
Citation: Ren, J.; Huang, X.; Huang,

R.N. Efficient Deep Reinforcement

Learning for Optimal Path Planning.

Electronics 2022, 11, 3628. https://

doi.org/10.3390/electronics11213628

Academic Editors: Calin Iclodean,

Bogdan Ovidiu Varga and

Felix Pfister

Received: 4 September 2022

Accepted: 28 October 2022

Published: 7 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Efficient Deep Reinforcement Learning for Optimal
Path Planning
Jing Ren 1,*, Xishi Huang 2 and Raymond N. Huang 3

1 Department of Electrical, Computer, and Software Engineering, Ontario Tech University,
Oshawa, ON L1G 0C5, Canada

2 RS OPTO Tech Ltd., Suzhou 215100, China
3 Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
* Correspondence: jing.ren@ontariotechu.ca

Abstract: In this paper, we propose a novel deep reinforcement learning (DRL) method for optimal
path planning for mobile robots using dynamic programming (DP)-based data collection. The pro-
posed method can overcome the slow learning process and improve training data quality inherently
in DRL algorithms. The main idea of our approach is as follows. First, we mapped the dynamic
programming method to typical optimal path planning problems for mobile robots, and created a
new efficient DP-based method to find an exact, analytical, optimal solution for the path planning
problem. Then, we used high-quality training data gathered using the DP method for DRL, which
greatly improves training data quality and learning efficiency. Next, we established a two-stage
reinforcement learning method where, prior to the DRL, we employed extreme learning machines
(ELM) to initialize the parameters of actor and critic neural networks to a near-optimal solution in
order to significantly improve the learning performance. Finally, we illustrated our method using
some typical path planning tasks. The experimental results show that our DRL method can converge
much easier and faster than other methods. The resulting action neural network is able to successfully
guide robots from any start position in the environment to the goal position while following the
optimal path and avoiding collision with obstacles.

Keywords: deep reinforcement learning; global optimal path planning; dynamic programming;
mobile robots; shortest path; continuous state space; collision avoidance

1. Introduction

Deep reinforcement learning (DRL) has been a powerful tool in many applications,
including optimal path planning for mobile robots [1–10]. However, traditional deep
reinforcement learning approaches use the trial-and-error method, which is extremely
time-consuming and often does not converge [11]. The learning efficiency has become the
bottleneck in applying DRL to more real-time path planning problems. One key factor
that determines the efficiency of the learning process is the quality of the training data.
Traditionally, DRL neural networks learn from randomly generated experience training
data. Consequently, training is often a lengthy process and it is easy to get trapped in
a local minimum and fail. In order to overcome this fundamental challenge of DRL, in
this paper, we propose an improvement to the training data quality by using dynamic
programming (DP)-based optimal data collection. This new DP-based data collection
method is an excellent match for the path planning problems because the shortest distance
path planning problems can be mapped to be a DP problem that can therefore achieve the
global optimal solution. This DP-based data collection method can provide an abundant
optimal training dataset for DRL.

Path planning is a popular research topic with many recently published studies [12–15].
However, it remains an active research area with much to be explored. In path planning,

Electronics 2022, 11, 3628. https://doi.org/10.3390/electronics11213628 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11213628
https://doi.org/10.3390/electronics11213628
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11213628
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11213628?type=check_update&version=1

Electronics 2022, 11, 3628 2 of 21

researchers strive to achieve the global optimal solution and one such method that can
guarantee this is DP. There are many DP algorithms used to solve various problems that can
be applied in navigating the global optimal path for mobile robots, which commonly use
grid discretization to approximate the global optimal solution [16–19]. Different from most
works, in this study, we first mapped the dynamic programming method to the typical,
shortest traveling distance path planning for mobile robots and then used DP to find the
exact, analytical, optimal solution for the continuous path planning problems. Specifically,
we first employed DP to find the optimal solution for the center of each grid cell and then we
created a novel method to compute the optimal solution for any continuous start position
in the continuous workspace using only local information of neighbor cells. As a result, our
method can achieve the optimal solution for any start position during robot continuous
navigation compared to previous works using DP-based path planning methods.

Although DP-based data collection can provide optimal experience training data for
DRL, it is likely that the learning process will still be too long or even get trapped in a local
minimum and fail to converge if the data are fed to the DRL algorithm directly. To further
improve the convergence performance and speed up the learning process, we propose
the use of extreme learning machines (ELM) prior to the DRL in order to start DRL at a
near-optimal starting point. This staged learning method allows DRL to fully focus on the
most challenging part of the path planning, such as the areas around the obstacles or the
ridges along which multiple optimal paths diverge. This initialization can be very fast due
to the time efficiency feature of ELM.

By using DRL in this study, we aimed to learn the optimal action policy, i.e., closed-loop
feedback for the real-time navigation of mobile robots in a 2D environment. Our optimal
closed-loop action policy, which applies to any start position and covers all trajectories in
the free workspace, is better than the optimal open-loop action sequence that is restricted
to a single start position and therefore one trajectory. The optimal action policy allows for a
real-time, fast, optimal response as the robot moves around in a complex environment. The
closed-loop action policy eliminates the shortcomings of open-loop action sequences. It
is also robust to disturbances or noise and reduces the deviations caused by disturbances
since the effects of the disturbances are automatically compensated for. For example, in
the case of the robot’s state deviating from the optimal path caused by disturbance, the
closed-loop action policy can mitigate the deviation from the original trajectory without
accumulative errors. The optimal action policy can guarantee that the robot can still move
along a new optimal path starting from the new disturbed state or position, which is
close to the original optimal trajectory while the open-loop action sequence can cause the
robot to move far away from the original optimal trajectory due to accumulative errors.
Therefore, the closed-loop optimal policy is crucial for the real-time optimal navigation for
mobile robots.

The contributions of this work are multifold: First, we mapped the dynamic program-
ming method to typical optimal path planning problems for mobile robots and created
an efficient dynamic programming-based method to find an exact, analytical, optimal
solution for the continuous path planning problem. We then used high-quality training
data gathered from the dynamic programing method for DRL, which greatly improves data
quality and learning efficiency. We established a new two-stage learning method where we
employed ELM to learn from initial optimal experience data in order to initialize the actor
and critic neural networks to a near-optimal solution prior to DRL. Finally, we illustrated
our proposed method using typical path planning tasks.

We organized the paper as follows. In Section 2, we provide an overview of the most
relevant and recent papers in the fields of path planning, dynamic programming, optimal
path planning, and DRL for path planning. In Section 3, we detail the new DRL approach
implemented for this study. Experimental results are presented in Section 4. We conclude
the paper and offer a few pointers for future research in Section 5.

Electronics 2022, 11, 3628 3 of 21

2. Related Work

Path planning is a research field studying the moving strategies of robots or vehicles. In
path planning, the goal is to safely move an agent from a start position to its corresponding
final destination while evading any obstacles or other agents [12–15]. With numerous
applications, such as improving robot movement efficiency and safety, increasingly efficient
and powerful algorithms have been developed. To this end, research has been focused on
optimal path planning, which can be defined with one or more of the following constraints:
shortest time [20], shortest distance [21], and optimal energy consumption [22].

Conventional path planning methods, such as RRT, A*, and Bug approaches [13,14,23–26],
aim to find one path from only one start position to the goal position, i.e., an open-loop
sequence of points along the trajectory. When the start position changes or the mobile
robot deviates from the optimal path caused by disturbances, path planning is reinitialized
from the new start position. In contrast, our proposed method produces a closed-loop
optimal action and control policy. With this policy, once the continuous optimal policy
is learned via DRL, the robot can always move along the optimal path starting from any
new position even when disturbed in the free workspace, based on the optimal policy and
without replanning. Therefore, the purpose of our proposed approach is different from
RRT, A*, and Bug approaches; our approach is better.

Deep learning (DL) is a new learning paradigm that performs nonlinear transformation
using a multi-layer network structure [11,27–33] and has been gaining popularity in the
last decade. In [28], Yann LeCun et al. presented a landmark work that employed the back-
propagation method to acquire kernel coefficients directly from imaging representations
of human written numbers, resulting in automated learning. We can categorize DL into
three main groups: supervised learning [29], unsupervised learning [30], and reinforcement
learning [31]. Unsupervised learning aims to find the hidden structures in unlabeled data
but is ineffective in path planning problems due to the nature of this type of learning.
On the other hand, supervised learning is much better with path planning problems due
to its ability to easily converge and its lack of need to specify how the task should be
performed. However, it is not without any flaws; in some applications, it can be hard to
collect enough labelled data. In addition, the performance of this method is also limited:
the robot cannot outperform the “supervisor”, i.e., the training data, in supervised learning.
In comparison, the last main method, DRL, does not need labelled data for training and
can adequately generalize to new scenarios. However, DRL suffers the drawback of low
sample efficiency [32].

In the last decade, DRL has been successfully applied to more and more applications.
DRL performs better than human players in various fields by trying different strategies. In
particular, DRL has been successfully used in mobile robotics or automated vehicle motion
planning [1–11]. For example, in [10], the authors investigated the performance of a DRL-
based deterministic policy gradient method for the dynamic environment. The algorithm
was applied to multiple vehicle path planning. In [2], the authors studied a complex,
big environment in which conventional algorithms often result in failures. They used a
DRL-based algorithm to map vehicle’s control actions to sensory inputs [2]. In [3]. The
authors focused on a mixed environment and used DRL for vehicle motion planning. This
algorithm was used for automated, multi-vehicle scenarios. In addition, by understanding
and predicting the motions of moving obstacles using the equipped sensors, DRL can
be programmed to avoid dynamic obstacles [4]. The elements of social interaction were
introduced to DRL [5], where social rules were used to guide DRL. When we consider
non-communicating multi-agent path planning problems, traditionally, the computation
time can be prohibitively long due to unobservable agents’ goals. However, DRL can be
effectively used to reduce online computation time [6] and enable real-time navigation.
While it is more challenging for DRL to avoid collision when the dynamic obstacles or
agents do not follow any behavior rules, we can mitigate this issue by adding an LSTM
segment for flexible observation size. This allows the DRL algorithm to achieve a better
performance as the number of mobile obstacles increases [7]. A proposed method with

Electronics 2022, 11, 3628 4 of 21

low computation time and low energy consumption while achieving optimal or close to
optimal path formulates a clustered IoT network as a combinatorial optimization problem.
The authors in [8] used a seq2seq network and DRL to train this network using information
of the clusters and the UAV’s start or end as the input. In [9], the authors introduced a
new combination of elite-duplication genetic-assisted path planning with DRL. Using this
method, they can optimally generate sparse waypoints in a constrained space. In practical
path planning applications, such as for warehouse robots, there are multiple agents. To
address this problem, in [10], the authors formulate the problem as a decentralized, partially
observable Markov decision process and use a DRL approach to solve the problem by
feeding global and local map representations into convolutional layers.

In the literature, many works have been presented in the research area of dynamic
programming and DP-based optimal path planning. However, we found that most of these
works cannot offer an exact continuous solution to the global optimal problem. They tend to
use a distance transformation algorithm. This approach aims to find the paths from the goal
position back to the start position. In order to use this method, we generate a distance wave
front, which is propagated to cover all free space beginning from the destination [16–19].
The authors in [13] presented a constrained traveling distance transformation algorithm,
which can search for the shortest distance between any two points with the presence of
static obstacles. This method calculated the optimal traveling distance by discretizing the
workspace into image pixels and approximating the traveling distance to the closest pixel
of reference for every grid point. The authors in [17] extended the idea of the distance
transform method for 2D path planning. They defined the propagated cost as a weighted
sum of the traveling distance to the destination and the total cost of obstacles moving closer.
The authors in [18,19] presented a real-time obstacle avoidance path planning for robots,
which is applicable to scenarios with dynamic targets and obstacles. In this particular
path planning scenario, the authors aimed to minimize both the cumulative local penalty
functions along the path and the sum of the current known distance to a target. In all of
the above works, the environment was discretized; researchers could not find an exact,
analytical, continuous optimal solution for the path planning problem.

In [34], the authors proposed an actor-critic deep reinforcement learning method with
experience replay. The sampling method described in this paper is very efficient. In [35], the
authors proposed a Q algorithm-based ELM (Q-ELM) to tackle a slow convergence problem.
In this ELM, the input was the mobile robot’s perception of the external environment
information and the output was the corresponding reward and punishment for each action
decision, which was the Q value.

The essence of conventional extreme learning machines (ELM) [36–44] is to use a
single hidden layer feedforward neural network for training and learning. Later, ELM
has been extended to use neural networks with multi-layer hidden nodes for different
applications [36]. Since hidden nodes do not need to be iteratively tuned, ELM learns much
faster and yields more promising performance compared to multiple layer perceptron
(MLP)-based algorithms [37]. ELM can also provide a unified learning platform with a
widespread type of feature mappings and can be applied in regression and multiclass
classification applications [38]. However, this method is not flawless. Compared with MLP,
in order to achieve comparable accuracy, ELM often needs much more hidden nodes [39].
In [40], the authors directly used ELM in a path planning method. They use a multi-
layer ELM to calculate the cost function of the A* algorithm and determine the accurate
search direction by evaluating the impact of obstacles. The authors in [41] designed an
adaptive fuzzy neural network planning method based on ELM. The ELM is used to solve
classification and regression problems and is applied to quickly and accurately reduce the
computational complexity of the traditional adaptive neural network. In this work, we
used ELM to initialize DRL actor and critic neural networks, which were able to quickly
produce the solution to the vicinity of the global optimum due to its short computation
time and high-quality optimal initial training data.

Electronics 2022, 11, 3628 5 of 21

3. Methodology

In this study, we evaluated our approach in a multi-obstacle environment, a typical
layout for path planning applications, such as warehouse fulfillment. In this scenario, we as-
sume that the robot can accurately measure the distance between itself and its surrounding
environment with common sensors, such as Lidars and cameras.

Our main aim was to enhance the performance of learning algorithms and training
data quality associated with DRL. The two basic steps in DRL are the data collection and the
training process. At the data collection step, the traditional DRL usually collects random
samples in the form of (st, at, rt, st + 1). These random samples are generally of low quality
and result in a much longer training process in the learning stage. To solve this problem,
we propose using DP that can find the global optimal trajectories from any start position to
generate high-quality training data. In the following Section 3.1, we show how the path
planning problem was formulated into a DP problem and solved for optimal paths, which
in turn provides best quality data for DRL training. Conventionally, during the training
step, the robot uses DRL algorithms directly to learn the optimal paths. In this Section 3.2 of
this paper, we propose and discuss a detailed, novel two-stage deep reinforcement learning
algorithm for fast learning.

Specifically, DP-based training data contain the global optimal information. The de-
rived optimal experience data include not only local information but also key global useful
information, which can effectively guide the reinforcement learning process. Therefore, the
learning process can efficiently learn from these best experience data and converge fast. For
example, global optimal moving directions (i.e., actions) are the highest quality information
from the environment and are much more useful for learning than low-quality randomly
collected experience data.

The major challenge of complex continuous action policy representation using the
neural network is the tendency to fall in a local minimum. ELM can effectively deal with this
problem in our application scenarios of this study. ELM is one type of supervised learning
and is much more efficient at learning than general reinforcement learning algorithms
since the target information is generally not available in conventional deep reinforcement
learning approaches. The reasons are as follows:

• DP-based optimal training data provide global optimal moving directions or actions
and can be used as the optimal learning target.

• Given the input-to-hidden parameters of the actor and critic neural networks in DRL,
ELM formulates the learning problem as a quadratic optimization problem, which has
the closed-form solution, resulting in rapid non-iterative learning. More importantly,
ELM can achieve the global optimal solution, which effectively reduce or overcome the
local minimum problem that is inherent in DNN learning. Therefore, ELM provides
an excellent starting point close to the global optimal solution for DRL algorithms.

3.1. Global Optimal Solution for Discrete Grid Cell Centers Using the DP Method

In this section, we present a two-step DP-based path planning method. This method
uses a distance propagation method to find the shortest distance from any position in the
workplace to its corresponding destination. Specifically, we separated the task into two
steps: a path planning step and a robot navigation step. During the first step, we divided
the workspace into grid cells and use a DP-inspired algorithm to find the shortest distance
from each cell center to the goal position. Next, during the navigation step, we generated
continuous optimal trajectories from any start position in the workspace by using only the
local information of neighboring cells.

3.1.1. DP-Inspired Algorithm for Global Optimal Path Planning for Discrete Grid Cells

In this study, we began the planning step by first partitioning the environment into
grid cells and setting the goal with zero distance. We then calculated the distances from
all the neighbor cells of the goal, eight in total, to the final goal position. Specifically,
the shortest distance from each cell center to the destination was calculated, as shown in

Electronics 2022, 11, 3628 6 of 21

Figure 1. Next, this distance generation method propagated through all the remaining
cells, finally obtaining the shortest distance for each cell. A map was built for the whole
workspace.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 21

3.1.1. DP-Inspired Algorithm for Global Optimal Path Planning for Discrete Grid Cells
In this study, we began the planning step by first partitioning the environment into

grid cells and setting the goal with zero distance. We then calculated the distances from
all the neighbor cells of the goal, eight in total, to the final goal position. Specifically, the
shortest distance from each cell center to the destination was calculated, as shown in Fig-
ure 1. Next, this distance generation method propagated through all the remaining cells,
finally obtaining the shortest distance for each cell. A map was built for the whole work-
space.

Figure 1. Goal and its eight neighbors (left) and shortest distance of the neighbor cells to goal (right).

We store the information for each cell, such as the center of the cell, the shortest length
from the center of the cell to the goal, the optimal moving direction for the cell, and flags,
to show the information, such as whether the cell is (1) in an obstacle, (2) already visited,
or (3) in the priority queue (PQ).

The state space in our method is continuous in the navigation step. Any point in the
free workspace is associated with the shortest distance from the final goal calculated by
using only local information. In contrast, in this planning step, we used a discretized map
of cells for planning. Based on the idea of dynamic programming, we illustrate in Figure
2 the cells that are organized by layers in our proposed method. Each cell is associated
with the shortest length from the center of the cell to the goal. Each cell also contains key
information, such as the optimal moving direction, which is used to guide the robot to the
destination along the optimal path. In our method, only local information provided by its
valid, available neighbors is required to calculate the shortest distance of a cell. We define
valid neighbor cells as those that are not in any obstacle and define the available cells as
the ones with the shortest lengths, which are already calculated from the previous steps.

Figure 2. The illustration of the DP-like, layered-structure representation of the cells.

The DP-based formula for calculating the shortest traveling distance is as follows:

Figure 1. Goal and its eight neighbors (left) and shortest distance of the neighbor cells to goal (right).

We store the information for each cell, such as the center of the cell, the shortest length
from the center of the cell to the goal, the optimal moving direction for the cell, and flags,
to show the information, such as whether the cell is (1) in an obstacle, (2) already visited, or
(3) in the priority queue (PQ).

The state space in our method is continuous in the navigation step. Any point in the
free workspace is associated with the shortest distance from the final goal calculated by
using only local information. In contrast, in this planning step, we used a discretized map
of cells for planning. Based on the idea of dynamic programming, we illustrate in Figure 2
the cells that are organized by layers in our proposed method. Each cell is associated
with the shortest length from the center of the cell to the goal. Each cell also contains key
information, such as the optimal moving direction, which is used to guide the robot to the
destination along the optimal path. In our method, only local information provided by its
valid, available neighbors is required to calculate the shortest distance of a cell. We define
valid neighbor cells as those that are not in any obstacle and define the available cells as
the ones with the shortest lengths, which are already calculated from the previous steps.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 21

3.1.1. DP-Inspired Algorithm for Global Optimal Path Planning for Discrete Grid Cells
In this study, we began the planning step by first partitioning the environment into

grid cells and setting the goal with zero distance. We then calculated the distances from
all the neighbor cells of the goal, eight in total, to the final goal position. Specifically, the
shortest distance from each cell center to the destination was calculated, as shown in Fig-
ure 1. Next, this distance generation method propagated through all the remaining cells,
finally obtaining the shortest distance for each cell. A map was built for the whole work-
space.

Figure 1. Goal and its eight neighbors (left) and shortest distance of the neighbor cells to goal (right).

We store the information for each cell, such as the center of the cell, the shortest length
from the center of the cell to the goal, the optimal moving direction for the cell, and flags,
to show the information, such as whether the cell is (1) in an obstacle, (2) already visited,
or (3) in the priority queue (PQ).

The state space in our method is continuous in the navigation step. Any point in the
free workspace is associated with the shortest distance from the final goal calculated by
using only local information. In contrast, in this planning step, we used a discretized map
of cells for planning. Based on the idea of dynamic programming, we illustrate in Figure
2 the cells that are organized by layers in our proposed method. Each cell is associated
with the shortest length from the center of the cell to the goal. Each cell also contains key
information, such as the optimal moving direction, which is used to guide the robot to the
destination along the optimal path. In our method, only local information provided by its
valid, available neighbors is required to calculate the shortest distance of a cell. We define
valid neighbor cells as those that are not in any obstacle and define the available cells as
the ones with the shortest lengths, which are already calculated from the previous steps.

Figure 2. The illustration of the DP-like, layered-structure representation of the cells.

The DP-based formula for calculating the shortest traveling distance is as follows:

Figure 2. The illustration of the DP-like, layered-structure representation of the cells.

The DP-based formula for calculating the shortest traveling distance is as follows:

Vk(Xk) = min
Xnbr∈Dnbr(Xk)

{
d
(
Xk, Xwpm) + Vk+1

(
Xwpm

)}
(1)

Electronics 2022, 11, 3628 7 of 21

Xwpm = Xnbr + Vd(Xnbr) (2)

where d
(
Xk, Xwpm

)
stands for the Euclidean distance from Xk to Xwpm and Vk+1

(
Xwpm

)
is

the shortest distance to the goal. Xnbr is the center of Xk’s neighbor cell, Xwpm is the
corresponding waypoint of Xnbr, and Vd(Xnbr) is the optimal moving direction at Xnbr.
As for a valid neighbor cell Xnbr, notice that there is no known obstacle between Xk and
Xwp(Xnbr), i.e., the line segment of Xk and Xwp, does not pass any obstacle.

The global optimal direction Vd from the cell center Xk can be calculated as follows:

Vd = Xwpm∗ − Xk (3)

where Xwpm∗ is the optimal waypoint that produces the shortest traveling distance Vk(Xk),
which is obtained using Equation (1).

Figure 3 shows a general case of how the shortest distance is determined for each
cell. For example, there are three valid available neighbor cells for cell 326, which are cell
315, cell 322, and cell 312. We can compute the shortest distance and the optimal moving
direction for cell 326 based on only the local information of these three surrounding cells.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 21

𝑉௞(𝑋௞) = min௑೙್ೝ∈஽೙್ೝ(௑ೖ){𝑑൫𝑋௞, 𝑋௪௣௠)൯ + 𝑉௞ାଵ൫𝑋௪௣௠൯} (1)𝑋௪௣௠ = 𝑋௡௕௥ + 𝑉ௗ(𝑋௡௕௥) (2)

where 𝑑൫𝑋௞, 𝑋௪௣௠൯ stands for the Euclidean distance from 𝑋௞ to 𝑋௪௣௠ and 𝑉௞ାଵ൫𝑋௪௣௠൯ is
the shortest distance to the goal. 𝑋௡௕௥ is the center of 𝑋௞’s neighbor cell, 𝑋௪௣௠ is the cor-
responding waypoint of 𝑋௡௕௥, and 𝑉ௗ(𝑋௡௕௥) is the optimal moving direction at 𝑋௡௕௥. As
for a valid neighbor cell 𝑋௡௕௥ , notice that there is no known obstacle between 𝑋௞ and 𝑋௪௣(𝑋௡௕௥), i.e., the line segment of 𝑋௞ and 𝑋௪௣, does not pass any obstacle.

The global optimal direction 𝑉ௗ from the cell center 𝑋௞ can be calculated as follows: 𝑉ௗ = 𝑋௪௣௠∗−𝑋௞ (3)

where 𝑋௪௣௠∗ is the optimal waypoint that produces the shortest traveling distance 𝑉௞(𝑋௞), which is obtained using Equation (1).
Figure 3 shows a general case of how the shortest distance is determined for each cell.

For example, there are three valid available neighbor cells for cell 326, which are cell 315,
cell 322, and cell 312. We can compute the shortest distance and the optimal moving di-
rection for cell 326 based on only the local information of these three surrounding cells.

Figure 3. Calculation of the shortest distance for the cell with three valid neighbors available.

Note that not all surrounding cells have a valid shortest distance due to the presence
of the obstacles. The center of a cell may be inside an obstacle and may have no valid
value. As long as we can find one or two neighbors of the cell close to the obstacle with
valid shortest distance values, we can still calculate the shortest distance for that cell.
Lastly, it is also important to check whether the line connecting the cell and the waypoint
passes through any obstacle.

In Figure 4, we show how to employ only local information to obtain the global short-
est distance of a cell to the goal. In this example, the shortest distance of cell 37 is calculated
using only the information of three neighbors: cell 13, cell 21, and cell 29. We also calculate
the corresponding optimal waypoint 𝑃௪௣ using the centers and optimal moving direc-
tions of the neighboring cells using Equations (1) and (2). The shortest distance 𝑉(𝑃௖ଷ଻) is
then calculated: 𝑉(𝑃௖ଷ଻) = 𝑑൫𝑃௖ଷ଻, 𝑃௪௣൯ + 𝑉𝑘+1൫𝑃௪௣൯ (4a)

where 𝑉௞ାଵ൫𝑃௪௣൯ stands for the shortest distance from 𝑃௪௣ to the goal. 𝑑൫𝑃ଷ଻, 𝑃௪௣൯ rep-
resents the distance between the center 𝑃௖ଷ଻ of cell 37 and the waypoint 𝑃௪௣. In contrast
with other methods [3], the optimal traveling distance from cell 37 does not need to pass
through the center of neighbors 13 or 21; instead, it can find the optimal, accurate moving
direction.

Figure 3. Calculation of the shortest distance for the cell with three valid neighbors available.

Note that not all surrounding cells have a valid shortest distance due to the presence
of the obstacles. The center of a cell may be inside an obstacle and may have no valid value.
As long as we can find one or two neighbors of the cell close to the obstacle with valid
shortest distance values, we can still calculate the shortest distance for that cell. Lastly, it
is also important to check whether the line connecting the cell and the waypoint passes
through any obstacle.

In Figure 4, we show how to employ only local information to obtain the global
shortest distance of a cell to the goal. In this example, the shortest distance of cell 37 is
calculated using only the information of three neighbors: cell 13, cell 21, and cell 29. We also
calculate the corresponding optimal waypoint Pwp using the centers and optimal moving
directions of the neighboring cells using Equations (1) and (2). The shortest distance V(Pc37)
is then calculated:

V(Pc37) = d
(

Pc37, Pwp
)
+ Vk+1

(
Pwp

)
(4a)

where Vk+1
(

Pwp
)

stands for the shortest distance from Pwp to the goal. d
(

P37, Pwp
)

repre-
sents the distance between the center Pc37 of cell 37 and the waypoint Pwp. In contrast with
other methods [3], the optimal traveling distance from cell 37 does not need to pass through
the center of neighbors 13 or 21; instead, it can find the optimal, accurate moving direction.

Electronics 2022, 11, 3628 8 of 21Electronics 2022, 11, x FOR PEER REVIEW 8 of 21

Figure 4. Computing global shortest distance of cell 37 from local neighbors: cells 13, 21, and 29.

In the implementation of our algorithm, we used a priority queue (PQ) to choose the
next cell to consider and find the shortest distance from the cell to the goal. This process
mimics the wave front propagation from the goal position. The cell priority 𝑃ௗ௜௦௧(𝐶) was
computed as follows: 𝑃ௗ௜௦௧(𝐶) = min஼ೕ∈஽೙್ೝ(େ){𝑑൫𝐶, 𝐶௝൯ + 𝑉௞ାଵ൫𝐶௝൯} (4b)

where 𝑑൫𝐶, 𝐶௝൯ represents the Euclidean distance from the center of cell C to the center of
cell, 𝐶௝ , 𝐶௝ is the valid available neighbor, 𝐷௡௕௥(𝐶) is the set of all the valid available
neighbor cells of current cell C, and 𝑉௞ାଵ൫𝐶௝൯ is the shortest distance of 𝐶௝ to the goal po-
sition. In Figure 5, we show the progress of distance propagation. In Figure 5a, we show
the result of the propagation after 44 cells. In Figure 5b, we show the result of the propa-
gation after 371 cells.

(a)

(b)

Figure 5. Progress of shortest distance propagation: (a) visited 44 cells, (b) visited 371 cells.

In this study, we developed a DP-based shortest traveling length of path planning
algorithm, as shown in Algorithm 1.

Figure 4. Computing global shortest distance of cell 37 from local neighbors: cells 13, 21, and 29.

In the implementation of our algorithm, we used a priority queue (PQ) to choose the
next cell to consider and find the shortest distance from the cell to the goal. This process
mimics the wave front propagation from the goal position. The cell priority Pdist(C) was
computed as follows:

Pdist(C) = min
Cj∈Dnbr(C)

{
d
(
C, Cj

)
+ Vk+1

(
Cj
)}

(4b)

where d
(
C, Cj

)
represents the Euclidean distance from the center of cell C to the center

of cell, Cj, Cj is the valid available neighbor, Dnbr(C) is the set of all the valid available
neighbor cells of current cell C, and Vk+1

(
Cj
)

is the shortest distance of Cj to the goal
position. In Figure 5, we show the progress of distance propagation. In Figure 5a, we
show the result of the propagation after 44 cells. In Figure 5b, we show the result of the
propagation after 371 cells.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 21

Figure 4. Computing global shortest distance of cell 37 from local neighbors: cells 13, 21, and 29.

In the implementation of our algorithm, we used a priority queue (PQ) to choose the
next cell to consider and find the shortest distance from the cell to the goal. This process
mimics the wave front propagation from the goal position. The cell priority 𝑃ௗ௜௦௧(𝐶) was
computed as follows: 𝑃ௗ௜௦௧(𝐶) = min஼ೕ∈஽೙್ೝ(େ){𝑑൫𝐶, 𝐶௝൯ + 𝑉௞ାଵ൫𝐶௝൯} (4b)

where 𝑑൫𝐶, 𝐶௝൯ represents the Euclidean distance from the center of cell C to the center of
cell, 𝐶௝ , 𝐶௝ is the valid available neighbor, 𝐷௡௕௥(𝐶) is the set of all the valid available
neighbor cells of current cell C, and 𝑉௞ାଵ൫𝐶௝൯ is the shortest distance of 𝐶௝ to the goal po-
sition. In Figure 5, we show the progress of distance propagation. In Figure 5a, we show
the result of the propagation after 44 cells. In Figure 5b, we show the result of the propa-
gation after 371 cells.

(a)

(b)

Figure 5. Progress of shortest distance propagation: (a) visited 44 cells, (b) visited 371 cells.

In this study, we developed a DP-based shortest traveling length of path planning
algorithm, as shown in Algorithm 1.

Figure 5. Progress of shortest distance propagation: (a) visited 44 cells, (b) visited 371 cells.

Electronics 2022, 11, 3628 9 of 21

In this study, we developed a DP-based shortest traveling length of path planning
algorithm, as shown in Algorithm 1.

Algorithm 1. DP-Inspired Shortest Distance Path Planning Algorithm

Step 1. Initialize the environment:
Step 1.1. Partition the whole map into N ×M grid cells;
Step 1.2. Set cell properties for obstacles such as obstacle flag;
Step 1.3. Set the goal cell with zero distance.
Step 2. Process eight neighbors of the goal cell. For each neighbor, do the following operations:
Step 2.1. Calculate the shortest distance from the goal to the center of the cell, set cell properties
such as the shortest distance, optimal moving direction, visit flags;
Step 2.2. Check each of eight neighbors of the current cell, add it to priority queue (PQ) if (not in
PQ) AND (not visited yet) AND (not obstacle).
Step 3. Cell propagation for the whole free workspace:
Step 3.1. Take the top cell in PQ;
Step 3.2. Compute for the cell the shortest distance and optimal moving direction using only the
local information of available, valid neighbor cells using Equations (1) and (3);
Step 3.3. Set cell properties such as the shortest distance, optimal direction, visit flags;
Step 3.4. Check each of eight neighbors of the cell, add it to priority queue (PQ) if (not in PQ)
AND (not visited yet) AND (not obstacle);
Step 3.5. Back to step 3.1 until PQ is empty.
Step 4. Check and mark the cells close to ridge boundary based on local information of
neighbor cells.

3.1.2. Navigation Step: Exact Shortest Distance Calculation for Any Point in the Map

This navigation step is a real-time process in which the robot travels along the optimal
traveling path from any point in the continuous map. The trajectory does not need to go
through grid cell centers. We calculated the optimal direction for any point using only local
information of the neighbor cells. We discuss two cases in detail here.

In the first case, as shown in Figure 6a, the optimal moving directions of the valid
neighbor cells are all pointing towards the same waypoint. We calculated the waypoint
Pwp based on the information of any valid neighbor cell, the center position, and optimal
moving direction of the cell. Then, we calculated the optimal traveling direction Vp and the
shortest traveling distance d(P) from the current point P(x,y) as follows.

Vp = Pwp − P (5)

d(P) = d
(

P, Pwp
)
+ Vk+1

(
Pwp

)
(6)

where Vk+1
(

Pwp
)

is the shortest distance from Pwp to the goal and d
(

P, Pwp
)

is the distance
between points P and Pwp.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 21

Algorithm 1. DP-Inspired Shortest Distance Path Planning Algorithm
Step 1. Initialize the environment:

Step 1.1. Partition the whole map into N × M grid cells;
Step 1.2. Set cell properties for obstacles such as obstacle flag;
Step 1.3. Set the goal cell with zero distance.

Step 2. Process eight neighbors of the goal cell. For each neighbor, do the following oper-
ations:

Step 2.1. Calculate the shortest distance from the goal to the center of the cell, set
cell properties such as the shortest distance, optimal moving direction, visit flags;
Step 2.2. Check each of eight neighbors of the current cell, add it to priority queue
(PQ) if (not in PQ) AND (not visited yet) AND (not obstacle).

Step 3. Cell propagation for the whole free workspace:
Step 3.1. Take the top cell in PQ;
Step 3.2. Compute for the cell the shortest distance and optimal moving direction
using only the local information of available, valid neighbor cells using Equations
(1) and (3);
Step 3.3. Set cell properties such as the shortest distance, optimal direction, visit
flags;
Step 3.4. Check each of eight neighbors of the cell, add it to priority queue (PQ) if
(not in PQ) AND (not visited yet) AND (not obstacle);
Step 3.5. Back to step 3.1 until PQ is empty.

Step 4. Check and mark the cells close to ridge boundary based on local information of
neighbor cells.

3.1.2. Navigation Step: Exact Shortest Distance Calculation for Any Point in the Map
This navigation step is a real-time process in which the robot travels along the opti-

mal traveling path from any point in the continuous map. The trajectory does not need to
go through grid cell centers. We calculated the optimal direction for any point using only
local information of the neighbor cells. We discuss two cases in detail here.

In the first case, as shown in Figure 6a, the optimal moving directions of the valid
neighbor cells are all pointing towards the same waypoint. We calculated the waypoint
Pwp based on the information of any valid neighbor cell, the center position, and optimal
moving direction of the cell. Then, we calculated the optimal traveling direction 𝑉௣ and
the shortest traveling distance 𝑑(𝑃) from the current point P(x,y) as follows. 𝑉௣ = 𝑃௪௣ − 𝑃 (5)𝑑(𝑃) = 𝑑൫𝑃, 𝑃௪௣൯ + 𝑉𝑘+1൫𝑃௪௣൯ (6)

where 𝑉௞ାଵ൫𝑃௪௣൯ is the shortest distance from 𝑃௪௣ to the goal and 𝑑൫𝑃, 𝑃௪௣൯ is the dis-
tance between points P and 𝑃௪௣.

(a)

Figure 6. Cont.

Electronics 2022, 11, 3628 10 of 21Electronics 2022, 11, x FOR PEER REVIEW 10 of 21

(b)

Figure 6. Calculation of Exact Shortest Distance from Any Point in the Map. (a) Case I, (b) Case II.

In Case II, we considered the robot position P, which is close to the ridge boundary
as shown in Figure 6b, where there are several waypoints in the neighborhood. Some po-
tential, optimal directions guide the waypoint on the left while others guide the waypoint
on the right. Similar to Case I, we first calculated the waypoint set 𝐷௪௣(𝑃) from all valid
neighbors. Next, we minimized the distance from the point to the goal in order to obtain
the best waypoint as follows. 𝑑(𝑃) = min௉ೢ ೛∈𝐷𝑤𝑝(𝑃){𝑑൫𝑃, 𝑃௪௣൯ + 𝑉௞ାଵ൫𝑃௪௣൯} (7)

Then, we calculated the shortest distance 𝑑(𝑃) from the point P to the goal using the
best waypoint 𝑃௪௣௠ and we also computed the corresponding optimal moving direction.

In this navigation step, for any arbitrary position in the environment, there are up to
9 valid cells in the neighborhood, including the cell containing the current point plus 8
neighbor cells. However, if the cell is not in the free space, some neighbor cell properties
may not be available.

3.2. Two-Stage DRL
Although DRL has the potential to achieve superhuman performance in theory, in

practice, it is very challenging to efficiently learn the parameters of the optimal continuous
action policy, i.e., the continuous actor network for specific applications using DRL. With-
out an adequate initialization, DRL often converges too slowly or it may not even con-
verge at all. In this paper, we propose a novel two-stage DRL algorithm based on the
modified DDPG algorithm to efficiently learn the optimal policy for the mobile robot nav-
igation. At the first stage, we employed the DP-based technique to generate many global
optimal trajectories or experiences in the workspace. Based on these optimal trajectories,
ELM was then used to calculate the favorable initial parameter values of the actor and
critic networks (DNN) due to its non-iterative high computation speed and high-quality
initial optimal training data. In the second stage, once the favorable initial values of the
parameters are in the vicinity of the global optimum, DRL was used to fine-tune and en-
sure the high accuracy. More specifically, we employed both local experience data and
global optimal experiences to guide the learning process to make the learning process
converge to the optimal solution while avoiding the collision with obstacles using more
local experiences in complicated regions, such as the regions close to obstacles and ridges.
In the free workspace far away from obstacles or ridge regions, the optimal policy is rela-
tively smoother and requires the smaller amount of training samples. By using this two-
stage DRL method, we can significantly accelerate the learning process, reduce the prob-
ability of the robot getting trapped into a local minimum, and achieve the high-quality
navigation policy.

3.2.1. Initial and Online Data Collection
In this study, the training data were partially collected prior to DRL training and

partially during the training process. Before training, (I) the DP-based navigation ap-
proach was employed to generate multiple optimal trajectories by specifying random start
positions and (II) for each grid cell, we produced experience data with optimal moving
directions, obtained as described in Section 3.1. Experience data for the critic Q(s,a) were
then generated as follows. In the initial data collection, given a position or state s, there
are two methods to produce the experience for Q(s,a): (a) using the corresponding optimal

Figure 6. Calculation of Exact Shortest Distance from Any Point in the Map. (a) Case I, (b) Case II.

In Case II, we considered the robot position P, which is close to the ridge boundary as
shown in Figure 6b, where there are several waypoints in the neighborhood. Some potential,
optimal directions guide the waypoint on the left while others guide the waypoint on the
right. Similar to Case I, we first calculated the waypoint set Dwp(P) from all valid neighbors.
Next, we minimized the distance from the point to the goal in order to obtain the best
waypoint as follows.

d(P) = min
Pwp∈Dwp(P)

{
d
(

P, Pwp
)
+ Vk+1

(
Pwp

)}
(7)

Then, we calculated the shortest distance d(P) from the point P to the goal using the
best waypoint Pwpm and we also computed the corresponding optimal moving direction.

In this navigation step, for any arbitrary position in the environment, there are up to
9 valid cells in the neighborhood, including the cell containing the current point plus 8
neighbor cells. However, if the cell is not in the free space, some neighbor cell properties
may not be available.

3.2. Two-Stage DRL

Although DRL has the potential to achieve superhuman performance in theory, in
practice, it is very challenging to efficiently learn the parameters of the optimal continuous
action policy, i.e., the continuous actor network for specific applications using DRL. Without
an adequate initialization, DRL often converges too slowly or it may not even converge
at all. In this paper, we propose a novel two-stage DRL algorithm based on the modified
DDPG algorithm to efficiently learn the optimal policy for the mobile robot navigation.
At the first stage, we employed the DP-based technique to generate many global optimal
trajectories or experiences in the workspace. Based on these optimal trajectories, ELM was
then used to calculate the favorable initial parameter values of the actor and critic networks
(DNN) due to its non-iterative high computation speed and high-quality initial optimal
training data. In the second stage, once the favorable initial values of the parameters are in
the vicinity of the global optimum, DRL was used to fine-tune and ensure the high accuracy.
More specifically, we employed both local experience data and global optimal experiences
to guide the learning process to make the learning process converge to the optimal solution
while avoiding the collision with obstacles using more local experiences in complicated
regions, such as the regions close to obstacles and ridges. In the free workspace far away
from obstacles or ridge regions, the optimal policy is relatively smoother and requires
the smaller amount of training samples. By using this two-stage DRL method, we can
significantly accelerate the learning process, reduce the probability of the robot getting
trapped into a local minimum, and achieve the high-quality navigation policy.

3.2.1. Initial and Online Data Collection

In this study, the training data were partially collected prior to DRL training and
partially during the training process. Before training, (I) the DP-based navigation approach
was employed to generate multiple optimal trajectories by specifying random start positions
and (II) for each grid cell, we produced experience data with optimal moving directions,
obtained as described in Section 3.1. Experience data for the critic Q(s,a) were then generated
as follows. In the initial data collection, given a position or state s, there are two methods to
produce the experience for Q(s,a): (a) using the corresponding optimal moving direction a
to advance one step to obtain the next state st + 1 and compute the optimal Q(s,a) = −d(s,st +

1) + V*(st + 1) or (b) randomly generate a moving direction and advance one step to obtain

Electronics 2022, 11, 3628 11 of 21

the next state st + 1 and compute Q(s,a) = −d(s,st + 1) + V*(st + 1), where V*(st + 1) is the
negative shortest distance from state st + 1 to the goal. These trajectories were sampled to
obtain initial training data. During training, further samples were collected and used in the
later training process as the robot moves around in the environment and moves towards to
the goal.

The data collection around the obstacles is particularly challenging as the robot (1) can-
not collide with the obstacles and (2) needs to follow the optimal path, which often requires
the robot to move closely around the obstacles. In order to avoid collision with obstacles,
more samples were collected from the regions close to obstacles. Some samples are gen-
erated by advancing one step along the optimal moving directions while other samples
are generated by advancing one step along random moving directions without collision
with obstacles.

3.2.2. Using ELM for Near-Optimal Initialization

ELM learning was employed to rapidly initialize the actor and critic networks in deep
reinforcement learning due to its short learning computation time and high-quality solution.
Due to the fast computation, we can run ELM multiple times and select the best solution
among multiple runs as the initial values of the DRL network parameters. ELM is able to
achieve the global optimal solution for the quadratic programming problem for the given
weights of input-to-hidden layers if the networks is with one hidden layer. Therefore, ELM
initializes the parameters of the networks to a near-optimal solution when the training data
are produced along the optimal moving directions generated in Section 3.1. By using ELM
and global optimal initial training data, we also significantly reduced the probability of
getting trapped in a local minimum.

Given a set of N distinct training samples {(xi, ti)| xi ∈ Rd, ti ∈ Rm, i = 1, 2, . . . , N}
where xi is the training input data vector, ti represents the target of each sample, and L
denotes the number of hidden nodes, one single hidden layer neural network with L hidden
neurons can be written as [39]:

yi =
L

∑
j=1

β jg
(
wjxi + bj

)
=

L

∑
j=1

β jhj(xi) = ti + εi, i = 1, 2, . . . , N (8)

where g is the activation function, wj and bj are random weights and biases, and ε is noise
or error.

The matrix form of ELM is presented here:

min
β
‖Hβ− T‖2 (9)

β =

βT
1

. . .
βT

L

 =

β11 · · · β1m
...

. . .
...

βL1 · · · βLm



T =

 tT
1

. . .
tT

N

 =

 t11 · · · t1m
...

. . .
...

tN1 · · · tNm



H =

 h(x1)
. . .

h(xN)

 =

 h1(x1) · · · hL(x1)
...

. . .
...

h1(xN) · · · hL(xN)

 (10)

where H is the hidden layer output matrix and T is the training data target matrix. The
above quadratic optimization problem can be solved in a closed form: β = H+T, H+ is the
Moore–Penrose generalized inverse of matrix H. Therefore, ELM is a non-iterative learning
algorithm and is extremely fast.

Electronics 2022, 11, 3628 12 of 21

During the ELM training phase, only the output weights β are adjusted according to
the algorithm. The ELM training algorithm can be summarized in Algorithm 2.

Algorithm 2. Fast ELM Learning Algorithm

Step 1. Randomly assign the hidden node parameters, i.e., the input weights wj and biases bj for
additional hidden nodes j = 1, 2, . . . , L in Equation (8).
Step 2. Calculate the hidden layer output matrix H using Equation (10).
Step 3. Compute the output weight vector β as follows:

β = H+T (11)

where H+ is the Moore–Penrose generalized inverse of matrix H.

Note that this algorithm is used in Algorithm 3 to initialize the actor and critic neural
networks, where the parameters θQ or θµ each includes β, w1, w2, . . . , wL, b1, b2, . . . , bL.

3.2.3. Actor and Critic Neural Networks in DRL

The actor network and critic network consist of three layers each, using the sigmoid ac-
tivation function in the hidden layer. In the actor network, the input is the two-dimensional
state vector, i.e., the position s = (x,y) in the workspace, and the output is a two-dimensional
action vector, i.e., the moving direction a = (vx,vy). Meanwhile, for the critic network, the
input is a four-dimensional vector (s,a) = (x,y,vx,vy) and the output is the negative distance
Q(s,a) from the current state s to the goal, taking the current action a. Both the actor and
critic networks can be efficiently initialized using the rapid ELM algorithm.

3.2.4. Modified DDPG (MDDPG) for Fine-Tuning DRL Actor and Critic Networks

In this section, we modify the deep deterministic policy gradient method (DDPG)
for planning the optimal path for the robot. The robot is assumed to interact with the
environment E in discrete timesteps. At timestep t, the robot accomplishes three things:
it takes an action at, moves one step from the state st, and receives a reward rt. Both the
action and state spaces are continuous in this section.

The action-value function depicts the expected return in state st after taking an action
at. We detail the Bellman equation as follows:

Qµ(st, at) = Ert ,st+1∼E [r(st, at) + γQµ(st+1, µ(ss+1))] (12)

The loss function is defined as:

L
(

θQ
)
= Es

t∼ρβ , at∼β,rt∼E

[(
Q
(

θQ
)
− yt

)2
]

(13)

where the reward signal r(st, at) is the negative travel distance for each time step and
yt = r(st, at) + γQ(st+1, µ(ss+1)

∣∣θQ) .
The critic Q(s,a) is learned using the Bellman equation. The actor is calculated by

following the chain rule to the expected return from the derivative of J with respect to the
actor parameters:

∇θµ J ≈ Es
t∼ρβ ,

[∇θµ Q(s, a
∣∣∣θQ)

∣∣∣
s=st , a=µ(st |θµ)

]= Es
t∼ρβ ,

[∇aQ(s, a
∣∣∣θQ)

∣∣∣s=st , a=µ(st) ∇θµ µ(s
∣∣∣θµ)

∣∣∣
s=st

] (14)

3.2.5. Two-Stage DRL Algorithm

Next, the DDPG algorithm (MDDPG) is modified to include DP-based data collection
before and during the training time. ELM is employed to initialize the parameters of the
actor and critic networks as well.

Electronics 2022, 11, 3628 13 of 21

Algorithm 3. Two-Stage DRL Algorithm

Step 1. Prior to MDDPG training, DP-based data collection is performed to obtain the initial
optimal actor data and optimal critic data.
Step 2. Randomly generate initial weights of θQ and θµ of actor and critic networks, respectively.
Note that the parameters θQ and θµ include β, w1, w2, . . . , wL, , b, b2, . . . , bL in Algorithm 2.
Step 3. Based on initial training data, ELM is employed to rapidly compute hidden-to-output
weights βQ and βµ for the actor network and critic network, respectively. We then replace the
corresponding parts with βQ and βµ in the above randomly generated initial weights θQ and θµ.
Step 4. Initialization for MDDPG training:
Step 4.1. Initialize critic network Q

(
θQ) and actor network µ(θµ)) with weights θQ and θµ,

respectively;
Step 4.2. Initialize target network Q′ and µ′ with weights θQ′ = θQ, θµ′ = θµ;
Step 4.3. Initialize replay buffer R with N0 collection steps with DP-based optimal experiences;
Step 4.4. Receive observation of start state s1.
Step 5. Using MDDPG to fine-tune actor and critic neural networks
Step 5.1. Collect more training data for action exploration and stored in R;
Step 5.2. Select action at = µ(θµ) + Nt according to the current policy and exploration noise Nt;
Step 5.3. Execute action at and observe reward rt and new state st + 1;
Step 5.4. Store transition (st, at, rt, st + 1) in R;
Step 5.5. Sample a random mini-batch of N transitions (st, at, rt, st + 1) from R;
Step 5.6. Compute.

yi = ri + γQ′
(

si+1, µ′
(

θµ′
)
|θQ′) (15)

Step 5.7. Update critic by minimizing the loss:

L =
1
N

N

∑
i=1

(yi −Q(si, ai

∣∣∣θQ))
2

(16)

Step 5.8. Update the actor policy using the sampled policy gradient:

∇θµ J ≈ 1
N ∑

i
∇aQ

(
θQ
)
|s=si ,a=µ(si)µ(s|θµ)|si (17)

Step 5.9. Update the target networks:

θQ′ = τθQ + (1− τ) θQ′ (18)

θµ′ = τθµ + (1− τ) θµ′ (19)

Step 5.10. Repeat Step 5.1 until reaching the maximum number of training or stop criteria.

4. Experimental Results
4.1. Environment

To evaluate the effectiveness of our method, we used our method in typical motion
planning scenarios with multiple obstacles. The vehicle would be able to travel from any
beginning position in the workspace and reach the goal position without colliding with any
obstacles. One typical scenario is shown in Figure 7. The rectangle obstacles in the figure
depict the barriers. The beginning position of the vehicle and the goal position are marked
out in the figure.

Electronics 2022, 11, 3628 14 of 21
Electronics 2022, 11, x FOR PEER REVIEW 14 of 21

Figure 7. Robot working environment.

4.2. Vector Fields and Shortest Travelling Distance of the Optimal Path Map
To demonstrate the efficacy of the proposed method, we carried out the experiments

for two typical scenarios with multiple obstacles. In Figure 8, we show the calculation
order for the cell distance propagation. Every number before each arrow shows the order
by which the cell is travelled. In Figure 9, we show the shortest travelling distance (i.e.,
the number before each arrow) from the goal position to each cell. In these two figures,
every arrow represents the optimal moving direction for the center of the cell to the goal.
The goal position is represented by a triangle with zero distance. Obstacles are repre-
sented by rectangular shapes. For any point in the free workspace, based only on the
shortest distances and optimal moving directions of local neighbor cells as shown in Fig-
ure 9, we can efficiently calculate the corresponding optimal moving direction (i.e., action)
and the shortest distance from the point to the goal position in order to navigate the robot
to advance along the optimal path to the goal.

Figure 8. The computation order (each number before arrow) for the cell propagation.

Figure 7. Robot working environment.

4.2. Vector Fields and Shortest Travelling Distance of the Optimal Path Map

To demonstrate the efficacy of the proposed method, we carried out the experiments
for two typical scenarios with multiple obstacles. In Figure 8, we show the calculation
order for the cell distance propagation. Every number before each arrow shows the order
by which the cell is travelled. In Figure 9, we show the shortest travelling distance (i.e.,
the number before each arrow) from the goal position to each cell. In these two figures,
every arrow represents the optimal moving direction for the center of the cell to the goal.
The goal position is represented by a triangle with zero distance. Obstacles are represented
by rectangular shapes. For any point in the free workspace, based only on the shortest
distances and optimal moving directions of local neighbor cells as shown in Figure 9,
we can efficiently calculate the corresponding optimal moving direction (i.e., action) and
the shortest distance from the point to the goal position in order to navigate the robot to
advance along the optimal path to the goal.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 21

Figure 7. Robot working environment.

4.2. Vector Fields and Shortest Travelling Distance of the Optimal Path Map
To demonstrate the efficacy of the proposed method, we carried out the experiments

for two typical scenarios with multiple obstacles. In Figure 8, we show the calculation
order for the cell distance propagation. Every number before each arrow shows the order
by which the cell is travelled. In Figure 9, we show the shortest travelling distance (i.e.,
the number before each arrow) from the goal position to each cell. In these two figures,
every arrow represents the optimal moving direction for the center of the cell to the goal.
The goal position is represented by a triangle with zero distance. Obstacles are repre-
sented by rectangular shapes. For any point in the free workspace, based only on the
shortest distances and optimal moving directions of local neighbor cells as shown in Fig-
ure 9, we can efficiently calculate the corresponding optimal moving direction (i.e., action)
and the shortest distance from the point to the goal position in order to navigate the robot
to advance along the optimal path to the goal.

Figure 8. The computation order (each number before arrow) for the cell propagation. Figure 8. The computation order (each number before arrow) for the cell propagation.

Electronics 2022, 11, 3628 15 of 21Electronics 2022, 11, x FOR PEER REVIEW 15 of 21

Figure 9. Shortest distance (the number before each arrow) and optimal moving vector (each arrow)
fields of the map (x, y axes: indices of cells).

In Figure 10, we consider an environment with multiple obstacles with different
shapes. We show the visitation order and the optimal moving vector fields of the entire
environment.

Figure 10. The visitation order and optimal moving vector fields of the map.

The Ridge Boundary
In Figure 11, we focus on the ridge boundary that separates two sets of moving di-

rections. The starting points on the left of the ridge boundary take the paths to the far left
and the starting points on the right of the ridge boundary take the paths to the far right.
As a result, these starting points travel through different waypoints.

Figure 11. Ridge boundary in the middle of this figure to separate cells into left and right parts with
different moving directions.

Figure 9. Shortest distance (the number before each arrow) and optimal moving vector (each arrow)
fields of the map (x, y axes: indices of cells).

In Figure 10, we consider an environment with multiple obstacles with different
shapes. We show the visitation order and the optimal moving vector fields of the entire
environment.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 21

Figure 9. Shortest distance (the number before each arrow) and optimal moving vector (each arrow)
fields of the map (x, y axes: indices of cells).

In Figure 10, we consider an environment with multiple obstacles with different
shapes. We show the visitation order and the optimal moving vector fields of the entire
environment.

Figure 10. The visitation order and optimal moving vector fields of the map.

The Ridge Boundary
In Figure 11, we focus on the ridge boundary that separates two sets of moving di-

rections. The starting points on the left of the ridge boundary take the paths to the far left
and the starting points on the right of the ridge boundary take the paths to the far right.
As a result, these starting points travel through different waypoints.

Figure 11. Ridge boundary in the middle of this figure to separate cells into left and right parts with
different moving directions.

Figure 10. The visitation order and optimal moving vector fields of the map.

The Ridge Boundary

In Figure 11, we focus on the ridge boundary that separates two sets of moving
directions. The starting points on the left of the ridge boundary take the paths to the far left
and the starting points on the right of the ridge boundary take the paths to the far right. As
a result, these starting points travel through different waypoints.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 21

Figure 9. Shortest distance (the number before each arrow) and optimal moving vector (each arrow)
fields of the map (x, y axes: indices of cells).

In Figure 10, we consider an environment with multiple obstacles with different
shapes. We show the visitation order and the optimal moving vector fields of the entire
environment.

Figure 10. The visitation order and optimal moving vector fields of the map.

The Ridge Boundary
In Figure 11, we focus on the ridge boundary that separates two sets of moving di-

rections. The starting points on the left of the ridge boundary take the paths to the far left
and the starting points on the right of the ridge boundary take the paths to the far right.
As a result, these starting points travel through different waypoints.

Figure 11. Ridge boundary in the middle of this figure to separate cells into left and right parts with
different moving directions.
Figure 11. Ridge boundary in the middle of this figure to separate cells into left and right parts with
different moving directions.

Electronics 2022, 11, 3628 16 of 21

4.3. Sample Optimal Trajectories for Optimal Data Collection

By using the navigation algorithm described in Section 3.1.2, we randomly se-
lected multiple starting points and computed their optimal trajectories, as shown in
Figures 12 and 13. From any beginning point, the vehicle can move along the shortest
traveling path all the time. These optimal trajectories can be sampled and fed into the
two-stage DRL for training.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 21

4.3. Sample Optimal Trajectories for Optimal Data Collection
By using the navigation algorithm described in Section 3.1.2, we randomly selected

multiple starting points and computed their optimal trajectories, as shown in Figures 12
and 13. From any beginning point, the vehicle can move along the shortest traveling path
all the time. These optimal trajectories can be sampled and fed into the two-stage DRL for
training.

Figure 12. Typical sample optimal trajectories for data collection.

Figure 13. Sample trajectories for data collection in another scenario.

4.4. Sample Optimal Trajectories Generated by the Two-Stage DRL Algorithm
Once we collected the initial data of optimal trajectories using the DP-based naviga-

tion technique, we used our two-stage DRL to train the actor and critic neural networks.
Instead of using random data for trial-and error-iterations, we used these high-quality
data for initial training with ELM.

4.4.1. After First Stage: ELM Learning
The sample trajectories after ELM learning are shown in Figure 14. ELM can provide

a near-optimal starting point for the neural networks in a short time. However, some path
segments near obstacles may not be accurate. This problem with ELM learning is shown

Figure 12. Typical sample optimal trajectories for data collection.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 21

4.3. Sample Optimal Trajectories for Optimal Data Collection
By using the navigation algorithm described in Section 3.1.2, we randomly selected

multiple starting points and computed their optimal trajectories, as shown in Figures 12
and 13. From any beginning point, the vehicle can move along the shortest traveling path
all the time. These optimal trajectories can be sampled and fed into the two-stage DRL for
training.

Figure 12. Typical sample optimal trajectories for data collection.

Figure 13. Sample trajectories for data collection in another scenario.

4.4. Sample Optimal Trajectories Generated by the Two-Stage DRL Algorithm
Once we collected the initial data of optimal trajectories using the DP-based naviga-

tion technique, we used our two-stage DRL to train the actor and critic neural networks.
Instead of using random data for trial-and error-iterations, we used these high-quality
data for initial training with ELM.

4.4.1. After First Stage: ELM Learning
The sample trajectories after ELM learning are shown in Figure 14. ELM can provide

a near-optimal starting point for the neural networks in a short time. However, some path
segments near obstacles may not be accurate. This problem with ELM learning is shown

Figure 13. Sample trajectories for data collection in another scenario.

4.4. Sample Optimal Trajectories Generated by the Two-Stage DRL Algorithm

Once we collected the initial data of optimal trajectories using the DP-based navigation
technique, we used our two-stage DRL to train the actor and critic neural networks. Instead
of using random data for trial-and error-iterations, we used these high-quality data for
initial training with ELM.

4.4.1. After First Stage: ELM Learning

The sample trajectories after ELM learning are shown in Figure 14. ELM can provide a
near-optimal starting point for the neural networks in a short time. However, some path
segments near obstacles may not be accurate. This problem with ELM learning is shown in
Figure 16. Thus, in the second stage, we can use the modified DDPG algorithm to further
improve the training accuracy.

Electronics 2022, 11, 3628 17 of 21

Electronics 2022, 11, x FOR PEER REVIEW 17 of 21

in Figure 16. Thus, in the second stage, we can use the modified DDPG algorithm to fur-
ther improve the training accuracy.

Figure 14. Sample trajectories after ELM initialization.

4.4.2. After Second Stage: DRL
The sample trajectories for one scenario after DLR learning are shown in Figure 15.

In this stage, DRL focuses on the more challenging parts of the paths and regions. In Fig-
ure 15, we show that with DRL, we can improve the accuracy of the paths.

Figure 15. Sample trajectories after DRL fine-tuning.

In the regions close to obstacles, it is much more challenging to train the actor and
critic networks. For example, regular experience data collection can lead to collision with
the obstacle, which is shown by the green trajectory in Figure 16. After we added more
experience data to the neighbor of the obstacle, the learned policy network was able to
produce an optimal trajectory (blue line in Figure 16) while avoiding the collision with the
obstacle.

Figure 14. Sample trajectories after ELM initialization.

4.4.2. After Second Stage: DRL

The sample trajectories for one scenario after DLR learning are shown in Figure 15. In
this stage, DRL focuses on the more challenging parts of the paths and regions. In Figure 15,
we show that with DRL, we can improve the accuracy of the paths.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 21

in Figure 16. Thus, in the second stage, we can use the modified DDPG algorithm to fur-
ther improve the training accuracy.

Figure 14. Sample trajectories after ELM initialization.

4.4.2. After Second Stage: DRL
The sample trajectories for one scenario after DLR learning are shown in Figure 15.

In this stage, DRL focuses on the more challenging parts of the paths and regions. In Fig-
ure 15, we show that with DRL, we can improve the accuracy of the paths.

Figure 15. Sample trajectories after DRL fine-tuning.

In the regions close to obstacles, it is much more challenging to train the actor and
critic networks. For example, regular experience data collection can lead to collision with
the obstacle, which is shown by the green trajectory in Figure 16. After we added more
experience data to the neighbor of the obstacle, the learned policy network was able to
produce an optimal trajectory (blue line in Figure 16) while avoiding the collision with the
obstacle.

Figure 15. Sample trajectories after DRL fine-tuning.

In the regions close to obstacles, it is much more challenging to train the actor and
critic networks. For example, regular experience data collection can lead to collision with
the obstacle, which is shown by the green trajectory in Figure 16. After we added more
experience data to the neighbor of the obstacle, the learned policy network was able to
produce an optimal trajectory (blue line in Figure 16) while avoiding the collision with
the obstacle.

In order to illustrate the advantages of our proposed DRL method over the original
DDPG algorithm, we conducted the following experiment. In the same scenario as that
depicted in Figure 15, we employed the DDPG algorithm to train the actor and critic neural
networks with the same training experience samples. The only difference in this experiment
using the original DDPG algorithm is that we employed random weights to initialize the
actor and critic networks instead of using the weights from ELM learning results. We
repeated the experiment for three times and they all failed to find the feasible paths.
In Figure 17, we show a typical trajectory resulting from the original DDPG algorithm.

Electronics 2022, 11, 3628 18 of 21

The robot starts from a position (−9.0, 9.0) and collides with the obstacles, even after
250,000 training iterations. The main reason for this failure is that, compared to supervised
learning, deep reinforcement learning is much harder to converge, less efficient in learning,
and easier to get stuck in local minima. These implementation issues associated with the
conventional DRL algorithm result from many factors including weak guidance signals,
obstacles, and long episodes in the complex environment. In contrast, our fast ELM learning
with DP-based optimal data collection is able to initialize the corresponding weights to a
near-optimal solution, which significantly improve the learning effectiveness and efficiency.
In Figure 18, we show the trajectory of using our proposed method for the same scenario
using only 70,000 training iterations. The robot can follow the optimal path, avoid obstacles,
and reach the target successfully. This experiment demonstrated that our proposed method
is much more efficient than the original DDPG algorithm.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 21

Figure 16. Collision with obstacles (green), collision avoidance by sampling more experiences close
to obstacles (blue).

In order to illustrate the advantages of our proposed DRL method over the original
DDPG algorithm, we conducted the following experiment. In the same scenario as that
depicted in Figure 15, we employed the DDPG algorithm to train the actor and critic neu-
ral networks with the same training experience samples. The only difference in this exper-
iment using the original DDPG algorithm is that we employed random weights to initial-
ize the actor and critic networks instead of using the weights from ELM learning results.
We repeated the experiment for three times and they all failed to find the feasible paths.
In Figure 17, we show a typical trajectory resulting from the original DDPG algorithm.
The robot starts from a position (−9.0, 9.0) and collides with the obstacles, even after
250,000 training iterations. The main reason for this failure is that, compared to supervised
learning, deep reinforcement learning is much harder to converge, less efficient in learn-
ing, and easier to get stuck in local minima. These implementation issues associated with
the conventional DRL algorithm result from many factors including weak guidance sig-
nals, obstacles, and long episodes in the complex environment. In contrast, our fast ELM
learning with DP-based optimal data collection is able to initialize the corresponding
weights to a near-optimal solution, which significantly improve the learning effectiveness
and efficiency. In Figure 18, we show the trajectory of using our proposed method for the
same scenario using only 70,000 training iterations. The robot can follow the optimal path,
avoid obstacles, and reach the target successfully. This experiment demonstrated that our
proposed method is much more efficient than the original DDPG algorithm.

Figure 16. Collision with obstacles (green), collision avoidance by sampling more experiences close
to obstacles (blue).

Electronics 2022, 11, x FOR PEER REVIEW 18 of 21

Figure 16. Collision with obstacles (green), collision avoidance by sampling more experiences close
to obstacles (blue).

In order to illustrate the advantages of our proposed DRL method over the original
DDPG algorithm, we conducted the following experiment. In the same scenario as that
depicted in Figure 15, we employed the DDPG algorithm to train the actor and critic neu-
ral networks with the same training experience samples. The only difference in this exper-
iment using the original DDPG algorithm is that we employed random weights to initial-
ize the actor and critic networks instead of using the weights from ELM learning results.
We repeated the experiment for three times and they all failed to find the feasible paths.
In Figure 17, we show a typical trajectory resulting from the original DDPG algorithm.
The robot starts from a position (−9.0, 9.0) and collides with the obstacles, even after
250,000 training iterations. The main reason for this failure is that, compared to supervised
learning, deep reinforcement learning is much harder to converge, less efficient in learn-
ing, and easier to get stuck in local minima. These implementation issues associated with
the conventional DRL algorithm result from many factors including weak guidance sig-
nals, obstacles, and long episodes in the complex environment. In contrast, our fast ELM
learning with DP-based optimal data collection is able to initialize the corresponding
weights to a near-optimal solution, which significantly improve the learning effectiveness
and efficiency. In Figure 18, we show the trajectory of using our proposed method for the
same scenario using only 70,000 training iterations. The robot can follow the optimal path,
avoid obstacles, and reach the target successfully. This experiment demonstrated that our
proposed method is much more efficient than the original DDPG algorithm.

Figure 17. Collision with obstacles (red trajectory) with the conventional DDPG learning algorithm,
even with the same training experience samples.

Electronics 2022, 11, 3628 19 of 21

Electronics 2022, 11, x FOR PEER REVIEW 19 of 21

Figure 17. Collision with obstacles (red trajectory) with the conventional DDPG learning algorithm,
even with the same training experience samples.

Figure 18. Trajectory produced by our proposed DRL method.

5. Conclusions and Future Work
In this paper, we presented a novel optimal path planning algorithm based on DRL

with application to mobile robots. In order to improve training data quality and generate
optimal training data for DRL, we mapped the DP method to typical optimal path plan-
ning problems and established an efficient DP-based method to find the exact, analytical,
optimal solution. In order to accelerate the reinforcement learning process and improve
the learning performance, we also created a two-stage DRL method, in which ELM was
employed to initialize the weight parameters of the actor and critic networks. This algo-
rithm is able to move the robot along an optimal path from any starting point in the con-
tinuous workspace to a specified goal location. For our next steps, we plan to conduct a
comprehensive study to compare our proposed method with other existing techniques.
We also plan on extending the capability of our algorithm to handle 3D environments and
environments with obstacles of arbitrary shapes, moving obstacles, and multiple agents.

Author Contributions: Conceptualization, J.R. and X.H.; methodology, X.H., J.R. and R.N.H.; soft-
ware, X.H. and R.N.H.; validation, J.R., X.H. and R.N.H.; formal analysis, X.H.; investigation, J.R.
and X.H.; resources, X.H.; data curation, X.H.; writing—original draft preparation, J.R. and R.N.H.;
writing—review and editing, X.H. and R.N.H.; visualization, R.N.H.; supervision, J.R.; project ad-
ministration, J.R.; funding acquisition, J.R. All authors have read and agreed to the published ver-
sion of the manuscript.

Funding: The authors would like to acknowledge the support of the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) [funding reference number 210471].

Data Availability Statement: Public datasets were not used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qie, H.; Shi, D.; Shen, T.; Xu, X.; Li, Y.; Wang, L. Joint Optimization of Multi-UAV Target Assignment and Path Planning Based

on Multi-Agent Reinforcement Learning. IEEE Access 2019, 7, 146264–146272. https://doi.org/10.1109/access.2019.2943253.
2. Wang, C.; Wang, J.; Shen, Y.; Zhang, X. Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep

Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2019, 68, 2124–2136. https://doi.org/10.1109/tvt.2018.2890773.
3. Makantasis, K.; Kontorinaki, M.; Nikolos, I. Deep reinforcement-learning-based driving policy for autonomous road vehicles.

IET Intell. Transp. Syst. 2020, 14, 13–24.

Figure 18. Trajectory produced by our proposed DRL method.

5. Conclusions and Future Work

In this paper, we presented a novel optimal path planning algorithm based on DRL
with application to mobile robots. In order to improve training data quality and generate
optimal training data for DRL, we mapped the DP method to typical optimal path planning
problems and established an efficient DP-based method to find the exact, analytical, optimal
solution. In order to accelerate the reinforcement learning process and improve the learning
performance, we also created a two-stage DRL method, in which ELM was employed to
initialize the weight parameters of the actor and critic networks. This algorithm is able to
move the robot along an optimal path from any starting point in the continuous workspace
to a specified goal location. For our next steps, we plan to conduct a comprehensive
study to compare our proposed method with other existing techniques. We also plan on
extending the capability of our algorithm to handle 3D environments and environments
with obstacles of arbitrary shapes, moving obstacles, and multiple agents.

Author Contributions: Conceptualization, J.R. and X.H.; methodology, X.H., J.R. and R.N.H.; soft-
ware, X.H. and R.N.H.; validation, J.R., X.H. and R.N.H.; formal analysis, X.H.; investigation, J.R.
and X.H.; resources, X.H.; data curation, X.H.; writing—original draft preparation, J.R. and R.N.H.;
writing—review and editing, X.H. and R.N.H.; visualization, R.N.H.; supervision, J.R.; project admin-
istration, J.R.; funding acquisition, J.R. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors would like to acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) [funding reference number 210471].

Data Availability Statement: Public datasets were not used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qie, H.; Shi, D.; Shen, T.; Xu, X.; Li, Y.; Wang, L. Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on

Multi-Agent Reinforcement Learning. IEEE Access 2019, 7, 146264–146272. [CrossRef]
2. Wang, C.; Wang, J.; Shen, Y.; Zhang, X. Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep

Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2019, 68, 2124–2136. [CrossRef]
3. Makantasis, K.; Kontorinaki, M.; Nikolos, I. Deep reinforcement-learning-based driving policy for autonomous road vehicles. IET

Intell. Transp. Syst. 2020, 14, 13–24. [CrossRef]
4. Garg, A.; Chiang, H.-T.L.; Sugaya, S.; Faust, A.; Tapia, L. Comparison of Deep Reinforcement Learning Policies to Formal Method

for Moving Obstacle Avoidance. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Macao, China, 3–8 November 2019; pp. 3534–3541. [CrossRef]

5. Tung, T.X.; Ngo, D. Socially Aware Robot Navigation Using Deep Reinforcement Learning. In Proceedings of the 2018 IEEE
Canadian Conference on Electrical & Computer Engineering, Quebec, QC, Canada, 13–16 May 2018.

http://doi.org/10.1109/ACCESS.2019.2943253
http://doi.org/10.1109/TVT.2018.2890773
http://doi.org/10.1049/iet-its.2019.0249
http://doi.org/10.1109/iros40897.2019.8967945

Electronics 2022, 11, 3628 20 of 21

6. Chen, Y.F.; Liu, M.; Everett, M.; How, J.P. Decentralized non-communicating multi-agent collision avoidance with deep reinforce-
ment learning. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017;
Volume 201, pp. 285–292. [CrossRef]

7. Everett, M.; Chen, Y.F.; How, J.P. Motion Planning among Dynamic, Decision-Making Agents with Deep Reinforcement Learning.
In Proceedings of the 2018 IEEE/RSJ Intelligent Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 3052–3059.

8. Zhu, B.; Bedeer, E.; Nguyen, H.H.; Barton, R.; Henry, J. Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT
Networks by Reinforcement Learning with Sequential Model. IEEE Internet Things J. 2022, 9, 12071–12084. [CrossRef]

9. Wang, N.; Zhang, Y.; Ahn, C.K.; Xu, Q. Autonomous Pilot of Unmanned Surface Vehicles: Bridging Path Planning and Tracking.
IEEE Trans. Veh. Technol. 2021, 71, 2358–2374. [CrossRef]

10. Bayerlein, H.; Theile, M.; Caccamo, M.; Gesbert, D. Multi-UAV Path Planning for Wireless Data Harvesting with Deep Reinforce-
ment Learning. IEEE Open J. Commun. Soc. 2021, 2, 1171–1187. [CrossRef]

11. Bengio, Y.; Lecun, Y.; Hinton, G. Deep learning for AI. Turing Lect. 2021, 64, 58–65. [CrossRef]
12. Souissi, O. Path planning: A 2013 survey. In Proceedings of the 2013 International Conference on Industrial Engineering and

Systems Management, Rabat, Morocco, 28–30 October 2013; pp. 849–856.
13. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
14. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Computer Science Dept. Iowa State University: Ames,

IA, USA, 1998.
15. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res. 1986, 5, 90–98. [CrossRef]
16. Pei, S.-C.; Horng, J.-H. Finding the optimal driving path of a car using the modified constrained distance transformation. IEEE

Trans. Robot. Autom. 1998, 14, 663–670. [CrossRef]
17. Zelinsky, A. Using Path Transforms to Guide the Search for Findpath in 2D. Int. J. Robot. Res. 1994, 13, 315–325. [CrossRef]
18. Willms, A.; Yang, S. An efficient dynamic system for real-time robot-path planning. IEEE Trans. Syst. Man Cybern. Part B Cybern.

2006, 36, 755–766. [CrossRef]
19. Willms, A.R.; Yang, S.X. Real-Time Robot Path Planning via a Distance-Propagating Dynamic System with Obstacle Clearance.

IEEE Trans. Syst. Man Cybern. Part B Cybern. 2008, 38, 884–893. [CrossRef]
20. Chen, M.; Zhu, D. Optimal Time-Consuming Path Planning for Autonomous Underwater Vehicles Based on a Dynamic Neural

Network Model in Ocean Current Environments. IEEE Trans. Veh. Technol. 2020, 69, 14401–14412. [CrossRef]
21. Alexander, J.C.; Maddocks, J.H.; Michalowski, B.A. Shortest distance paths for wheeled mobile robots. IEEE Trans. Robot. Autom.

1998, 14, 657–662. [CrossRef]
22. Liu, S.; Sun, D. Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning. IEEE/ASME Trans.

Mechatron. 2013, 19, 401–411. [CrossRef]
23. Xu, Q.-L.; Yu, T.; Bai, J. The mobile robot path planning with motion constraints based on Bug algorithm. In Proceedings of the

Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 2348–2352. [CrossRef]
24. Lumelsky, V.; Stepanov, A. Dynamic path planning for a mobile automaton with limited information on the environment. IEEE

Trans. Autom. Control 1986, 31, 1058–1063. [CrossRef]
25. Qi, J.; Yang, H.; Sun, H. MOD-RRT*: A Sampling-Based Algorithm for Robot Path Planning in Dynamic Environment. IEEE Trans.

Ind. Electron. 2020, 68, 7244–7251. [CrossRef]
26. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path

Planning in a Port Environment. IEEE Access 2021, 9, 59196–59210. [CrossRef]
27. Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef]
28. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to

Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
29. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep

Neural Networks for Acoustic Modeling in Speech Recognition. IEEE Signal Process. Mag. 2012, 29, 82–97. [CrossRef]
30. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

31. Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE
Trans. Intell. Transp. Syst. 2020, 22, 712–733. [CrossRef]

32. Usama, M.; Qadir, J.; Raza, A.; Arif, H.; Yau, K.L.A.; Elkhatib, Y.; Hussain, A.; Al-Fuqaha, A. Unsupervised Machine Learning for
Networking: Techniques, Applications and Research Challenges. IEEE Access 2019, 7, 65579–65615. [CrossRef]

33. Aradi, S. Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst.
2020, 23, 740–759. [CrossRef]

34. Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.; Kavukcuoglu, K.; de Freitas, N. Sample Efficient Actor-Critic with Experience
Replay. arXiv 2016, arXiv:1611.01224. Available online: https://arxiv.org/abs/1611.01224 (accessed on 6 February 2022).

http://doi.org/10.1109/ICRA.2017.7989037
http://doi.org/10.1109/JIOT.2021.3133278
http://doi.org/10.1109/TVT.2021.3136670
http://doi.org/10.1109/OJCOMS.2021.3081996
http://doi.org/10.1145/3448250
http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.1177/027836498600500106
http://doi.org/10.1109/70.720343
http://doi.org/10.1177/027836499401300403
http://doi.org/10.1109/TSMCB.2005.862724
http://doi.org/10.1109/TSMCB.2008.921002
http://doi.org/10.1109/TVT.2020.3034628
http://doi.org/10.1109/70.720342
http://doi.org/10.1109/TMECH.2013.2241777
http://doi.org/10.1109/cac.2017.8243168
http://doi.org/10.1109/TAC.1986.1104175
http://doi.org/10.1109/TIE.2020.2998740
http://doi.org/10.1109/ACCESS.2021.3070054
http://doi.org/10.1109/TPAMI.2013.50
http://doi.org/10.1162/neco.1989.1.4.541
http://doi.org/10.1109/MSP.2012.2205597
http://doi.org/10.1109/TITS.2019.2962338
http://doi.org/10.1109/ACCESS.2019.2916648
http://doi.org/10.1109/TITS.2020.3024655
https://arxiv.org/abs/1611.01224

Electronics 2022, 11, 3628 21 of 21

35. Ren, H.; Yin, R.; Li, F.; Wang, W.; Huo, M. Research on Q-ELM algorithm in robot path planning. In Proceedings of the 2016
Chinese Control and Decision Conference (CCDC), Yinchuan, China, 8–30 May 2016; pp. 5975–5979. [CrossRef]

36. Wang, J.; Lu, S.; Wang, S.-H.; Zhang, Y.-D. A review on extreme learning machine. Multimed. Tools Appl. 2021, 1–50. [CrossRef]
37. Huang, G.-B. What are Extreme Learning Machines? Filling the Gap Between Frank Rosenblatt’s Dream and John von Neumann’s

Puzzle. Cogn. Comput. 2015, 7, 263–278. [CrossRef]
38. Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans.

Syst. Man Cybern. Part B Cybern. 2012, 42, 513–529. [CrossRef]
39. Zhang, R.; Lan, Y.; Huang, G.-B.; Xu, Z.-B. Universal Approximation of Extreme Learning Machine with Adaptive Growth of

Hidden Nodes. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 365–371. [CrossRef]
40. Yin, C.; Xia, Y.; Yang, R.; Yuan, Z.; Kuang, F.; Li, L. Path Planning Method Based on Multi-Layer ELM Optimized A. In Proceedings

of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021;
pp. 1423–1426. [CrossRef]

41. Yi, C.; Shan, C.; Hui, C.; Yuan, H.S. Motion planning of autonomous mobile robot based on ELANFIS. In Proceedings of the 2021
China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 4607–4612. [CrossRef]

42. Huang, G.-B.; Bai, Z.; Kasun, L.L.C.; Vong, C.M. Local Receptive Fields Based Extreme Learning Machine. IEEE Comput. Intell.
Mag. 2015, 10, 18–29. [CrossRef]

43. Castellani, A.; Cornell, S.; Falaschetti, L.; Turchetti, C. tfelm: A TensorFlow Toolbox for the Investigation of ELMs and MLPs
Performance. In Proceedings of the International Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018;
pp. 3–8.

44. Huang, G.B. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cogn. Comput. 2014,
6, 376–390. [CrossRef]

http://doi.org/10.1109/ccdc.2016.7532066.ura
http://doi.org/10.1007/s11042-021-11007-7
http://doi.org/10.1007/s12559-015-9333-0
http://doi.org/10.1109/TSMCB.2011.2168604
http://doi.org/10.1109/TNNLS.2011.2178124
http://doi.org/10.1109/icct52962.2021.9658036
http://doi.org/10.1109/cac53003.2021.9728320
http://doi.org/10.1109/MCI.2015.2405316
http://doi.org/10.1007/s12559-014-9255-2

	Introduction
	Related Work
	Methodology
	Global Optimal Solution for Discrete Grid Cell Centers Using the DP Method
	DP-Inspired Algorithm for Global Optimal Path Planning for Discrete Grid Cells
	Navigation Step: Exact Shortest Distance Calculation for Any Point in the Map

	Two-Stage DRL
	Initial and Online Data Collection
	Using ELM for Near-Optimal Initialization
	Actor and Critic Neural Networks in DRL
	Modified DDPG (MDDPG) for Fine-Tuning DRL Actor and Critic Networks
	Two-Stage DRL Algorithm

	Experimental Results
	Environment
	Vector Fields and Shortest Travelling Distance of the Optimal Path Map
	Sample Optimal Trajectories for Optimal Data Collection
	Sample Optimal Trajectories Generated by the Two-Stage DRL Algorithm
	After First Stage: ELM Learning
	After Second Stage: DRL

	Conclusions and Future Work
	References

