
Citation: Wu, Y.; Wu, X.; Qiu, S.;

Xiang, W. A Method for High-Value

Driving Demonstration Data

Generation Based on

One-Dimensional Deep

Convolutional Generative

Adversarial Networks. Electronics

2022, 11, 3553. https://doi.org/

10.3390/electronics11213553

Academic Editors: Javier

Alonso Ruiz and Angel Llamazares

Received: 3 October 2022

Accepted: 28 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Method for High-Value Driving Demonstration Data
Generation Based on One-Dimensional Deep Convolutional
Generative Adversarial Networks
Yukun Wu , Xuncheng Wu *, Siyuan Qiu and Wenbin Xiang

School of Mechanical & Automotive Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China
* Correspondence: m010120451@sues.edu.cn

Abstract: As a promising sequential decision-making algorithm, deep reinforcement learning (RL)
has been applied in many fields. However, the related methods often demand a large amount
of time before they can achieve acceptable performance. While learning from demonstration has
greatly improved reinforcement learning efficiency, it poses some challenges. In the past, it has
required collecting demonstration data from controllers (either human or controller). However,
demonstration data are not always available in some sparse reward tasks. Most importantly, there
exist unknown differences between agents and human experts in observing the environment. This
means that not all of the human expert’s demonstration data conform to a Markov decision process
(MDP). In this paper, a method of reinforcement learning from generated data (RLfGD) is presented,
and consists of a generative model and a learning model. The generative model introduces a
method to generate the demonstration data with a one-dimensional deep convolutional generative
adversarial network. The learning model applies the demonstration data to the reinforcement learning
process to greatly improve the effectiveness of training. Two complex traffic scenarios were tested
to evaluate the proposed algorithm. The experimental results demonstrate that RLfGD is capable
of obtaining higher scores more quickly than DDQN in both of two complex traffic scenarios. The
performance of reinforcement learning algorithms can be greatly improved with this approach to
sparse reward problems.

Keywords: deep Q-networks; deep convolutional generative adversarial network; autonomous
vehicle; decision making; experience replay

1. Introduction

Reinforcement learning is one of the most popular artificial intelligence fields, in
which the agent learns a policy through interaction with the environment. The introduc-
tion of fixed Q-targets and experience replay in deep Q-networks (DQN) [1] has greatly
contributed to the development of reinforcement learning. In the past several years, these
techniques have been successful with sequential decision tasks such as robot control [2],
natural language processing (NLP) [3], autonomous vehicle decision-making [4,5], etc.
However, most RL algorithms are still in their infancy and have very limited real-world
applications. One of the greatest challenges for RL is the difficulty in achieving convergence.
Developing a reasonable policy requires a great deal of trial and error in the environment,
and the reward function needs to be well designed. Imitation learning (IL) [6] differs from
reinforcement learning since it does not develop optimal policy through accumulating
rewards. In IL, the agent learns policy from human demonstration. Three main approaches
are available: behavioral cloning [7], inverse reinforcement learning [8], and generative ad-
versarial imitation learning (GAIL) [9]. IL is more effective than RL in sparse reward tasks
thanks to the human demonstration. However, there are some disadvantages associated
with IL. Typically, it requires a large amount of expert demonstration data, and collecting
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expert demonstration data can be expensive. Additionally, human presentation data may
not always follow MDP [10], and the actions taken by experts may not entirely depend on
what they observe at the moment. In addition, imitation learning [11] is also limited by
error accumulation and multi-modal problems.

Combining reinforcement learning and imitation learning is more consistent with the
human learning process, which is shown to help in sparse reward problems. Combining
RL and IL research has been conducted for policy shaping [12], reward shaping [13], and
knowledge transfer with human demonstration [14]. Demonstration data [15], which
prove useful for sparse reward tasks, provide a great bridge between the two. Experience
replay (ER) [16] is one of the key techniques for DQN to reach the human level. Putting
the demonstration data into the RL’s experience replay is a very creative way to combine
RL and IL. This method is named reinforcement learning with expert demonstrations
(RLED) [17,18]. Following this framework, such algorithms are presented. In human
experience replay [19], the agent sample from the replay buffer mixes the agent’s transitions
and demonstration data during training. Replay buffer spike is another algorithm that
uses a demonstration data initial replay buffer. However, both of these do not pre-train
the agent or keep the demonstration data in a replay buffer. Accelerated DQN with
expert trajectories [20] uses a combination of TD and cross-entropy losses in the DQN
learning process, while not pre-training the agent for good initial performance. Deep
Q-learning from the demonstration (DQfD) [21] is an advanced framework of learning
from demonstration. It introduces a supervised loss and an L2 regularization loss [22] to
pre-train the agent and update the target network. Experiments show that DQfD is superior
to double DQN and IL for 27 and 31 of 42 Atari games, respectively. While the algorithm
achieves excellent results, collecting data for the demonstration of some complex problems
is challenging, which limits its application.

Demonstration data consist of many transitions. Not all transitions are useful for
training; training procession prefers benefits from high-reward transitions [23]. Neverthe-
less, high-reward transitions are not always available, especially in some sparse reward
tasks. In addition, the human expert demonstration may not always follow MDP, since
the differences between humans and agents when observing the environment are par-
ticularly evident for complex tasks. In particular, when it comes to autonomous vehicle
decision making, not all human expert demonstrations are available. Human drivers
often possess a wide range of driving experience and do not always make decisions based
on current observations. Considering the difficulty of collecting demonstration data on
sparse reward problems and the different ways of observing the environment between
humans and agents, in this paper, a method of reinforcement learning from generated
data (RLfGD) is presented, which consists of a generative model and a learning model.
The generative model, named one-dimensional deep convolutional generative adversarial
network (1-DGAN), which is built on top of deep convolutional generative adversarial
networks (DCGANs) [24], introduces a method to generate high-value demonstration data.
To generate one-dimensional data, both the generator and the discriminator are built from
one-dimensional convolutional neural networks. In addition, classification networks are
trained to address the inability to generate discrete action information in demonstration
data. The learning model based on DQfD places the high-value demonstration data in
the DQN experience buffer and samples them using a high-value priority replay method,
greatly enhancing the efficiency of the DQN. The proposed method is expected to provide
a large amount of reasonable driving demonstration data to improve the performance of
reinforcement learning algorithms in the autonomous vehicle field.

The paper is structured as follows: The literature review is shown in Section 2. The
model is built in Section 3. The experimental setup and experiments’ results are described
in Section 4, and the conclusion and future works are shown in Section 5.
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2. Literature Review

As demonstration is shown to help in sparse reward problems [25], an increasing
amount of the literature has been concerned with learning from demonstration. Jessica et al.
introduced DPID algorithms [26], which naturally combine RL and demonstration data.
A theoretical analysis of how RL problems can be solved using demonstration data was
provided in this work. In [27], Mueller investigated the integration of high-level abstract
behavioral requirements into learning from demonstration (LfD) for robots. This method
enforces high-level constrains on a part of the robot’s motion plan during training. A major
constrain of this work is that it needs to encode motion planning constraints. Anahita
et al. [28] applied the demonstration data to trajectory learning for robots. However, this
method needs teleoperation to collect the demonstration data and cannot be applied to
autonomous vehicles. Ashvin et al. [29] utilized the demonstration data to overcome agent
exploration in RL. In [30], a model based on inverse reinforcement learning that learns
driving preferences from demonstration data was proposed. Christian et al. [31] used
human data to pre-train the policy network at first and later tuned by RL, and placed third
in the NeurIPS MineRL Competition. In [32], Yichuan et al. developed a novel LfD method
that uses the Bayesian network to extract human knowledge from demonstrations. These
related studies do not address the problem of inconvenient demonstration data collection.

In [33], Mel et al. combined the demonstration data and the deep deterministic policy
gradients (DDPGs) algorithm to propose DDPG with demonstration. Demonstrations
were collected by robots controlled by humans. This method uses the demonstration to
replace elaborately engineered rewards, and outperformed DDPG on real robotics tasks
controlling the movement of the robot arm. However, this work does not pre-train the
agent using the demonstration data, so the agent cannot update with TD updates when
the agent initially interacts with the environment. Sixiang et al. [34] proposed another
DDPG with demonstration algorithm following the DQfD framework. This algorithm uses
the combined loss function to make the agent learn human demonstration policy, and the
experience replay buffer is also populated from various transition data samples. The results
of the experiment show that it improves training efficiency and the potential in master-
ing human preference. Kai et al. [35] also combined DDPG with expert demonstration;
the difference with previous work is that they integrated reward construction with the
training process. Similarly, Lei et al. [36] introduced the demonstration data to the twin
delayed DDPG (TD3) algorithm and achieved success in a challenging 3D UAV navigation
problem. All of these researchers used human expert demonstration and did not address
the difficulties of data collection. Evan et al. [37] developed a method based on SAC and
hindsight experience replay (HER), which provides an order of magnitude of speedup
over RL on simulated robotics tasks. However, this method requires several demonstration
data, which are inefficient to sample under complex tasks. Abhik et al. [38] proposed a
UAV obstacle avoidance method that uses GAN architecture and the DQfD framework.
This work is the one most closely related to us, but it used GAN networks to generate
depth images from RGB images rather than generating demonstration data. Both of these
related works utilized demonstration data to enhance the performance of RL algorithms.
The introduction of human demonstration data makes it possible to limit the exploration
interval of agents to a reasonable range. However, the collection of demonstrations is still
a hindrance in many complex sparse reward problems. Research on how to collection
demonstration data in sparse problems has yet to be developed.

3. Materials and Methods

In this section, a learning model and a generative model are built. The generative
model named 1-DGAN was built on top of the DCGAN framework [39,40]. The learning
model named RLfGD was based on the DQfD framework.
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3.1. Built the Generative Model

GAN [41] consists of two networks: a generator G that generates data similar to real
data and a discriminator D that determines whether data are generated or real. D is trained
to attribute the correct label to training samples. Simultaneously, G is trained to generate
the same data as the real data to be able to cheat the discriminator. G and D constitute
a dynamic game process in which the capabilities of both parties continue to improve
through iteration. The objective function of the GAN model is:

min
G

max
D

V(D, G) = Ex∼pdata (x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

where D is a discriminative network with real data x as input and G is a generative network
with random noise z as input; D(x) indicates the probability that the input x are an actual
sample; and D(G(z)) denotes the probability that the generated data d are a true sample.
The loss function of Formula (6) is decomposed into two parts: discriminative model loss
function and generative model loss function. D is trained by the discriminative model
loss function for correctly assigning the label to the input data (real data: 1, generated
data: 0); G is simultaneously trained by the generative model loss function to minimize
log(1 − D(G(z)).

The proposed deep convolutional GAN (DAGAN) [24] solves the problem of unstable
training of typical GAN. Both the generator and discriminator of DCGAN discard the
pooling layer of CNN [42], the discriminator keeps the overall architecture of CNN, and
the generator replaces the convolutional layer with fractional-strided convolution [43].
The batch normalization (BN) [44] layer is used after each layer in the discriminator and
generator and helps deal with training problems caused by poor initialization as well as
accelerating model training and improving the stability of training. In addition, all layers
use the ReLu activation function except for the output layer, which uses the Tanh activation
function. The LeakyReLU [45] activation function is used in all layers of the discriminator
to prevent gradient sparsity.

DCGAN [24] greatly improves the stability of the original GAN training and the quality
of the generated results. The digital images are regarded as continuous data for GAN since
the pixel values vary continuously in the range of 0–255. There has been a great success
with GAN in the area of image generation. With discrete data, the discriminative network
cannot backpropagate the gradient to the generative network. Therefore, it performs poorly
when it comes to text generation.

The typical DCGAN with a 2D convolutional network as the backbone is used to
generate images. However, in this paper the driving demonstrations are defined as 1D data.
Consequently, the proposed generative model is based on the 1D convolutional network
for process sequence data.

As shown in Figure 1, two networks are built: a generator and a discriminator. The
generator G generates fake data from input random noise z that is usually uniform noise
while the discriminator D inputs both fake data G(z) and true data and outputs the proba-
bility D(x) that the data are true. In G and D, both utilize the “Conv1D + BN + LeakRuLe”
structure. Both the generator and discriminator use one-dimensional convolutional neural
networks, since they are more suited to producing one-dimensional demonstration data.
For G, the first layer is the full connection layer, and the activation function of the output
layer is tanh. Both the discriminator and the generator contain a fully connected neural
network, which increases the network’s complexity and prevents overfitting. In addition,
the real data are normalized before being fed into the discriminator.

The main process of 1-DGAN is as follows: First, the generation network generates
demonstration data randomly. The quality of the generated data are poor at the beginning,
and the discriminator can easily distinguish the generated data from the real data. Next, the
generator is trained to generate data that can deceive the untrained discriminator. Then, the
discriminator is trained to discriminate against the data generated by the trained generator as
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false. The generator and discriminator are continuously trained according to Equation (1) until
the discriminator is unable to distinguish between real and generated data.
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Figure 1. The architecture of the generator (down) and discriminator (up).

3.2. Built Learning Model

An MDP framework is used in this study, and can be described as a tuple <S, A, T, R, γ>,
where S is the state space; A is the action space; T is the state transition function
T(s, s′, a) = P(s′|s, a); and γ is the discount factor. The agent interacts with the environment
following the MDP. In each step t, the agent takes an action at, making the environment
state transfer from St to St + 1, and a reward Rt is received, indicating the performance of
the transition. In Q-learning, the aim is to maximize the Q value function according to the
Bellman equation with the following structure:

Q(st, at) = Rt + γmaxat+1 Q(st+1, at+1) (2)

DQN [1] not only leverages a deep convolutional neural network to approximate the
Q-function but also introduces experience replay to store and reuse transitions’ sequences
and target networks to address the overestimation problem. The DQN algorithm exploits
the transitions and randomly samples from the replay buffer to update the network using
the minimizing loss function:

L(θt) =
N

∑
1

(
Rt + γmaxaQ

(
st+1, a; θ−t

)
−Q(st, at; θt)

)2 (3)

where θt
− is the target network parameter, θt is the Q-network parameter, and θt

− is
updated by θt only every k time step. The loss function trains θt:

∇θt L(θt) =
(
rt + γmaxaQ

(
st+1, a; θ−t

)
−Q(st, at; θt)

)
∇θr Q(st, at; θt) (4)

Double deep Q-network (DDQN) [46], an extension of the nature DQN, eliminates
the overestimation problem by decoupling the steps of selecting the target Q-action and
calculating the target Q-value. In DDQN, two value functions are available, with parameters
of θ and θ′:

YDQN
t ≡ Rt+1 + γmaxaQ

(
St+1, a;θ−t

)
(5)

YDoubleQ
t ≡ Rt+1 + γQ

(
St+1, argmaxQ(St+1, a;θt);θ′t

)
(6)

where YtDQN is the DQN target value and YtDoubleQ is the DDQN target value. It still uses a
greedy policy to estimate the Q value based on the current value defined by θ. However,
the second set of weight parameters θ′ is used to evaluate this policy value.

In this study, an algorithm RLfGD is presented based on the awesome work of
DQfD [21], the framework shown in Figure 2. In order to reduce the exploration space
of the agent, it expects to match the behavior of the demonstrator as closely as possible
before interacting with the environment. In RLfGD, the demonstration data are used for
the pre-training agent, and the agent updates the network by applying four losses: the
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“1-step” and “n-step” double Q-learning losses, a large margin classification loss, and an L2
regularization loss. The agent is to imitate the previous controller with a value function
that fulfills the Bellman equation:

JDQ(Q) =
[
R(s, a) + γQ

(
st+1, amax

t+1 ; θ−
)]
−Q(st, at; θ)

)
(7)

JE(Q) = maxa∈A[Q(s, a) + l(s, aE, a)]−Q(s, aE) (8)

J(Q) = JDQ + λ1 JE(Q) + λ2 JL2(Q) + λ3 Jn(Q) (9)

where JDQ is the loss of DDQN, JE supervises a large margin loss, JL2 is L2 regularization
losses, and λ1, λ2, and λ3 are parameters that adjust the weights between losses.
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After pre-training, agents begin to interact with the environment following the MDP.
At the end of a step, a transition will be received: a slightly high-reward transition will be
stored in the replay buffer as experience. The requirements for rewards from transition
generation in the training phrase are lower than the requirements for the demonstration
data. In particular, this method keeps the demonstration data in the replay buffer perma-
nently, but the experience generated during training will be replaced by a new experience
when the replay buffer is full. This means that the demonstration data are never rewritten.
During the training phase, the agent samples mini-batch n transitions from demonstra-
tion according to high-value prioritized experience replay (HVPER) [23]. In HVPER, the
prioritizing of transitions is calculated by the reward, state–action value, and TD error.
Compared to priority experience replay [47], HVPER accelerates the training process and
reaches a high performance.

The process of RLfGD is described as follows: The first step is to record the demon-
stration data from the previous system (non-human experts), and only concentrate on
transitions with a high reward. Secondly, generate sufficient demonstration data based on a
small set of pre-processed high-reward transitions using 1-DGAN. Then the demonstration
data are used for the pre-training agent, and the agent updates the network by applying
four losses. Finally, the agent updates its strategy during reinforcement learning in order to
reach convergence.
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4. Experiments

To test the validity of reinforcement learning from generative data (RLfGD), exper-
iments were performed in the highway_env [48] environment, which contains 6 traffic
tasks such as highways, intersections, etc. We considered the DDQN algorithm as the
baseline, and compared the RLfGD with DDQN on two complex traffic scenarios: highway
overtaking and intersection turn-left. Every comparison experiment was conducted using
the same neural network architecture, randomized seed, and evaluation setup.

4.1. Data Process

The demonstration data are composed of transitions generated at each time step. These
transitions can be described as a tuple (state, action, reward, next_state). The dimension
size of each element is described in Table 1. The state can be described as the position and
speed of the vehicles; the specific description is shown in Table 2. It continuously changes
values within a certain range, with high fault tolerance, and are continuous data for GAN.
Similarly, the reward is continuous data. However, the action is several discrete numbers,
and different numbers represent different actions. Therefore, action information is discrete
data for GAN. With discrete data, the discriminative network cannot backpropagate the
gradient to the generative network. This means that discrete action information cannot be
generated using 1-DGAN.

Table 1. The dimension of state space.

Highway Intersection

State 5 × 5 15 × 7
Action 3 × 1 5 × 1
Reward 1 × 1 1 × 1
next_state 5 × 5 15 × 7

Table 2. The description of state space parameters.

Feature Description

P Disambiguate agents at 0 offsets from non-existent agents

x The offset of the world vehicle as it relates to the ego vehicle on the x-axis or the
offset to the ego vehicle

y The offset of the world vehicle as it relates to the ego vehicle on the y-axis or the
offset to the ego vehicle

vx The speed of a vehicle on the x-axis
vy The speed of a vehicle on the x-axis

cosh The triangular heading of vehicles
sinh The triangular heading of vehicles

To address the above problem, a classification network was developed using states
as data and actions as labels. In RL, the agent selects an action based on the current state,
and the environment updates the state according to the state transition function after the
agent makes the action. This means that there is a mapping between state and action.
Consequently, the problem can be considered a classification issue, and a neural network
can be trained to discover this mapping relationship.

The neural network can predict the corresponding state action per neural network,
so the 1-DGAN is only used to generate state information and avoid the input of discreet
action information. The training curve is shown in Figure 3; both of them exhibit strong
performance on the test and validation sets. In the intersection environment, the accuracies
of the model on the test machine and validation set are 83.32% and 78.57%. In the highway
environment, the accuracies of the model are 86.23% and 81.68%.

After the training, the classification network can predict actions based on state. In
particular, a parameter in the state named the present of ego-vehicle (description in Table 2)
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is always described as “1”, so the normalized reward can be used to replace that. This is
particularly significant for the processing of two-dimensional input features; if the neural
network takes the two-dimensional state information as input, the reward information is
treated as an additional feature. However, this paper reshapes the state information into a
one-dimensional vector, so the normalized reward information can be directly added to
the vector. Afterward, these features are fed into the discriminator. Discriminators and
generators game with each other to generate fake demo data.
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4.2. Highway Environment

As shown in Figure 4, in the highway task, an ego-vehicle is driving on a multi-lane
highway road populated with other vehicles. The vehicle needs to change lanes to avoid
colliding with another vehicle. The vehicle’s objective is to reach a high speed as quickly as
possible while remaining in the rightmost lane.
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Figure 4. The highway environment (vehicle in the red box is ego-vehicle).

The state space S is described by the V × F array that describes a list of V nearby
vehicles by a set of features of size F, where S = [P, x, y, vx, vy]. The agent observes the five
vehicles that are closest to it, and the size of the state is a 5 × 5 array.

The action space consists of five movement types: acceleration, deceleration, left
lane change, right lane change, and idle. For the sake of reasonableness, several actions
are not permitted in some states: changing lanes at the edge of the road, or accelerat-
ing/decelerating over the maximum/minimum speed. The agent is rewarded by reaching
a high velocity or remaining in the rightmost lane and avoiding collisions. Otherwise, a
negative reward will be given.
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R =


−1, when colliding with a vehicle
0.6, when driving at f ull speed
0.2, when driving on the right−most lanes
0, at each lane change action

(10)

The ego-vehicle is driven by the agent, and other vehicles in the environment are
controlled by the IDMVehicle dynamics model. The experiment performed 1000 episodes
of training. The end of every epoch was when a collision occurred or the time exceeded
40 s.

4.3. Intersection Environment

Traveling at unsignalized intersections is one of the most complex and dangerous
traffic scenarios for autonomous vehicles. Due to the complexity of unsignalized intersec-
tions, this is still a challenging task. We present an intersection negotiation task with dense
traffic composed of two parallel roads and several traffic participants, as shown in Figure 5.
The agent drives the ego-vehicle from south to west; during traveling, the agent interacts
with the traffic participants controlled by the IDMVehicle dynamics model, aims to avoid
collision, and tries to leave the intersection at the desired speed. The traffic participants’
position and destination are randomly initialized.
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Figure 5. The highway environment.

The state space S is also described by the V × F array, S = [P, x, y, vx, vy, cosh, sinh]. The
agent observes the seven vehicles that are closest to it; the size of the state is a 15 × 7 array.
Low-level controllers implement lateral control for vehicles automatically. The agent
only controls the acceleration of its vehicle. Therefore, the action space consists of three
movement types: acceleration, deceleration, and idle. In general, rewards are defined as
follows:

R =


−5 when a collision occurs
1 when it drives at maximum velocity
0 otherwise

(11)

This experiment performed 3000 episodes of training. Epochs ended when collisions
occurred or the step time exceeded 13 s.
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4.4. Experimental Results

Firstly, to evaluate the validity of the generative module, we visualized the distribution
of generated data and real data. The histogram of two types of data, real and partially
generated, is shown in Figure 6 for two environments; the demonstration data generated
by the generative model have the same distribution as the real demo data. In Figure 6,
Figure 6a,b shown that the generated data also have a high longitudinal velocity. The
policy of lateral control of the generated data is also largely coherent with the actual data,
as shown in Figure 6c,d.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 14 
 

 

This experiment performed 3000 episodes of training. Epochs ended when collisions 
occurred or the step time exceeded 13 s. 

 
Figure 5. The highway environment. 

4.4. Experimental Results 
Firstly, to evaluate the validity of the generative module, we visualized the distribu-

tion of generated data and real data. The histogram of two types of data, real and partially 
generated, is shown in Figure 6 for two environments; the demonstration data generated 
by the generative model have the same distribution as the real demo data. In Figure 6, (a) 
and (b) shown that the generated data also have a high longitudinal velocity. The policy 
of lateral control of the generated data is also largely coherent with the actual data, as 
shown in (c) and (d). 

 
(a) (b) 

Electronics 2022, 11, x FOR PEER REVIEW 11 of 14 
 

 

 
(c) (d) 

Figure 6. In the histogram of partially generated data and real data, Figures (a,b) are the longitudinal 
speed of the vehicle at the intersection (a) and highway (b) environment; Figures (c,d) are the lateral 
speed of the vehicle at the intersection (c) and highway (d) environment. The vehicle’s lateral and 
longitudinal speeds are normalized. 

In addition, the real and generated trajectories of ego-vehicles in intersection envi-
ronments are also visualized in Figure 7, in which the generating trajectory is approxi-
mately the same as the real trajectory. As a result of visualizing both types of data, it can 
be demonstrated that the proposed generative model can generate data that are very close 
to the real data, although there are some errors. However, the vehicle coordinate data 
have a high tolerance rate that can accept minute errors. 

 
Figure 7. The real and generated trajectories of ego-vehicles in intersection environments; (x1, y1) 
are the coordinates of the ego-vehicle. 

To further verify the validity of the generated demo data, RLfGD was deployed in 
two complex traffic scenarios. The learning curve is shown in Figure 8 for two traffic sce-
narios: highway and intersection. On the highway, the agent trained by the generated data 
achieved a score faster than pure DDQN. Additionally, RLfGD has a slightly higher score 
than pure DDQN. The agent achieved 30 points after only 400 iterations. This means that 
the agent learned to avoid other vehicles and maintain a high speed. In the intersection, 
differences between the two algorithms are relatively obvious. The vehicle left turn at 
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speed of the vehicle at the intersection (a) and highway (b) environment; Figures (c,d) are the lateral
speed of the vehicle at the intersection (c) and highway (d) environment. The vehicle’s lateral and
longitudinal speeds are normalized.

In addition, the real and generated trajectories of ego-vehicles in intersection environ-
ments are also visualized in Figure 7, in which the generating trajectory is approximately
the same as the real trajectory. As a result of visualizing both types of data, it can be
demonstrated that the proposed generative model can generate data that are very close to
the real data, although there are some errors. However, the vehicle coordinate data have a
high tolerance rate that can accept minute errors.

To further verify the validity of the generated demo data, RLfGD was deployed in
two complex traffic scenarios. The learning curve is shown in Figure 8 for two traffic
scenarios: highway and intersection. On the highway, the agent trained by the generated
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data achieved a score faster than pure DDQN. Additionally, RLfGD has a slightly higher
score than pure DDQN. The agent achieved 30 points after only 400 iterations. This means
that the agent learned to avoid other vehicles and maintain a high speed. In the intersection,
differences between the two algorithms are relatively obvious. The vehicle left turn at
intersections is characterized by a sparse rewards problem. Thanks to the demonstration
data, the agent performed well in the initial training episode and reached a high reward
earlier than the DDQN algorithm. The results demonstrate that pre-training reduces the
possibility of the agent exploring an unreasonable range of action. Meanwhile, putting
the demonstration data into the replay buffer can lead to higher rewards for the agent. As
the agent gets a high reward easily via exploration and ER, the reward difference is not
significant in the highway environment. However, it is difficult for agents to achieve higher
rewards in the intersection environment and the disparity in rewards is more pronounced.
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5. Conclusions

In this paper, a method of reinforcement learning from generated data (RLfGD) is
presented, which consists of a generative model and a learning model. With the generative
model, we solved the problem of collecting demonstration data on sparse tasks. The
experimental results show that the generative data are close to the real data. In addition,
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we trained classification networks to address the inability to generate discrete action
information in demonstration data. We also solved the problem of human demonstration
data not all satisfying MDP in the autonomous vehicles’ decision-making scenarios. The
learning model is based on DQfD; we placed the high-value demonstration data and
the experience of the agent interacting with the environment in the DQN experience
buffer and sampled it using a high-value priority replay method. This algorithm was
deployed in two traffic scenarios. The experiment results demonstrate that in a complex
traffic scenario, demonstration data can lead to higher rewards for the agent. The agent
reduces the possibility of exploring an unreasonable range of actions after pre-training
on demonstration data, so the agent gets a reward when it starts interacting with the
environment.

RLfGD provides a novel solution to the sparse reward problem; it addresses the
difficulty of collecting demonstration data in sparse reward problems and human demon-
stration data not fully complying with MDP. Future work will focus on the interpretability
of the presentation of the data generation process, allowing for the generation of scenario-
specific demonstration data.
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