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Abstract: Purpose: Identification of individual cow breeds may offer various farming opportunities
for disease detection, disease prevention and treatment, fertility and feeding, and welfare monitoring.
However, due to the large population of cows with hundreds of breeds and almost identical visible
appearance, their exact identification and detection become a tedious task. Therefore, the automatic
detection of cow breeds would benefit the dairy industry. This study presents a computer-vision-
based approach for identifying the breed of individual cattle. Methods: In this study, eight breeds
of cows are considered to verify the classification process: Afrikaner, Brown Swiss, Gyr, Holstein
Friesian, Limousin, Marchigiana, White Park, and Simmental cattle. A custom dataset is developed
using web-mining techniques, comprising 1835 images grouped into 238, 223, 220, 212, 253, 185, 257,
and 247 images for individual breeds. YOLOv4, a deep learning approach, is employed for breed
classification and localization. The performance of the YOLOv4 algorithm is evaluated by training the
model on different sets of training parameters. Results: Comprehensive analysis of the experimental
results reveal that the proposed approach achieves an accuracy of 81.07%, with maximum kappa of
0.78 obtained at an image size of 608 × 608 and an intersection over union (IoU) threshold of 0.75 on
the test dataset. Conclusions: The model performed better with YOLOv4 relative to other compared
models. This places the proposed model among the top-ranked cow breed detection models. For
future recommendations, it would be beneficial to incorporate simple tracking techniques between
video frames to check the efficiency of this work.

Keywords: automatic livestock farming; cow breed classification; deep learning; object detection; YOLOv4

1. Introduction

Animal husbandry is one of the most lucrative and demanding businesses worldwide
and contributes significantly to the nation’s gross domestic product (GDP). As per the
report published by the World Bank (2022), agriculture (and its allied sectors) accounts for
almost 4.01% of the world’s GDP, which in developing countries significantly increases
up to 25% [1]. Figure 1 represents India’s GDP distribution, showing that agriculture
contributes nearly 19% of the GDP [2]. In particular, dairy farming contributes majorly
(about 5.30%), with milk as the significant livestock product [3]. As per the report published
in 2020 by Indian National Accounts Statistics (NAS), the livestock sector contributes 4.19%
of the total gross value added (GVA) and 28.63% of the total agriculture and allied sector
GVA [2]. These businesses are majorly governed by small, peripheral farmers and landless
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workers. Dairy farming is a secondary source of income for thousands of rural families and
provides livelihood to two-thirds of the rural community. This sector is undergoing rapid
growth due to urbanization, population growth, and, most importantly, the rise in income
in developing countries. Further, the Indian policymakers also suggested self-sustainable
models empowered with the more significant employment of technologies and market
linkage to double farmers’ income by 2022 [4].

Electronics 2022, 11, x FOR PEER REVIEW 2 of 24 
 

 

published in 2020 by Indian National Accounts Statistics (NAS), the livestock sector con-

tributes 4.19% of the total gross value added (GVA) and 28.63% of the total agriculture 

and allied sector GVA [2]. These businesses are majorly governed by small, peripheral 

farmers and landless workers. Dairy farming is a secondary source of income for thou-

sands of rural families and provides livelihood to two-thirds of the rural community. This 

sector is undergoing rapid growth due to urbanization, population growth, and, most im-

portantly, the rise in income in developing countries. Further, the Indian policymakers 

also suggested self-sustainable models empowered with the more significant employment 

of technologies and market linkage to double farmers’ income by 2022 [4]. 

. 

Figure 1. Distribution of GDP across economic sectors in India. 

1.1. Motivation 

Proficient animal husbandry would allow stockmen (and eventually the associated 

companies or national agencies) to earn more profit. Their commercial value highly influ-

ences domestic cattle profit (particularly cows) and the cost to raise them. The mercantile 

value of cows mainly depends on their fertility rate, milk production, and the chemical 

composition of milk. Moreover, different breeds yield different milk varieties, since breed 

affects milk composition, fatty acid composition, and coagulation properties [5,6]. Due to 

the different stages of lactation in breeds, milk production is similar for one breed of cow 

but different from one breed to another. For instance, Gyr cows produce 900–1600 kg of 

milk, whereas Holstein Friesian produce 7200–9000 kg per lactation [7]. This variation in 

milk yield between individual cows can turn into significant losses for businesses that 

encompass thousands of cows. Therefore, identifying a cow’s breed would benefit the 

dairy industry. 

Due to the increase in population and decrease in farms, dairy livestock needs better 

monitoring for breed associations. Therefore, identifying the breed of individual cattle is 

a key to dairy farming. Breed identification of individual cows may offer information to 

the stockmen and assist in making important decisions about that animal, such as the op-

portunity for cross-breeding to enhance the production rate. Additionally, recognizing 

breeds plays a vital role in automatic behavior analysis, health monitoring, and the detec-

tion of lameness and helps estimate their fertility rate. Further, the individual identifica-

tion and tracking of cow breeds may offer various farming opportunities for disease de-

tection (e.g., early detection of disease outbreaks and transmission), disease prevention 

and treatment, fertility and feeding, and welfare monitoring. Identification of cow breeds 

Figure 1. Distribution of GDP across economic sectors in India.

1.1. Motivation

Proficient animal husbandry would allow stockmen (and eventually the associated
companies or national agencies) to earn more profit. Their commercial value highly influ-
ences domestic cattle profit (particularly cows) and the cost to raise them. The mercantile
value of cows mainly depends on their fertility rate, milk production, and the chemical
composition of milk. Moreover, different breeds yield different milk varieties, since breed
affects milk composition, fatty acid composition, and coagulation properties [5,6]. Due
to the different stages of lactation in breeds, milk production is similar for one breed of
cow but different from one breed to another. For instance, Gyr cows produce 900–1600 kg
of milk, whereas Holstein Friesian produce 7200–9000 kg per lactation [7]. This variation
in milk yield between individual cows can turn into significant losses for businesses that
encompass thousands of cows. Therefore, identifying a cow’s breed would benefit the
dairy industry.

Due to the increase in population and decrease in farms, dairy livestock needs better
monitoring for breed associations. Therefore, identifying the breed of individual cattle
is a key to dairy farming. Breed identification of individual cows may offer information
to the stockmen and assist in making important decisions about that animal, such as the
opportunity for cross-breeding to enhance the production rate. Additionally, recognizing
breeds plays a vital role in automatic behavior analysis, health monitoring, and the detec-
tion of lameness and helps estimate their fertility rate. Further, the individual identification
and tracking of cow breeds may offer various farming opportunities for disease detection
(e.g., early detection of disease outbreaks and transmission), disease prevention and treat-
ment, fertility and feeding, and welfare monitoring. Identification of cow breeds would
balance the trade-off between cost and management, thereby improving the productivity
and profitability of dairy farms.
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1.2. Related Work

Generally, breed identification methods have been classified into tag-based and visual-
feature-based approaches. The tag-based methods use permanent markings (such as
tattooing and ear notching), temporary markings (such as ear tagging), and electronic de-
vices (such as radio frequency identification, RFID) [8]. The permanent markings can only
be applied to identify individuals in smaller groups, whereas the temporary markings have
been found susceptible to fraudulent manipulation and easy duplication [9]. Furthermore,
these approaches require specific sensing devices on the body, which may require invasive
techniques. These bottlenecks led to the development of RFID-based electronic identifica-
tion devices. However, implementing RFID chips and scanners at various checkpoints is
a challenging task and requires skilled persons, particularly while monitoring groups of
animals. Moreover, these methods are prone to duplications or false identification when
monitoring numerous livestock animals in harsh outdoor environments. In addition, these
devices are expensive and can be easily damaged.

The reported literature reveals various visual-biometric-based cattle identification
methodologies that utilize the unique external biometric characteristics of breeds (such as
coat pattern, muzzle pattern, and body contour) to effectively address the limitations of
tag-based techniques [10]. However, the exact identification and extraction of these features
are challenging, even for an expert, which limits the wide acceptance of earlier approaches.
In contrast, deep learning (DL) techniques have established their sovereignty for complex
object detection and recognition tasks [11,12]. Motivated by this, DL approaches have been
successfully employed to extract the hidden features to classify and localize species such
as sheep, dogs, and birds [13–15]. Similar trends have been witnessed in preserving cow
breeds for the state’s cultural and genetic heritage [16].

Among various visual features, muzzle patterns have been widely used for cattle
identification because of the distinct grooves and beaded prints [17]. For example, DL
methodologies have been employed to extract distinguishable features from muzzle im-
ages [18,19]. In another work, an auto-encoder and a deep belief network have been used to
find hidden features of cow nosea [20]. However, this approach ignored information about
other essential body parts, such as head and legs, resulting in reduced accuracy. Further,
retinal features have been used to identify cattle, but the difficulties in capturing livestock
retinal images limit its practical applicability [21]. Additionally, the hidden patterns of
body coat and face have been exploited to identify individual cattle [22]. Meanwhile,
incorporating convolutional neural networks (CNNs) ensures the automatic extraction of
rich features, resulting in the improved identification of cattle breeds [23]. Later, beef cattle
were detected in image sequences by fusing CNN and long short-term memory (LSTM)
algorithms [24]. Another pioneering work automatically detects Holstein Friesian cattle
by extracting coat pattern features [25,26]. Further, it utilizes DL techniques (CNN and a
recurrent convolutional network, RCN) on the ground and aerial view images for cattle
breed identification. Similarly, computer vision techniques such as you only look once
(YOLO) and region-based CNN (RCNN) have been employed to detect cattle breeds using
their morphological features [27,28]. However, these models were limited to detecting
only one breed and lacked emphasis on breed diversity. Table 1 summarizes the DL-based
previously reported cow breed detection models.

Based on the literature mentioned above, we identify the following research gaps:

1. Although the outcomes of the invasive techniques are promising, the experimental
designs have certain flaws that make it difficult to evaluate the real significance of the
reported results in harsh environments.

2. Cattle have previously been recognized based on the characteristics of specific body
parts. However, other key body components such as the head and legs were left out,
which may result in the loss of crucial information.

3. In most of the literature, the emphasis is on identifying a single breed. However, these
approaches cannot identify and classify various breeds.
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Table 1. Deep-learning-based cow breed detection models.

Authors Number of Breeds Dataset Size Model Performance (%)

Tassinari et al. [27] 1 11,754 images YOLOv3 66.00 (P)

Andrew et al. [28] 1 4736 images YOLOv3 92.40 (A)

Andrew et al. [26] 1 32 videos YOLOv2 91.90 (A)

Andrew et al. [25] 1 34 videos Faster RCNN 98.13 (A)

Bello et al. [20] 1 4000 images DBN + auto-encoder 94.55 (A)

P: precision, A: accuracy, DBN: deep belief network.

1.3. Contributions

To our knowledge, there is no model for the automatic detection of cow breed in
animal biometrics literature that bridges the research gaps mentioned above. Therefore,
there is a need to cater to improved and advanced methods for detecting cattle breeds
based on overall body features. Thus, the present work presents the first proof-of-concept
system for automatic cow breed detection. To summarize, the main contributions of this
study are:

1. Development of a multi-breed cow detection framework based on YOLOv4 to identify
and classify diverse cow breeds with high accuracy;

2. Development of a custom cow dataset containing multiple breeds using web-mining techniques;
3. Comparative performance analysis of simulated results to endorse the most prominent

training parameters.

1.4. Structure of the Paper

The remaining parts of the paper are as follows: Section 2 provides a theoretical
overview of the DL algorithm (YOLOv4) used to extract cattle features from images.
Section 3 illustrates the work methodology, including database preparation and brief
work analysis. Section 4 reports the experimental results. It also includes quantitative
evaluations and a comparative analysis of the obtained results. Finally, Section 5 provides
the conclusions and future directions.

2. Framework for Cow Breed Detection

Real-time vision-based applications not only require accuracy but also demand fast
detection with the ability to recognize a wide variety of objects. Although traditional
object detection algorithms (like RCNN, fast RCNN, and faster RCNN) provide accurate
detection, they are slower [29]. Therefore, to increase the detection speed, a single-shot
detector (SSD) has been introduced, which can detect multiple objects at a significant rate
of 22–59 frames per second (FPS) [30]. However, it exhibits poor accuracy in the detection
of small objects. Unlike conventional CNN architectures, YOLOv4 can be easily used in
real-time applications due to its fast and accurate detection. Therefore, YOLOv4 seems
to be a perfect choice for object detection tasks. This algorithm is based on regression,
i.e., instead of selecting regions of interest in an image, it predicts classes and bounding
boxes for the whole image in one algorithm run. The parameters required to describe a
bounding box are:

4. Bounding box’s centre (bx and by)
5. Width (bw)
6. Height (bh)
7. Class of an object (c) (such as Marchigiana, White Park, etc.).

Along with the above-mentioned parameters, YOLOv4 also predicts the probability of
containing an object (pc) in the bounding box as illustrated in Figure 2.
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The first edition of YOLO was YOLOv1 (with 24 convolutional layers), which was
trained on the ImageNet-1000 dataset. It can detect objects with a speed of 45 FPS [31]. It
outperforms conventional detection methods (like DPM and R-CNN) in terms of accuracy
and speed. However, it has difficulty detecting small objects, mainly if they appear as a
cluster. Therefore, another version of YOLO (known as YOLOv2) was introduced, which
significantly improved the performance of object detection models. It offers the accuracy of
faster R-CNN and the speed of SSD [32]. Due to the multi-scale training of the YOLOv2
network, it can detect and classify objects with different configurations and dimensions.
Compared to its predecessor (i.e., YOLOv1), YOLOv2 can detect smaller objects more
accurately. To make object detection algorithms more accurate and faster, YOLOv3 was
launched, which accurately classifies objects in real-time applications [33]. For multi-label
classification, it uses logistic classifiers instead of SoftMax. In 2020, YOLO evolved into
YOLOv4, which uses YOLOv3 as its head with some changes in the backbone and neck [34].
It gives remarkable results, with a hike of 10% in accuracy and 12% in speed compared to
YOLOv3. Therefore, in this study, YOLOv4 is used to detect cow breeds. The following
subsections discuss the features and architecture of the YOLOv4 detection network.

2.1. YOLOv4

YOLOv4 has the edge over YOLOv3, as it implements a new architecture in the
backbone, modifies the neck, and achieves a real-time speed of 65 FPS on Tesla V100. In
addition, there is no need to use expensive GPUs for training i.e., training can be done on a
single conventional GPU with great accuracy. YOLOv4 integrates special features within
the bag of freebies and bag of specials as discussed below:

Bag of freebies (BoF): Accuracy is improved by changing the training strategy without
increasing inference costs. To increase the robustness of images obtained from distinct
environments, it uses data augmentation, which increases the variability of the input
images. Furthermore, it solves the problem of photometric distortion by adjusting an
images’ brightness, hue, saturation, contrast, and noise. For geometric distortion, input
images are randomly scaled, cropped, flipped, and rotated at some angle. In addition to
data augmentation, BoF also solves object occlusion issues.

Bag of specials (BoS): It contains different post-processing modules that significantly
enhance object detection accuracy at the cost of a slight rise in inference time. Figure 3
illustrates various methods present in BoS.
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2.2. YOLOv4 Architecture

As shown in Figure 4, the YOLOv4 architecture has three parent blocks: backbone,
neck, and head (dense prediction).
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Backbone: The CSPDarknet53 network is used as a backbone to extract essential
features from the input image. Cross-stage-partial net (CSPNet) divides the feature map of
the base layer into two segments, as illustrated in Figure 5. A dense block contains multiple
convolution layers that take the output of all the preceding layers and merge them with the
current layer. DenseNet contains multiple dense blocks connected with transition layers
(including convolution and pooling layers).

Neck: The neck’s main contribution to detection is combining feature maps from
different stages. It enhances the information gathered from the backbone layer and feeds
it into the head. It concatenates semantic-rich information (from the feature map of the
top-down stream) with the spatial-rich information (from the bottom-up stream’s feature
map) and feeds the concatenated output into the head.

Head: To perform dense prediction, YOLOv3 serves as the head of the YOLOv4
architecture. As a result, it provides the final prediction along with a vector containing
the predicted coordinates of the bounding box and the associated confidence score with a
class label.
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3. Methodology

Figure 6 illustrates the flow chart of the training process using the YOLOv4 algorithm.
The first task in any DL algorithm is to prepare the dataset. For this purpose, 1835 images
(which contain eight breeds of cows) are collected using web mining techniques. However,
as DL models are data-driven, data augmentation has been performed on the acquired
images to avoid the risk of overfitting. As shown in Figure 7, data augmentation involves a
group of techniques that enhance the size of training datasets. An instance of augmented
images is shown in Figure 8.
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Further, the present work employs the transfer learning approach because a large dataset
is required to train the model from scratch. Therefore, pre-trained weights (yolov4.conv.137)
are applied as initial weights at the beginning of training. Moreover, the developed
custom dataset of 1835 images has been randomly segmented into the subsequent phases:
(1) training phase in which 90% of images (1662) are employed to train the proposed model,
(2) validation phase containing 141 samples to validate the model, and (3) testing phase,
which includes the remaining 32 images. The division of the dataset for each breed is
illustrated in Table 2.

Table 2. Dataset division.

Classes Training Images Validation Images Test Images

Afrikaner cattle 218 16 4

Brown Swiss cattle 203 16 4

Gyr cattle 202 14 4

Holstein Friesian 189 19 4

Limousin cattle 232 17 4

Marchigiana 163 18 4

Simmental cattle 221 22 4

White Park cattle 234 19 4

As discussed earlier, the network is trained by YOLOv4 for the detection of eight
breeds of a cow (Afrikaner, Brown Swiss, Gyr, Holstein Friesian, Limousin, Marchigiana,
White Park, and Simmental cattle). Moreover, the performance of the YOLOv4 algorithm is
evaluated by training the model on different sets of training parameters. The parametric
settings used to train the model via YOLOv4 are tabulated in Table 3. The whole investiga-
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tion is performed on Nvidia RTX 2060 GPU, and the environment uses Visual Studio 2017
to compile the entire script.

Table 3. YOLOv4 configuration parameters.

Parameters Different Sets of Training Parameters

Image size ** 416 × 416 416 × 416 608 × 608 608 × 608

Channels 3 3 3 3

Momentum 0.949 0.949 0.949 0.949

Batch 64 64 64 64

Subdivisions * 64 64 64 64

Decay 0.0005 0.0005 0.0005 0.0005

Learning rate 0.0013 0.0013 0.0013 0.0013

max_batches * 20000 20000 20000 20000

Policy Steps Steps Steps Steps

Steps * 16,000, 18,000 16,000, 18,000 16,000, 18,000 16,000, 18,000

Scale 0.1, 0.1 0.1, 0.1 0.1, 0.1 0.1, 0.1

Classes * 8 8 8 8

Filters * 39 39 39 39

IoU_threshold ** 0.50 0.75 0.50 0.75
* represents the parameters modified in the original YOLOv4 C.F.G. ** represents the parameters modified to
evaluate the performance of YOLOv4. Note: filters = {Bounding box coordinates (5) + Total number of classes (8)}
× Number of indices of anchors (3) = 39.

3.1. Evaluation Metrics

During training, intersection over union (IoU) is calculated by matching the detected
bounding box with the ground truth box. It can be determined via Equation (1) [35].

IoU =
area o f overlap between ground truth and detected bounding box

area o f union between the two boxes
(1)

Figure 9 illustrates an example of IoU computation. In this example, the IoU_threshold
has been taken as 0.5. If the prediction is greater than this threshold, it is classified a
true positive; otherwise, detection is designated a false positive. Thus, by changing the
IoU_threshold, the model will give different true or false positives for the same prediction.
The results are validated by computing the below-mentioned performance metrics:
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3.1.1. Precision–Recall (PR) Curve

PR curves summarize the trade-off between precision and recall values. It is plotted
at different probability thresholds representing precision along the y-axis and recall along
the x-axis.

Precision: The detected bounding box is compared with the ground-truth box and
describes how good a model is at predicting the positive class. It is represented by
Equation (2) [12].

Precision =
total no. o f objects detected correctly

total objects detected
=

NTP
NTP + NFP

(2)

here, NTP = number of predictions that resembles the ground-truth boxes (true positive)
NFP = number of false detections (false positives)
Recall: Recall denotes the sensitivity, i.e., how many positive predictions are captured

from total ground-truth boxes. It is generally expressed by Equation (3) [36].

Recall =
total no. o f objects detected correctly

no. o f ground truth objects
=

NTP
NTP + NFN

(3)

here, NFN = number of ground-truth objects that could not be detected (false negatives)
A model with perfect skill is depicted as a point at (1, 1) where both precision and recall

values are high. Therefore, the accuracy of the model increases as it moves toward point
(1, 1). The area under the PR curve is known as average precision (AP), and the mean of
APs for all classes is termed as the mean average precision (mAP). These are represented by
Equations (4) and (5), respectively [37].

AP =
∫ 1

0
p(r)dr (4)

mAP =
∑N

i=1 APi

N
(5)

Precision and recall are encapsulated in another well-known evaluation metric, the F1
score. It is the harmonic mean of precision and recall and computed by Equation (6) [38].

F1 score =
2 × Precision × Recall

Precision + Recall
(6)

3.1.2. Confusion Matrix

The ratio of true positives to total predictions made determines the Classification
accuracy. It can be misleading if the data has more than two classes or does not have a
balanced dataset. For example, if a classification accuracy of 90% is obtained, it does not
mean that all classes are being predicted equally. There is a probability that the model
neglects one or two categories. Good accuracy can be achieved by predicting the most
common class value, i.e., the class with the maximum number of training images. So,
to visualize the model’s performance, a confusion matrix is employed. It summarizes
prediction results with the number of correct and incorrect predictions encapsulated class-
wise in a matrix, as shown in Figure 10 [39].
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A confusion matrix is not only limited to true/false positives but also helps in estimat-
ing the performance by calculating other evaluation metrics including accuracy and kappa.

Overall accuracy (OA): The perfect classification is represented with 100% accuracy
where all of the classes were classified correctly. It is calculated by Equation (7):

OA =
total no. o f objects detected correctly

total objects detected
(7)

The diagonal elements in the matrix represent the number of predictions classified
correctly, and the total number of values represents the total objects detected. OA is the
easiest to analyze from the confusion matrix. However, it only provides basic accuracy
information as the class-wise evaluation is missing. Therefore, class-wise precision, recall,
and Cohen’s kappa are calculated from the matrix, as discussed below:

Precision and Recall: The confusion matrix helps in estimating precision and recall for
each class. The precision and recall values are calculated using Equations (2) and (3).

Cohen’s Kappa: Another metric calculated from the confusion matrix is kappa. It
measures the agreement between classification and truth values, i.e., it calculates inter-rater
reliability. It is generally a more robust measurement than simple accuracy computation,
as kappa considers the possibility of the agreement occurring by chance (false positives).
Mathematically, it is computed by Equation (8) [40].

kappa =
N ∑n

i=1 mi,i − ∑n
i=1(GiCi)

N2 − ∑n
i=1(GiCi)

(8)

here, n: total number of classes, N: total number of classified values compared to truth
values, mi,i: values found along the diagonal of the confusion matrix, Ci: total number of
predictions belonging to class I, Gi: total number of truth values belonging to class i.

It varies in the range (0, 1). The lower bound shows no agreement, whereas the upper
bound indicates perfect agreement. Practically, Cohen’s kappa removes the possibility of
random-guess agreeing.

4. Experimental Results and Discussion

Training any DL model from scratch requires substantial data and computational
resources. Therefore, the transfer learning approach is employed to develop the proposed
cow breed detection model using pre-trained weights of YOLOv4. This helps the model
to learn better attributes, resulting in improved detection capability. Further, the model is
trained for 20,000 iterations with the hyperparameters mentioned in Table 3. The training
graph of the model with the developed custom dataset is mapped in Figure 11.

The corresponding performance parameters are provided in Table 4. Training time
increases when the image size (i.e., width × height) increases. It indicates that YOLOv4
runs faster for smaller images. From the graph illustrated in Figure 11, it is spotted that
the mAP value increases gradually when the IoU_threshold is 0.75 as compared to 0.50. By
changing the IoU_threshold, the model will give different TRUE or FALSE positives for the
same prediction, consequently affecting the mAP values.

Figure 12 shows the statistical analysis of performance metrics obtained from the last
epoch. Table 4 and Figure 12 show that recall is higher (almost 2%) when the IoU_threshold
is low, as more predictions turn to positives at a low threshold. However, mAP increases by
0.5% for an IoU_threshold of 0.75 compared to an IoU_threshold of 0.5. A probable reason
might be the decrease in false positives with an increase in the threshold.

The dataset contains only 32 test images that generally have only one type of breed.
Therefore, to explore the efficiency of the model under complex circumstances, a collage
is developed containing images of cows from multiple breeds. The detection results on
sample test images along with collage are shown in Figure 13, and its comparative analysis
is demonstrated in Table 5. It is observed that the model gives high precision (>2%) when



Electronics 2022, 11, 3791 12 of 23

image resolution increases. It is also noticed that detection time increases by 65% with an
increase in image size as YOLOv4 runs slow on large-sized images.
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Table 4. Performance parameters at different iterations of training.

No. of
Iterations

Training
Parameters

Precision Recall F1Score mAP% Avg IoU%

0.50 0.75 0.50 0.75 0.50 0.75 0.50 0.75 0.50 0.75

1000
416 × 416 0.48 0.31 0.32 0.07 0.39 0.12 39.44 21.00 35.63 20.76

608 × 608 0.44 0.80 0.15 0.02 0.23 0.03 38.55 15.25 31.72 57.91

3000
416 × 416 0.87 0.81 0.89 0.71 0.88 0.76 92.12 80.20 70.66 64.58

608 × 608 0.86 0.83 0.81 0.69 0.83 0.75 86.04 74.18 68.97 65.06

5000
416 × 416 0.90 0.89 0.84 0.85 0.87 0.87 91.34 88.87 75.23 74.70

608 × 608 0.91 0.89 0.88 0.86 0.90 0.88 90.09 90.84 75.65 73.54

7000
416 × 416 0.93 0.91 0.89 0.90 0.91 0.90 92.95 93.42 78.27 73.58

608 × 608 0.90 0.91 0.88 0.90 0.89 0.91 92.25 91.96 73.95 75.70

9000
416 × 416 0.93 0.90 0.89 0.88 0.91 0.89 93.06 93.88 77.80 75.90

608 × 608 0.92 0.93 0.92 0.92 0.92 0.93 92.80 94.33 78.03 76.71

11,000
416 × 416 0.92 0.92 0.86 0.93 0.89 0.92 92.10 94.51 78.50 78.37

608 × 608 0.89 0.94 0.91 0.91 0.90 0.93 93.83 92.78 76.22 78.48

13,000
416 × 416 0.91 0.92 0.91 0.91 0.91 0.91 93.16 94.57 78.08 78.31

608 × 608 0.91 0.95 0.93 0.89 0.92 0.92 93.09 93.82 77.24 79.71

15,000
416 × 416 0.85 0.93 0.90 0.93 0.90 0.93 92.49 95.24 73.80 78.47

608 × 608 0.90 0.93 0.92 0.92 0.91 0.92 92.99 95.05 77.07 78.75

17,000
416 × 416 0.93 0.93 0.93 0.93 0.93 0.93 94.64 94.35 80.96 80.62

608 × 608 0.93 0.93 0.93 0.91 0.93 0.92 94.11 93.84 81.22 80.89

19,000
416 × 416 0.92 0.93 0.92 0.93 0.92 0.93 93.93 94.65 80.23 81.00

608 × 608 0.93 0.94 0.92 0.92 0.93 0.93 93.03 94.37 81.35 81.29

20,000
416 × 416 0.92 0.92 0.91 0.92 0.91 0.92 93.64 94.22 79.85 81.24

608 × 608 0.93 0.94 0.93 0.91 0.93 0.92 93.47 93.91 81.41 81.12
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Figure 13. Sample of test images.

Table 5. Sample comparison based on detection.

Test Image
Total No.

of Objects

No. of Positive Detections/Total No. of Detection Predicted in Time (ms)

416 × 416 608 × 608 416 × 416 608 × 608

0.50 0.75 0.50 0.75 0.50 0.75 0.50 0.75

1 12 12/12 11/11 11/11 12/12 30.43 31.74 51.58 51.74

2 10 8/9 8/10 10/10 10/10 31.60 31.84 51.96 51.74

3 4 2/4 2/3 3/4 3/3 30.62 30.25 51.465 51.463

4 6 6/6 6/7 6/6 6/6 31.60 31.4 50.95 51.73

5 7 7/7 5/7 5/6 4/6 31.28 31.30 52.09 52.11

6 7 7/7 7/7 7/7 6/6 31.47 30.15 51.91 51.47

Average precision Average prediction time (ms)

93.30 86.60 95.40 95.30 31.17 31.11 51.66 51.71
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4.1. PR Curve

Figure 14 shows the PR curves for different cases of network size and IoU_threshold.
From Figure 14, it is observed that the curves are closer to (1, 1) for each class for the fourth
case (608 × 608, 0.75) compared to other ones. Furthermore, mAP is calculated from PR
curves, which are greater in ‘608 × 608, 0.75 ’ by 0.17%, 0.15%, and 0.01% compared to
‘416 × 416, 0.50’, ‘416 × 416, 0.75’, and ‘608 × 608, 0.50’ respectively. This indicates that the
PR curve shows visible change when the image resolution changes.
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4.2. Confusion Matrix

As discussed earlier, the image resolution and IoU_threshold significantly influence
the performance of the object detection model. This is also reflected in the confusion
matrix, as illustrated in Figure 15. In this study, predictions were taken as positive if the
confidence score was greater than 1% to compute the confusion matrix. Since cows of
studied classes share almost similar traits, it is very difficult for the model to extract features
with lower threshold and image resolution. Hence, a large amount of misidentification
and misclassification have been witnessed, particularly with 416 × 416, 0.50. However,
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fine features may be recognized as image resolution improves, reducing the frequency of
erroneous detection.
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OA calculated from confusion matrices is illustrated in Figure 16. It is observed that
OA is greater in the fourth case (i.e., ‘608 × 608, 0.75’) by 33.27%, 3.28%, and 19.70% than
‘416 × 416, 0.50’, ‘416 × 416, 0.75’, and ‘608 × 608, 0.50’ respectively. This also validates the
hypothesis that the performance of the model improves when the image resolution and
threshold increase.

To further validate the model, class-wise precision and recall values are computed. The
results are presented in Figures 17 and 18, respectively. The precision and recall values are
small for an IoU_threshold of 0.50 compared to 0.75 as the total objects detected are lower
in the latter (reflected from confusion matrices in Figure 15).

Due to diversity in training image size, precision and recall follow the random trend
when the images are resized from 416 × 416 to 608 × 608. The model performance is
affected because the model uses a zero padding technique to fit the input image into the
required image size.

Figure 19 also supports that the detection accuracy increases when both image reso-
lution and threshold increases. Kappa is found to be greater in the fourth case (608 × 608,
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0.75) with a hike of 42.10%, 3.84%, and 23.60% compared to ‘416 × 416, 0.50’, ‘416 × 416,
0.75’, and ‘608 × 608, 0.50’ respectively.
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4.3. Comparison with State-of-the-Art Models

The results above demonstrate the improved detection accuracy of the proposed model
with 608 × 608 image resolution and an IoU_threshold of 0.75. Further, it is observed that
most of the reported work detects only one breed. Therefore, the developed custom dataset
is employed to train three other popular detection techniques (faster RCNN, SSD, and
YOLOv3) for a fair comparison. Table 6 presents the class-wise accuracy of the proposed
model relative to faster RCNN, SSD, and YOLOv3. This table also compares the speed of
detection by these models.
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Table 6. Comparative analysis.

S. No. Base Model
Class

FPS
A BS G HF L M S WP

1. Faster RCNN [41] 85.21 78.36 73.87 84.76 77.84 76.19 74.13 80.17 3.04

2. SSD [30] 73.48 69.14 66.25 72.83 69.27 69.27 71.06 75.43 4.60

3. YOLOv3 [33] 84.67 77.55 71.39 83.92 74.13 72.04 72.57 79.84 9.22

4. YOLOv4 (proposed) 87.59 81.11 82.44 88.37 78.19 76.88 77.46 82.32 19.61

A: Afrikaner, BS: Brown Swiss, G: Gyr, HF: Holstein Friesian, L: Limousin, M: Marchigiana, S: Simmental, WP:
White Park.

It was computed that the model with YOLOv4 outclasses faster RCNN by a minimum
and maximum margin of 0.45% for Limousin breed and 11.60% for Gyr class, respectively.
Similarly, YOLOv4 dominates the detection accuracy of SSD by a minimum margin of 9.00%
for all the categories. Similar trends were witnessed while comparing the performance of
YOLOv4 with YOLOv3, as the lowest boost (3.11%) was observed for White Park. Moreover,
the model developed with YOLOv4 significantly uplifted the inference speed.

To conclude, the experiments and results reported in this section validate the credibility
of this work and place the proposed model among the top-ranked cow breed detection
models. The methodology proposed in this work could be used in real-time scenarios to
detect cow breeds, thereby assisting in the improvement of automatic livestock farming.

5. Conclusions

This work proposes a vision-based model to recognize the breed of a cow. YOLOv4, a
DL algorithm, is applied to learn a discriminatory feature of cows with a limited training
dataset. For this, a custom dataset for eight breeds of cow (Afrikaner, Brown Swiss,
Gyr, Holstein Friesian, Limousin, Marchigiana, White Park, and Simmental cattle) was
generated. To test the efficiency of the algorithm, PR curves and confusion matrix were
drawn on test images, which demonstrates that the YOLOv4 algorithm works better with
an image size of 608 × 608 and IoU_threshold of 0.75. Furthermore, mAP calculated from
PR curves improve by 0.17%, 0.15%, and 0.01% in training image size and IoU_thresholds
of ‘416 × 416, 0.50’, ‘416 × 416, 0.75’ and ‘608 × 608, 0.50’, respectively. Consequently, the
PR curve shows visible changes, with variations in image resolution. Overall accuracy, OA,
calculated from the confusion matrix is more in ‘608 × 608, 0.75’ by 33.27%, 3.28%, and
19.70% than ‘416 × 416, 0.50’, ‘416 × 416, 0.75’, and ‘608 × 608, 0.50’, respectively. Another
metric, i.e., kappa, also indicates that the model performs better when the image size and
the IoU_threshold are ‘608 × 608, 0.75’. In ‘608 × 608, 0.75’, Kappa increases by 42.1%, 3.84%
and 23.60% than ‘416 × 416, 0.50’, ‘416 × 416, 0.75’, and ‘608 × 608, 0.50’, respectively.
Overall, the experimental results demonstrate that the model accuracy can be improved by
training YOLOv4 on images with high resolution, with a greater IoU_threshold. Further, the
developed cow breed model is compared with the models developed by employing faster
RCNN, SSD, and YOLOv3. The comparative analysis validates the improved performance
of the cow breed detection model with YOLOv4.

Further research will focus on video tracking for effective identification via surveil-
lance. As the present work on the individual identification of the cow breed (through
images) yields highly accurate results, it would be interesting to incorporate simple track-
ing techniques between video frames to check the efficiency of this work, more precisely
in case of the heavy bunching of cows. Further, the proposed methodology needs to be
trained on aerial-view-based datasets with multiple breeds to enhance the accuracy and
robustness of the model. This will be addressed in future works. In addition, the scalability
of our approach to large populations remains to be tested. This will open new doors to
deploy vision-based algorithms for the precision livestock farming sector.
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AP Average precision
BoF Bag of freebies
BoS Bag of specials
CNN Convolutional neural network
CSPNet Cross-stage-partial net
DL Deep learning
FPS Frames per second
GDP Gross domestic product
GPU Graphics processing unit
GVA Gross value added
IoU Intersection over union
LSTM Long short-term memory
mAP Mean average precision
OA Overall accuracy
PR Precision–recall
RCN Recurrent convolutional network
RCNN Region-based convolutional neural network
RFID Radio frequency identification
SSD Single-shot detector
YOLO You only look once
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