to, it verifies that the design of the Device entity rule of the protocol is defec-

tive; when a design defect is found, the attacker’s attack trace can be extracted by setting

the observation place.

The model subpage of the attacker is shown in Figure 8.

Figure 8. The Attacker model subpage.

There are two parts to the model; the upper and lower parts simulate the processing

of
1

M and
2

M , respectively; the two parts are connected by the place At-

tacker_Knowledge_Base in the middle; transitions are triggered in turn, and the transi-

tions appearing in the model are explained in the following order.

For
1

M , after receiving the token of the place S_TX, the attacker decides the route

through Config1. See Table 3 for details; here, the Config value is 1, which triggers transi-

tion MSG1_Unpack_Store_(or Send) to split it and store it in the At-

tacker_Knowledge_Base. The role of the transition Process_Data1 is then to calculate the

possible atomic data and store them in the knowledge base. This step simulates all possi-

ble computational attempts by the attacker and is indispensable. Next, the fusion place

Config2 decides whether the Random_Combine_MSG1_Send transition should perform

the randomly selected data combination
1

M and send it to G_RX. If no random combina-

tion is performed, only valid messages that the Supervisor can respond to are synthesized

Figure 8. The Attacker model subpage.

There are two parts to the model; the upper and lower parts simulate the processing of
M1 and M2, respectively; the two parts are connected by the place Attacker_Knowledge_Base
in the middle; transitions are triggered in turn, and the transitions appearing in the model are
explained in the following order.

For M1, after receiving the token of the place S_TX, the attacker decides the route
through Config1. See Table 3 for details; here, the Config value is 1, which triggers transition
MSG1_Unpack_Store_(or Send) to split it and store it in the Attacker_Knowledge_Base.
The role of the transition Process_Data1 is then to calculate the possible atomic data
and store them in the knowledge base. This step simulates all possible computational
attempts by the attacker and is indispensable. Next, the fusion place Config2 decides
whether the Random_Combine_MSG1_Send transition should perform the randomly
selected data combination M1 and send it to G_RX. If no random combination is performed,
only valid messages that the Supervisor can respond to are synthesized by the transition
Regular_Combine_and_Send and sent to G_RX. It is to prevent the state space explosion
caused by the random composition of M1 during the verification of M2.

For M2, similar to the process of M1, Config3 will decide the route after the token is
obtained by the interface place G_TX. As detailed in Table 3, it is specified by the Config
value of 1. Transition MSG2_Unpack_Store_(or Send) unpacks the received M2 and stores
it in the knowledge base. Transition Process_Data2 calculates the value in the existing
knowledge base according to the protocol rules. It returns the result to the knowledge
base. Next, the transition Random_Combine_MSG2_Send randomly extracts the required
atomic messages from the knowledge base and calculates M2 according to the protocol
rules. Finally, it is sent to S_RX, the receiving interface of the Device.

Electronics 2022, 11, 3920 15 of 23

Table 3. Description the values of places Config 1~3.

Place Value Process Description

Config 1
0 M1 is sent without processed Baseline test

1 The subsequent steps are
performed for M1 Enable the security verification of M1

Config 2
0 Only the legal M1 is assembled The useless state space is reduced and

used when verifying M2

1 Take random values to
combine M1 Verification of the security of M1

Config 3

0 M2 is sent without processed Baseline test

1 The subsequent steps are
enabled for M2 Enable the security verification of M2

~1 Set a breakpoint to stop the run Block the execution of subsequent
steps used when verifying M1.

5.3. State Space Analysis

According to the extended DY attacker described in Section 3.3, we divide the at-
tacker’s initial knowledge base into four cases. In the model, the switch is made by changing
the global variable AttIniCf in the palette, corresponding to four values, which are:

0: It means that the knowledge of the DY attacker’s initial place is not extended, and
the attacker has all the capabilities of the DY attacker. The knowledge base includes M1
and M2 of the previous interaction between Devicei and Supervisor and all atomic data
after splitting. Since the attacker is a legitimate entity, the library also contains his own key,
the shared secret, and all atomic data from the previous round with Supervisor.

1: Based on 0, the fresh random numbers used by Devicei and Supervisor for current
authentication and key agreement are added to the attacker’s initial knowledge base.

2: Add the value of the current record in the NVM of Devicei and all the data related
to Devicei stored in the Supervisor database to the attacker’s initial knowledge base based
on 0.

3: Based on 0, SK and the key of the last authentication round between Devicei
and Supervisor, and R stored securely between them, are added to the attacker’s initial
knowledge base.

The state space is calculated for each of the eight possible cases consisting of the
two configuration items above. The written SML code searches the node satisfying the
condition. The method used to judge the legitimacy of a message is to first calculate all
possible legal M1 and M2 from the initial value and put them into two lists (legalMsg1 and
legalMsg2), respectively. M1 and M2 extracted from the filtering results of the node search
are compared with the two lists in turn; if there is a corresponding item, the message is
considered legal; otherwise, the message is considered illegal. Eventually, we obtain the
results shown in Table 4. (The calculated state space text files and the verification results
screenshots of this paper were placed in the Supplementary Material).

From the results, we can see that PEASE protocol is secure against the extended DY
attacker. The protocol has the ability to make both sides of the communication aware of
attacks in the network and terminate all malicious messages to continue running. The
attacker in the model made all possible attempts and created a considerable state space.
However, the honest entity running according to the protocol rules did not appear to
respond or process any messages tampered with by the attacker; instead, all the exceptions
that appear are caught by the entity; it also provides an effective way for supervisors to
find attacks in the network. In the following, the security attributes of the protocol are
analyzed by combining the model-checking results.

Electronics 2022, 11, 3920 16 of 23

Table 4. State space search results.

AttIniCf Message 1 Entity 2 Node 3 DM 4 Filtered 5 No. of IM 6

0
M1 Supervisor 1651 384 3/40 0
M2 Devicei 7747 3074 1/512 0

1
M1 Supervisor 2491 576 5/64 0
M2 Devicei 38,123 15,194 1/2592 0

2
M1 Supervisor 2467 576 3/56 0
M2 Devicei 17,363 6914 1/1152 0

3
M1 Supervisor 2467 576 3/56 0
M2 Devicei 17,363 6914 1/1152 0

1 The verified message; 2 The verified entity; 3 The number of nodes in state space; 4 The number of dead
markings in state space; 5 The node message is responded to or processed (unique/total); 6 The number of illegal
messages found.

6. Security and Features Analysis

In this section, we discuss the security of PEASE protocols, including security attributes
and attack resistance, as well as some other features.

6.1. Security Analysis
6.1.1. Confidentiality

Typically, the parameters used in each run of PEASE protocol are updated. Shannon’s
theory proves that if at least one item in the XOR operation is random, then a simple XOR
encryption guarantees security. For A, the parameters of the intercepted messages change
randomly every round. Therefore, the protocol effectively ensures the confidentiality of
data transmission by simple XOR encryption and reduces the overheads.

6.1.2. Mutual Authentication

Before PEASE protocol key agreement, the Device and Supervisor authenticate with
the shared secret Si and the response Ri of PUF, respectively. A cannot obtain the secrets Si
and Ri, and cannot forge the identity. Therefore, A cannot authenticate.

6.1.3. Device Anonymity and Unlinkability

In the protocol, the real identity of the device is not used. Under normal circumstances,
all the pseudonym and the transmitted data are changed in each round; A cannot link to
a specific device by intercepting M1 or M2. Therefore, PEASE protocol provides strong
anonymity and unlinkability.

6.1.4. Perfect Forward and Backward Secrecy

There is no connection between the session key SK generated by the protocol each
time, and the key material in the protocol is based on random numbers; if A obtains the
keys of the Device and Supervisor, the keys are only used to store data, not to encrypt the
data transmission; so even if A eavesdropped and recorded multiple interaction messages,
A could not calculate any previous or subsequent session keys. Therefore, PEASE protocol
satisfies perfect forward security.

6.1.5. Resistance to the Replay Attack

Supervisor stores the last random value rold
i . If A replays the last request directly, it

will be rejected. However, if A replays the previous message, the AIDi
′ in the message

will not be accepted because the AIDi
′ in the message no longer exists in the Supervisor

database; A cannot perform replay attacks against PEASE protocol, nor can it impersonate
through replay attacks.

Electronics 2022, 11, 3920 17 of 23

6.1.6. Resistance to Man-in-the-Middle Attack

Because of the protocol’s mutual authentication between the Device and Supervisor,
it can resist the replay attack; A cannot impersonate any honest entity by tampering or
replaying the intercepted message so that PEASE protocol can resist a MitM attack.

6.1.7. Resistance to the Key Compromise Impersonation Attack

A obtains the Device keys DKi and DKS and wants to impersonate either Device or
Supervisor to authenticate the other. However, in PEASE protocol, the key is only used for
the secure storage of parameters. The message encrypted with the key is not transmitted
in the message sent through the insecure channel; only the data encrypted by XOR is
transmitted in the interactive message. A cannot decrypt or forge any ciphertext containing
information after getting the keys; PEASE protocol can resist KCI attacks.

6.1.8. Resistance to the Known Session-Specific Temporary Information (KSSTI) Attack

In the process of security model checking in Section 5, we added the random numbers
r1, r2, n and Cnew

i that Devicei and Supervisor will use to A’s initial knowledge base.
However, the verification result shows that data loss has not caused the key material to leak.
It is because the key material must include the parameter Rnew

i calculated by PUF(Cnew
i)

and the encrypted saved Ri in addition to the random number participation, but A cannot
obtain the secret parameter Si and the key DKS. Therefore, A cannot obtain Rnew

i and Ri;
PEASE protocol can resist the KSSTI attacks.

6.1.9. Resistance Device Capture Attacks

A captures a Device and obtains the data and keys in the NVM utilizing channel test
analysis or other methods. However, A cannot obtain it due to the unclonable nature of the
PUF, and cannot obtain r2 and n. At the same time, the authentication between the devices
has nothing to do with the key generation material, so A cannot get any other Device’s
information. Therefore, the protocol can resist device capture attacks.

6.1.10. Resistance to Verifier Loss Attacks

When A obtains the Supervisor’s entire database, A still cannot get the latest Ri
because it is secretly stored by XOR and encrypted using the short-term key. In each round
of authentication, the Ri used by the two sides of the communication is generated by the
Devicei through the PUF through random numbers. Therefore, A cannot predict Rnew

i in
the case of having the verifier. Therefore, verifier loss does not affect the protocol.

6.1.11. Resistance to the Privileged Insider Attack

The model checking in Section 5 illustrates that the protocol is resistant to insider
privilege attacks. Because our attacker is also a legitimate entity, A could get all the data
of the NVM in the Device and all the data in the Supervisor database. However, the
attacker still could not get the session key of the honest entity; the reason is that in a Device
benefiting from the unclonable property of PUF, the corresponding PUF output Ri cannot
be calculated even if the value of Ci is obtained. In Supervisor, the value of Ri is stored
encrypted with the key DKS. If an insider A intervenes in the protocol operation during
the registration phase, A cannot obtain secrets because the information transmitted during
the registration phase is XOR encrypted with the respective keys of Devicei and Supervisor.
A cannot obtain the shared secrets without the keys of both parties.

6.1.12. Resistance to the Desynchronization Attack

In PEASE protocol, the two sides include many shared secret parameters that change
each time. Hence, the anti-desynchronization attack is one of the primary attacks the
protocol considers preventing. By some means, A prevents the Devicei from receiving
the response M2; in this case, the shared secret in Supervisor is updated, not Devicei.
However, the Supervisor in PEASE protocol keeps the previous parameters of the current

Electronics 2022, 11, 3920 18 of 23

and previous rounds, both of which are acceptable when requested. Therefore, A cannot
implement a desynchronization attack by obstructing M2 reception. If the Device request
uses a corrupted AID more than once, the Supervisor’s CheckPoint1 will record this and
alarm the system or higher layers about the decision.

6.1.13. Resistance to the DoS Attack

As mentioned in 3.1, because devices do not accept authentication requests, DoS
attacks are mainly launched by A against Supervisors; the four checkpoints in the authenti-
cation phase block all abnormal requests; if the number of false captures of a checkpoint
exceeds a specific value in a short period, the system can take corresponding measures,
such as actively temporarily blocking the receiver port corresponding to the device to resist
DoS attacks. Therefore, PEASE protocol can resist DoS attacks.

6.2. Additional Features
6.2.1. Real-Time Attack Awareness

Since checkpoints can detect every abnormal message, the system has the ability to
know whether there is a potential attacker in the network.

6.2.2. No Clock Synchronization Requirement

The protocol has no transmission timestamp, so it does not need to consider establish-
ing a global clock server and other additional equipment. There are no security risks or
extra costs caused by time synchronization between communication entities.

6.2.3. Scalability

When the Supervisor receives a request, it does not need to exhaust the validation
table and does not need to calculate each entry to find the appropriate parameter; the
corresponding data item can be directly searched in the table using the synchronized
pseudonym AIDi.

6.2.4. Synchronization Is Recovered on Restart

When the device is restarted due to equipment maintenance, battery replacement, and
other reasons, the protocol’s boot initialization operation will automatically resume the
synchronization state with the Supervisor.

6.2.5. Avoid Fuzzy Extractors

PEASE protocol does not use a fuzzy extractor in the authentication phase, reducing
the computational runtime cost caused by error recovery.

7. Security and Performance Comparison

In this section, the computational cost and communication cost of PEASE are ana-
lyzed, and the security and performance of PEASE are compared with similar related
works [21,22,24,26,27].

7.1. Security Comparison

In terms of security and availability, the protocol provides security attributes and other
features that candidate protocols do not provide. Table 5 shows the comparison.

Electronics 2022, 11, 3920 19 of 23

Table 5. Security comparison.

Security Attribute LAKD
[21]

Sadhukhan et al.
[22]

Alzahrani et al.
[24]

Chen et al.
[26]

SLAP
[27] PEASE

No clock synchronization × ×
√

× ×
√

Perfect Forward and Secrecy
√ √ √ √

×
√

Anonymity and Unlinkability
√

×
√

×
√ √

Scalability ×
√ √ √

×
√

Resist KCI Attack
√ √ √ √

×
√

Resist Desynchronization Attack ×
√ √ √ √ √

Resist Privileged Insider Attack
√ √

×
√ √ √

Resist Device Capture Attack
√ √

×
√ √ √

Resist KSSTI Attack
√ √

×
√ √ √

Resist DoS Attack
√

×
√ √ √ √

7.2. Computation Overhead and Communication Overhead Comparison

In this comparison of computational overhead, we only consider various intensive
computes and focus on the authentication and key establishment phase during the run-time
of each protocol. Due to different constraint levels, we count the computational overhead
of the Device and Supervisor separately. According to the experimental data of [32], we
define various operation symbols and calculation times in Table 6.

Table 6. Operation cost symbol and execution time.

Operation Notation Device Supervisor

Hash function Th 0.026 ms 0.011 ms
Point multiplication Tpm 5.9 ms 2.6 ms

Symmetric encryption/decryption TS
e/d 0.079 ms 0.041 ms

Certificate verification Tcert
ver - 17.24 ms

Fuzzy extractor generation TFEG 1.67 ms -
Fuzzy extractor reproduction TFER - 2.85 ms

PUF TPUF 0.12 ms -

The results in Table 7 show the computational overhead of each protocol. Among them,
Sadhukhan’s protocol [22] uses several times of elliptic curve operations and one certificate
verification calculation; only XOR and hash computations are used in LAKD [21] and
SLAP [27]. However, for the sake of fairness, the scheme of Chen [26] and Alzahrani [24]
inevitably uses a fuzzy extractor because the same parameters need to be extracted by
PUF in different rounds. In view of [24] and [26], we assume that the fuzzy generation
calculation is carried out at the Device side and the fuzzy regeneration calculation is carried
out at the Supervisor side.

Table 7. Comparison of computational overhead.

Title 1 Title 2 Title 3 Title 4

LAKD [21] 8Th ≈ 0.208 ms 8Th ≈ 0.088 ms 0.296 ms
Sadhukhan et al. [22] 4Tpm + 3Th + 1TS

e/d ≈ 23.757 ms 4Tpm + 3Th + 1Te/d + 1Tcert
ver ≈ 27.714 ms 51.471 ms

Alzahrani et al. [24] 3Th + 1TPUF + 1TFEG ≈ 1.894 ms 5Th + 1TFER ≈ 2.905 ms 4.799 ms
Chen et al. [26] 4Th + 1TPUF + 1TFEG ≈ 1.92 ms 5Th + 1TFER ≈ 2.905 ms 4.825 ms

SLAP [27] 6Th ≈ 0.156 ms 11Th ≈ 0.121 ms 0.277 ms
PEASE 7Th + 1TPUF ≈ 0.302 ms 8Th ≈ 0.088 ms 0.39 ms

Electronics 2022, 11, 3920 20 of 23

Figure 9 shows that only LAKD [21] and SLAP [27] have a lower cost than PEASE.
However, considering the lack of scalability of these two schemes, the Supervisor needs to
traverse the database and verify the calculation to obtain the corresponding parameters
after receiving the request. Therefore, the actual calculation cost is much larger than the
calculated value in the table above; PEASE, on the other hand, is the least computationally
expensive because of its scalable design. Compared to other schemes using PUF, PEASE
significantly reduces the computational overhead by 93.83%.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 23

generation calculation is carried out at the Device side and the fuzzy regeneration calcu-

lation is carried out at the Supervisor side.

Table 7. Comparison of computational overhead.

Title 1 Title 2 Title 3 Title 4

LAKD [21] 8
h

T ≈ 0.208 ms 8
h

T ≈ 0.088 ms 0.296 ms

Sadhukhan et al. [22] 4
pm

T + 3
h

T + 1
/

S

e d
T ≈23.757 ms

4
pm

T + 3
h

T + 1
/e d

T + 1 cert

ver
T

≈27.714 ms
51.471 ms

Alzahrani et al. [24] 3
h

T + 1
PUF

T + 1
FEG

T ≈1.894 ms 5
h

T + 1
FER

T ≈2.905 ms 4.799 ms

Chen et al. [26] 4
h

T + 1
PUF

T + 1
FEG

T ≈1.92 ms 5
h

T + 1
FER

T ≈2.905 ms 4.825 ms

SLAP [27] 6
h

T ≈0.156 ms 11
h

T ≈0.121 ms 0.277 ms

PEASE 7
h

T + 1
PUF

T ≈0.302 ms 8
h

T ≈ 0.088 ms 0.39 ms

Figure 9 shows that only LAKD [21] and SLAP [27] have a lower cost than PEASE.

However, considering the lack of scalability of these two schemes, the Supervisor needs

to traverse the database and verify the calculation to obtain the corresponding parameters

after receiving the request. Therefore, the actual calculation cost is much larger than the

calculated value in the table above; PEASE, on the other hand, is the least computationally

expensive because of its scalable design. Compared to other schemes using PUF, PEASE

significantly reduces the computational overhead by 93.83%.

Figure 9. Performance comparison based on execution time.

In terms of communication overhead, we take the ID to be 128 bits, assuming SHA3-

256 is used, 128 bits of random numbers, 320 bits of elliptic curve points (160 bits of X-axis

coordinates), 160 bits of symmetric decryption and encryption blocks [27], 139 bytes of

certificates [35], and 160 bits of timestamps [26]. The comparison of communication over-

head during authentication is shown in Table 8.

Table 8. Comparison of communication overhead.

Scheme Cost at Device Cost at Supervisor Total No. of Messages

LAKD [21] 1344-bits 1344-bits 2688-bits 4

Sadhukhan et al. [22] 1752-bits 160-bits 1912-bits 3

Alzahrani et al. [24] 512-bits 640-bits 1152-bits 2

Chen et al. [26] 672-bits 672-bits 1344-bits 2

SLAP [27] 928-bits 1184-bits 2112-bits 2

PEASE 768-bits 768-bits 1536-bits 2

0.296

51.471

4.799

4.825

0.277

0.39

0 10 20 30 40 50 60

LAKD (2020)

Sadhukhan et al. (2021)

Alzahrani et al. (2021)

Chen et al. (2022)

SLAP (2022)

PEASE

Total Computation Time (ms)

Figure 9. Performance comparison based on execution time.

In terms of communication overhead, we take the ID to be 128 bits, assuming SHA3-256
is used, 128 bits of random numbers, 320 bits of elliptic curve points (160 bits of X-axis
coordinates), 160 bits of symmetric decryption and encryption blocks [27], 139 bytes of
certificates [35], and 160 bits of timestamps [26]. The comparison of communication over-
head during authentication is shown in Table 8.

Table 8. Comparison of communication overhead.

Scheme Cost at Device Cost at Supervisor Total No. of
Messages

LAKD [21] 1344-bits 1344-bits 2688-bits 4
Sadhukhan et al. [22] 1752-bits 160-bits 1912-bits 3
Alzahrani et al. [24] 512-bits 640-bits 1152-bits 2

Chen et al. [26] 672-bits 672-bits 1344-bits 2
SLAP [27] 928-bits 1184-bits 2112-bits 2

PEASE 768-bits 768-bits 1536-bits 2

The two messages transmitted in the authentication phase of PEASE are M1 = AIDi,
D1, D2, D3 and M2 = D4, D5, D6, respectively; AIDi is 128 bits,D1 = Si ⊕ Ri ⊕ r1 is
128 bits, and the remaining D2, D3, D4, D5 and D6 are all 256 bits; therefore, M1 and M2’s
communication costs are both 768 bits, totaling 1536 bits.

It can be seen from Figure 10 that the communication cost of Alzahrani and Chen’s
protocol [24,26] is lower than that of our scheme. However, since the fuzzy extractor that
cannot be omitted is not considered in their schemes, the communication cost caused by
the fuzzy extractor is not calculated; hence, the communication cost calculation of the two
in the above table is not referenced. Our communication cost is the lowest among the
remaining schemes, at least 19.67% lower.

Electronics 2022, 11, 3920 21 of 23

Electronics 2022, 11, x FOR PEER REVIEW 21 of 23

The two messages transmitted in the authentication phase of PEASE are

=
1 1 2 3

, , ,
i

M AID D D D and =
4 5 6

2 , ,M D D D , respectively;
i

AID is 128 bits, =  
1 1i i

D S R r is

128 bits, and the remaining
2 3 4 5
, , ,D D D D and

6
D are all 256 bits; therefore,

1
M and

2
M ’s communication costs are both 768 bits, totaling 1536 bits.

It can be seen from Figure 10 that the communication cost of Alzahrani and Chen’s

protocol [24,26] is lower than that of our scheme. However, since the fuzzy extractor that

cannot be omitted is not considered in their schemes, the communication cost caused by

the fuzzy extractor is not calculated; hence, the communication cost calculation of the two

in the above table is not referenced. Our communication cost is the lowest among the re-

maining schemes, at least 19.67% lower.

Figure 10. Performance comparison based on communication overhead.

To summarize, PEASE protocol provides significant security advantages, satisfactory

performance, and high availability.

8. Conclusions

We have presented in this paper some of the drawbacks of the recently proposed

M2M protocols for the IIoT. The reasons for these defects are analyzed and listed; after

learning these lessons, an M2M authentication and session establishment protocol for the

IIoT is proposed. The protocol is lightweight, and the required operations are only XOR,

hashing, and PUF; the output of PUF has some noise; in reality, it needs a fuzzy extractor

with a high computational cost for error correction; however, we circumvent the higher

overhead caused by using fuzzy extractors by not reusing the same challenge in the au-

thentication phase.

In addition, considering the difficulty of clock synchronization in constrained distrib-

uted scenarios, PEASE protocol is designed not to require time synchronization between

devices; it improves the feasibility while reducing the overhead and the possibility of be-

ing exploited by attackers. CPN Tools is used to model checking the protocol’s security.

The protocol’s security is verified by simulating an extended DY attacker. A comparison

with the recent related work in security and performance shows that PEASE protocol out-

performs the existing candidate schemes in terms of security, performance, and availabil-

ity.

The limitation of this paper is that it does not regard peer-to-peer (P2P) communica-

tion security protection, so it cannot meet all communication scenarios of the IoT. In future

work, we will consider the requirement for P2P communication in the IoT and try to build

an available, stable, and secure P2P cryptographic protection protocol scheme with the

assistance of CPN modeling.

1344

1752

512
672

928
768

1344

160

640 672

1184

768

2688

1912

1152
1344

2112

1536

0

500

1000

1500

2000

2500

3000

LAKD

(2020)

Sadhukhan et

al. (2021)

Alzahrani et

al. (2021)

Chen et al.

(2022)

SLAP

(2022)

PEASE

Comunication overhead

Cost at Device Cost at Supervisor Total

Figure 10. Performance comparison based on communication overhead.

To summarize, PEASE protocol provides significant security advantages, satisfactory
performance, and high availability.

8. Conclusions

We have presented in this paper some of the drawbacks of the recently proposed
M2M protocols for the IIoT. The reasons for these defects are analyzed and listed; after
learning these lessons, an M2M authentication and session establishment protocol for
the IIoT is proposed. The protocol is lightweight, and the required operations are only
XOR, hashing, and PUF; the output of PUF has some noise; in reality, it needs a fuzzy
extractor with a high computational cost for error correction; however, we circumvent the
higher overhead caused by using fuzzy extractors by not reusing the same challenge in the
authentication phase.

In addition, considering the difficulty of clock synchronization in constrained dis-
tributed scenarios, PEASE protocol is designed not to require time synchronization between
devices; it improves the feasibility while reducing the overhead and the possibility of being
exploited by attackers. CPN Tools is used to model checking the protocol’s security. The pro-
tocol’s security is verified by simulating an extended DY attacker. A comparison with the
recent related work in security and performance shows that PEASE protocol outperforms
the existing candidate schemes in terms of security, performance, and availability.

The limitation of this paper is that it does not regard peer-to-peer (P2P) communication
security protection, so it cannot meet all communication scenarios of the IoT. In future
work, we will consider the requirement for P2P communication in the IoT and try to build
an available, stable, and secure P2P cryptographic protection protocol scheme with the
assistance of CPN modeling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics11233920/s1, Folder S1: State space and verification
results; File S1: ModelVerification.cpn. Folder S1 contains all state space reports and screenshots of
state space searches. File S1 is the complete CPN model file for this article, it can be opened using
CPN Tools 4.0.1.

Author Contributions: Conceptualization, X.G. and T.F.; methodology, X.G.; validation, X.G., T.F. and
M.A.; formal analysis, X.G.; investigation, X.G. and M.A.; resources, X.G. and T.F.; writing—original
draft preparation, X.G.; writing—review and editing, X.G. and M.A.; supervision, T.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China un-
der grant number 62162039 and the National Natural Science Foundation of China under grant
number 61762060.

https://www.mdpi.com/article/10.3390/electronics11233920/s1
https://www.mdpi.com/article/10.3390/electronics11233920/s1

Electronics 2022, 11, 3920 22 of 23

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schiller, E.; Aidoo, A.; Fuhrer, J.; Stahl, J.; Ziörjen, M.; Stiller, B. Landscape of IoT security. Comput. Sci. Rev. 2022, 44, 100467.

[CrossRef]
2. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial internet of things: Challenges, opportunities, and directions.

IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [CrossRef]
3. Misra, S.; Roy, C.; Sauter, T.; Mukherjee, A.; Maiti, J. Industrial Internet of Things for Safety Management Applications: A Survey.

IEEE Access 2022, 10, 83415–83439. [CrossRef]
4. Middleton, P.; Contu, R.; Pace, B.; Alaybeyi, S. Forecast: IoT Security, Worldwide. 2018. Available online: https://www.gartner.

com/en/documents/3863770 (accessed on 21 July 2021).
5. Bhushan, B.; Sahoo, G. Requirements, Protocols, and Security Challenges in Wireless Sensor Networks: An Industrial Perspec-

tive. In Handbook of Computer Networks and Cyber Security: Principles and Paradigms; Gupta, B.B., Perez, G.M., Agrawal, D.P.,
Gupta, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 683–713.

6. Gündoğan, C.; Kietzmann, P.; Lenders, M.S.; Petersen, H.; Frey, M.; Schmidt, T.C.; Shzu-Juraschek, F.; Wählisch, M. The impact of
networking protocols on massive M2M communication in the industrial IoT. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4814–4828.
[CrossRef]

7. Meng, Z.; Wu, Z.; Muvianto, C.; Gray, J. A data-oriented M2M messaging mechanism for industrial IoT applications. IEEE Internet
Things J. 2016, 4, 236–246. [CrossRef]

8. Khan, M.N.; Rao, A.; Camtepe, S. Lightweight cryptographic protocols for IoT-constrained devices: A survey. IEEE Internet Things J.
2020, 8, 4132–4156. [CrossRef]

9. Vinoth, R.; Deborah, L.J.; Vijayakumar, P.; Kumar, N. Secure multifactor authenticated key agreement scheme for industrial IoT.
IEEE Internet Things J. 2020, 8, 3801–3811. [CrossRef]

10. Singh, S.; Sharma, P.K.; Moon, S.Y.; Park, J.H. Advanced lightweight encryption algorithms for IoT devices: Survey, challenges
and solutions. J. Ambient Intell Humaniz. Comput. 2017, 1–18. [CrossRef]

11. Sabri, C.; Kriaa, L.; Azzouz, S.L. Comparison of IoT constrained devices operating systems: A survey. In Proceedings of
the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia,
3 November 2017; pp. 369–375.

12. Restuccia, G.; Tschofenig, H.; Baccelli, E. Low-power IoT communication security: On the performance of DTLS and TLS 1.3.
In Proceedings of the 2020 9th IFIP International Conference on Performance Evaluation and Modeling in Wireless Networks
(PEMWN), Berlin, Germany, 1–3 December 2020; pp. 1–6.

13. Arvind, S.; Narayanan, V.A. An overview of security in coap: Attack and analysis. In Proceedings of the 2019 5th International
Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 655–660.

14. Pappu, R.; Recht, B.; Taylor, J.; Gershenfeld, N. Physical one-way functions. Science 2002, 297, 2026–2030. [CrossRef]
15. Braeken, A. PUF based authentication protocol for IoT. Symmetry 2018, 10, 352. [CrossRef]
16. Idriss, T.A.; Idriss, H.A.; Bayoumi, M.A. A lightweight puf-based authentication protocol using secret pattern recognition for

constrained iot devices. IEEE Access 2021, 9, 80546–80558. [CrossRef]
17. Dodis, Y.; Ostrovsky, R.; Reyzin, L.; Smith, A. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy

Data. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin, Germany, 2004.
18. Esfahani, A.; Mantas, G.; Matischek, R.; Saghezchi, F.B.; Rodriguez, J.; Bicaku, A.; Maksuti, S.; Tauber, M.G.; Schmittner, C.;

Bastos, J. A lightweight authentication mechanism for M2M communications in industrial IoT environment. IEEE Internet Things J.
2017, 6, 288–296. [CrossRef]

19. Aghili, S.F.; Mala, H. Breaking a lightweight M2M authentication protocol for communications in IIoT environment. Cryptol.
ePrint Arch. 2018. Available online: https://eprint.iacr.org/2018/891 (accessed on 14 July 2022).

20. Adeel, A.; Ali, M.; Khan, A.N.; Khalid, T.; Rehman, F.; Jararweh, Y.; Shuja, J. A multi-attack resilient lightweight IoT authentication
scheme. Trans. Emerg. Telecommun. Technol. 2022, 33, e3676. [CrossRef]

21. Lara, E.; Aguilar, L.; Sanchez, M.A.; García, J.A. Lightweight authentication protocol for M2M communications of resource-
constrained devices in industrial Internet of Things. Sensors 2020, 20, 501. [CrossRef] [PubMed]

22. Sadhukhan, D.; Ray, S.; Obaidat, M.S.; Dasgupta, M. A secure and privacy preserving lightweight authentication scheme for
smart-grid communication using elliptic curve cryptography. J. Syst. Archit. 2021, 114, 101938. [CrossRef]

23. Zhang, L.; Zhao, L.; Yin, S.; Chi, C.-H.; Liu, R.; Zhang, Y. A lightweight authentication scheme with privacy protection for smart
grid communications. Future Gener. Comput. Syst. 2019, 100, 770–778. [CrossRef]

24. Alzahrani, B.A.; Mahmood, K. Provable privacy preserving authentication solution for internet of things environment. IEEE
Access 2021, 9, 82857–82865. [CrossRef]

25. Chikouche, N.; Cayrel, P.-L.; Mboup, E.H.M.; Boidje, B.O. A privacy-preserving code-based authentication protocol for Internet of
Things. J. Supercomput. 2019, 75, 8231–8261. [CrossRef]

http://doi.org/10.1016/j.cosrev.2022.100467
http://doi.org/10.1109/TII.2018.2852491
http://doi.org/10.1109/ACCESS.2022.3194166
https://www.gartner.com/en/documents/3863770
https://www.gartner.com/en/documents/3863770
http://doi.org/10.1109/TNSM.2021.3089549
http://doi.org/10.1109/JIOT.2016.2646375
http://doi.org/10.1109/JIOT.2020.3026493
http://doi.org/10.1109/JIOT.2020.3024703
http://doi.org/10.1007/s12652-017-0494-4
http://doi.org/10.1126/science.1074376
http://doi.org/10.3390/sym10080352
http://doi.org/10.1109/ACCESS.2021.3084903
http://doi.org/10.1109/JIOT.2017.2737630
https://eprint.iacr.org/2018/891
http://doi.org/10.1002/ett.3676
http://doi.org/10.3390/s20020501
http://www.ncbi.nlm.nih.gov/pubmed/31963181
http://doi.org/10.1016/j.sysarc.2020.101938
http://doi.org/10.1016/j.future.2019.05.069
http://doi.org/10.1109/ACCESS.2021.3086735
http://doi.org/10.1007/s11227-019-03003-4

Electronics 2022, 11, 3920 23 of 23

26. Chen, C.-M.; Li, X.; Liu, S.; Wu, M.-E.; Kumari, S. Enhanced authentication protocol for the Internet of Things environment. Secur.
Commun. Netw. 2022, 2022, 1–13. [CrossRef]

27. Panda, S.; Mondal, S.; Kumar, N. SLAP: A Secure and Lightweight Authentication Protocol for machine-to-machine communica-
tion in industry 4.0. Comput. Electr. Eng. 2022, 98, 107669. [CrossRef]

28. Braeken, A. Public key versus symmetric key cryptography in client–server authentication protocols. Int. J. Inf. Secur. 2022, 21,
103–114. [CrossRef]

29. Al-Shareeda, M.A.; Manickam, S.; Mohammed, B.A.; Al-Mekhlafi, Z.G.; Qtaish, A.; Alzahrani, A.J.; Alshammari, G.; Sallam, A.A.;
Almekhlafi, K. Cm-cppa: Chaotic map-based conditional privacy-preserving authentication scheme in 5g-enabled vehicular
networks. Sensors 2022, 22, 5026. [CrossRef] [PubMed]

30. Al-Shareeda, M.A.; Manickam, S.; Mohammed, B.A.; Al-Mekhlafi, Z.G.; Qtaish, A.; Alzahrani, A.J.; Alshammari, G.; Sallam, A.A.;
Almekhlafi, K. Chebyshev polynomial-based scheme for resisting side-channel attacks in 5g-enabled vehicular networks. Appl.
Sci. 2022, 12, 5939. [CrossRef]

31. Garg, V.K.; Mittal, N. Time and State in Asynchronous Distributed Systems. In Wiley Encyclopedia of Computer Science and
Engineering; Wiley: Hoboken, NJ, USA, 2007. [CrossRef]

32. Gope, P. PMAKE: Privacy-aware multi-factor authenticated key establishment scheme for advance metering infrastructure in
smart grid. Comput. Commun. 2020, 152, 338–344. [CrossRef]

33. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
34. Gong, X.; Feng, T. Lightweight Anonymous Authentication and Key Agreement Protocol Based on CoAP of Internet of Things.

Sensors 2022, 22, 7191. [CrossRef]
35. Mattsson, J.P.; Selander, G.; Raza, S.; Höglund, J.; Furuhed, M. CBOR Encoded X.509 Certificates (C509 Certificates). Internet

Engineering Task Force. January 2022. Available online: https://datatracker.ietf.org/doc/draft-ietf-cose-cbor-encoded-cert/
(accessed on 17 July 2022).

http://doi.org/10.1155/2022/8543894
http://doi.org/10.1016/j.compeleceng.2021.107669
http://doi.org/10.1007/s10207-021-00543-w
http://doi.org/10.3390/s22135026
http://www.ncbi.nlm.nih.gov/pubmed/35808521
http://doi.org/10.3390/app12125939
http://doi.org/10.1002/9780470050118.ecse436
http://doi.org/10.1016/j.comcom.2019.12.042
http://doi.org/10.1109/TIT.1983.1056650
http://doi.org/10.3390/s22197191
https://datatracker.ietf.org/doc/draft-ietf-cose-cbor-encoded-cert/

	Introduction
	Related Works
	Preliminaries
	Network Architecture
	Design Goal
	Attack Model

	Proposed Scheme
	PEASE Protocol
	Registration
	Initialization
	Initialization
	Device Logout

	Attack Detection

	Security Verification
	Baseline
	Attacker Modeling
	State Space Analysis

	Security and Features Analysis
	Security Analysis
	Confidentiality
	Mutual Authentication
	Device Anonymity and Unlinkability
	Perfect Forward and Backward Secrecy
	Resistance to the Replay Attack
	Resistance to Man-in-the-Middle Attack
	Resistance to the Key Compromise Impersonation Attack
	Resistance to the Known Session-Specific Temporary Information (KSSTI) Attack
	Resistance Device Capture Attacks
	Resistance to Verifier Loss Attacks
	Resistance to the Privileged Insider Attack
	Resistance to the Desynchronization Attack
	Resistance to the DoS Attack

	Additional Features
	Real-Time Attack Awareness
	No Clock Synchronization Requirement
	Scalability
	Synchronization Is Recovered on Restart
	Avoid Fuzzy Extractors

	Security and Performance Comparison
	Security Comparison
	Computation Overhead and Communication Overhead Comparison

	Conclusions
	References

