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Abstract: Owing to the development and expansion of energy-aware sensing devices and au-
tonomous and intelligent systems, the Internet of Things (IoT) has gained remarkable growth and
found uses in several day-to-day applications. However, IoT devices are highly prone to botnet
attacks. To mitigate this threat, a lightweight and anomaly-based detection mechanism that can
create profiles for malicious and normal actions on IoT networks could be developed. Additionally,
the massive volume of data generated by IoT gadgets could be analyzed by machine learning (ML)
methods. Recently, several deep learning (DL)-related mechanisms have been modeled to detect
attacks on the IoT. This article designs a botnet detection model using the barnacles mating optimizer
with machine learning (BND-BMOML) for the IoT environment. The presented BND-BMOML model
focuses on the identification and recognition of botnets in the IoT environment. To accomplish
this, the BND-BMOML model initially follows a data standardization approach. In the presented
BND-BMOML model, the BMO algorithm is employed to select a useful set of features. For botnet
detection, the BND-BMOML model in this study employs an Elman neural network (ENN) model.
Finally, the presented BND-BMOML model uses a chicken swarm optimization (CSO) algorithm for
the parameter tuning process, demonstrating the novelty of the work. The BND-BMOML method
was experimentally validated using a benchmark dataset and the outcomes indicated significant
improvements in performance over existing methods.

Keywords: Internet of Things; cybersecurity; botnet detection; deep learning; feature selection

1. Introduction

The Internet of Things (IoT) refers to an interconnected network of software, devices,
actuators, sensors, and so on that exchange and store information. The advantages of
the IoT include the flow of information, automation, and communication with less effort
and time [1]. In the IoT structure, physical gadgets have capacities for organization and
management derived from being smart gadgets, and such gadgets can become a vigorous
part of human life, ranging from the home to big institutional and industrial fields. The
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IoT brings great innovation to lives by enabling indirect transmission among gadgets
and individuals, making it susceptible to various cyber scams [2]. For the IoT, numerous
security solutions have been devised, such as prevention, authentication, and detection.
Using machine learning (ML) techniques with the IoT might resolve issues regarding
privacy and security. Nowadays, it has become crucial to determine where automated
techniques for rapid decision making should be run, such as the fog, the cloud, or the thin
layer [3]. However, when all ML decisions are performed in the cloud, the IoT decision-
making process is delayed. With other layers—namely, the fog or thin layer—it is difficult
to apply ML solutions because of inadequate resources; namely, energy, bandwidth, and
processing [4].

Several research scholars are trying to defend against botnet assaults on the IoT
atmosphere. However, several gaps exist for the formulation of an effective detection
mechanism. To deal with these attacks, an intrusion detection system (IDS) is one effective
method [5]. However, conventional IDSs can often be positioned for IoT settings because
of such problems. Complicated cryptographic systems could be embedded in many IoT
gadgets for the usual reasons [6]. There are generally two types of IDSs: misuse and
anomaly techniques. The misuse-related techniques, termed signature-related techniques,
depend on the signs of attacks and are found in many public IDSs.

Existing research notes that deep learning (DL) approaches can detect IoT assaults
highly efficiently compared to conventional ML techniques [7]. However, only the cloud
layer has the resources for running such techniques. Moreover, such approaches are not
continuously active in certain situations, such as remote live functioning, as the mechanism
is supposed to constitute realistic decisions quickly [8]. Preceding work on IoT assaults has
shown that an ML approach, such as support vector machine (SVM), could offer meaningful
outcomes when it is linked with an optimization algorithm or feature reduction or extraction
method [9]. This amalgamation of methods fails to address the low source requirement.
ML approaches, such as K-nearest neighbors (KNNs), decision trees (DTs), naïve Bayes
(NB), and others, are tremendously useful for applications such as non-interactive or offline
predictions among small datasets [10]. Supporting all such variables, deep learning (DL)
plays a significant role in the medical sector in maintaining security against numerous
kinds of assaults and shedding light on the well-known ransomware attacks.

In this study, we designed a botnet detection model using barnacles mating optimizer
with machine learning (BND-BMOML) for the IoT environment. For data normalization, the
proposed model uses the Z-score normalization technique. Furthermore, the BMO algorithm
is employed to select a useful set of features. Finally, chicken swarm optimization (CSO)
with the Elman neural network (ENN) model is used for botnet detection. The experimental
validation of the BND-BMOML model was carried out using a benchmark dataset.

2. Literature Review

In Vinayakumar et al. [11], a new botnet detection technique was developed on the basis
of two-stage DL architecture to semantically distinguish botnet and legitimate performances
at the application layer of the domain name system (DNS) service. Initially, the similarity
measure of DNS queries is evaluated through a Siamese network based on predetermined
thresholds for choosing the commonest DNS data across Ethernet connections. Next, a
domain generation model related to DL framework is recommended for classifying normal
and abnormal domain names. In [12], the presented method aims to recognize IoT botnet
attacks initiated from compromised IoT gadgets by using the efficacy of the new grey wolf
optimizer (GWO) algorithm to discover the features that better define IoT botnet complexity
and simultaneously improve the hyperparameter of the one class support vector machine
(OCSVM). Popoola et al. [13] developed a robust DL-oriented botnet attack detection technique
that could manage extremely imbalanced network traffic datasets. In particular, the synthetic
minority oversampling technique (SMOTE) produces further minority samples to achieve
class balance, whereas DRNN learns hierarchical feature representation from the balanced
network traffic dataset to implement discriminatory classification.
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Sriram et al. [14] developed a DL-oriented botnet framework that functions on network
traffic flow. The presented method gathers network traffic flow, transforms it to connection
records, and applies a DL algorithm to identify assaults originating from the compromised
IoT gadgets. Habib et al. [15] developed a detection system based on multi-objective
particle swarm optimization (MOPSO) to recognize malicious behavior in IoT network
traffic. The efficiency of MOPSO can be confirmed in contrast to filter-based feature
selection methods, conventional ML algorithms, and the multi-objective non-dominating
sorting genetic algorithm (NSGA-II). Wu et al. [16] designed a common architecture based
on the deep reinforcement learning (DRL) technique that efficiently produces adversarial
traffic flows to deceive the detection technique by automatically adding perturbation to
the sample. During the entire process, the target detector is considered a black box and to
be closer to real-time attacks. An RL agent is armed to upgrade the adversarial instances
by merging the feedback from the target models (malicious or benign) and the series of
activities and is capable of changing the spatial and temporal features of traffic flows when
preserving the executability and original functionality.

The author of [17] addresses the IoT cybersecurity threat in smart cities and develops
an anomaly detection-IoT (AD-IoT) technique using a smart anomaly detection-based ran-
dom forest approach. The presented technique could efficiently identify compromised IoT
devices at distributed fog nodes. McDermott et al. [18] developed a solution to the recogni-
tion of botnet activity within networks and consumer IoT gadgets. A new application of
the DL technique was utilized to develop a detection method related to the bidirectional
long short term memory (Bi-LSTM)-based recurrent neural network (RNN). Then, word
embeddings were used for recognition of attack packets and text conversion into tokenized
integer format. The proposed technique was compared with the LSTM-RNN in identifying
four attack vectors utilized by the Mirai botnet and the loss and accuracy were estimated.

3. The Proposed Model

In this article, a new BND-BMOML algorithm was developed for the identification and
recognition of botnets in the IoT environment. To accomplish this, the BND-BMOML model
initially follows a data standardization approach. In the presented BND-BMOML model,
the BMO algorithm is employed to select a useful set of features. For botnet detection,
the BND-BMOML technique employs the CSO with ENN model in this study. Figure 1
demonstrates the block diagram of the BND-BMOML system.
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3.1. Data Standardization

The data standardization procedure (DSP) is a crucial stage in data preprocessing used
primarily to provide feature scaling to ensure features are on nearly similar scales, such
that all the features are equivalently significant. The DSP makes the data easy to process
with the ML algorithm. In the study, the standardization process (Z-score normalization)
was used, where each feature is rescaled to make sure the standard deviation and mean are
within the range of 0 and 1, correspondingly. In this research, the Z-score normalization
was employed as follows:

Xstand =
X−mean (X)

Standard Deviation (X)
(1)

The Z-score normalization is effective for different optimization approaches and,
specifically, gradient descent (GD), which is widely applied by ML algorithms. The aim of
standardization is to enhance the performance of ML algorithms and avoid or mitigate bias
in ML classification.

3.2. Feature Selection Using BMO Algorithm

At this stage, the BMO algorithm is employed to select a useful set of features from the
preprocessed data, thereby increasing accuracy and reducing computation complexity [19].
Barnacles are often found permanently attached to solid substances, such as ships, rocks,
sea turtles, and corals. Barnacles are hermaphroditic organisms that have male and female
reproduction systems, and the unique feature of barnacles is their penis size, which can
stretch to more than the length of their body (up to seven or eight times). The barnacle
mating takes place through sperm-cast and normal copulation. In the mating of isolated
barnacles, sperm-cast takes place. This can be performed by discharging the fertilized eggs
into water. Such behaviors of barnacles in releasing novel offspring provide insights into the
use of BMO for resolving the problem of optimization. Like other evolutionary approaches,
such as the genetic algorithm (GA), BMO employs the same technique to develop the
selection method for the parent to be mated for producing novel offspring. However,
the solution process is dissimilar from the GA and does not utilizing familiar selection
techniques; namely/ tournament, roulette wheels, and so on. The selection procedure for
barnacles that mate can be undertaken according the subsequent rules:

• Although barnacles are recognized as hermaphroditic organisms, female barnacles
can be fertilized by one or more male barnacles, where all the barnacles are mated
with each other to prevent complications;

• The value of pl should be initially set by the user and the selective barnacle parents
can be arbitrarily performed. The value of pl is the control variable in these algorithms
that could be tuned to attain better optimization outcomes, along with maximum
iterations and number of barnacles;

• The Hardy–Weinberg principle is used when the selective barnacle parents lie in the
range of pl. Then, the sperm-cast is imposed to achieve novel offspring.

The generation of novel offspring is guided by the Hardy–Weinberg principle as follows:

xN_new
i = pxN

barnacle_m + qxN
barnacle_d f or k ≤ pl (2)

xN_new
i = rand()× xN

barnacle_m f or k > pl (3)

where k = |barnacle_m− barncle_d|, p indicates the random number uniformly distributed,
q = (1− p), and xN

barnacle_m and xN
barnacle_d show the variables chosen randomly for the

barnacle parents correspondingly. Furthermore, rand() means the random integer ranges
between zero and one (0 ∼ 1). p and q characterize the inheritance percentage from the
corresponding barnacles’ parents. For instance, p is set to 0.80. This shows that the novel
offspring inherit 20% (100% − 20%) of the father’s features and 80% of the behavior or
features of the mother. Equation (4) is used for the exploitation of optimization whereas
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Equation is used as the exploration of the proposed BMO. Further, it is noteworthy that
the exploration (sperm-cast) can only be related to the mother’s barnacles because they
receive sperm discharged from another barnacle elsewhere. As soon as the barnacle breeds,
the number in the population will be doubled from the early population. To control these
expansions, something has to be implemented. Like the GA, a sorting method is required
in BMO where a better outcome for a specific iteration is positioned at the top half of the
doubled populations.

In the modeled BMO technique, the fitness function (FF) is employed to balance the
classifier accuracy (maximal) and the selected feature count in every solution (minimal) obtained
with the selected feature. Equation (10) symbolizes the FF for the computing solution:

Fitness = αγR(D) + β
|R|
|C| (4)

At this point, γR(D) denotes the classifier error rate of a presented classifier (K-nearest
neighbor (KNN) classifier). |R| represents the cardinality of chosen set and |C| indicates
the number of features in the data. α and β display the two variables for the significance of
classification quality and subset length, respectively. ∈[1, 0] and β = 1− α.

3.3. Botnet Detection Using ENN Model

In this study, the ENN model was exploited for botnet detection. The ENN consists
of output, input, hidden, and context layers [20]. The major formation of this NN is
FFNN; therefore, the relationship within the output, input, and hidden layers (HLs) is
completely associated with the multi-layer NN. Furthermore, there exists another layer
in the ENN, which is called the context layer. Its input comes from the output of HLs
and it stores the initial values of the HLs. The external input, output, and context weight
matrixes are defined by W0

h , Wi
h, Wc

h . By considering the ENN form, the dimensions

of the input, as well as output layers, are n—viz., x1(t) = [x1
1(t), x1

2(t), . . . ., x1
n(t)]

T and
y(t) = [y1(t), y2(t), . . . , yn(t)]

T—and the dimension of the context layer is m:

ui(l) = ei(l), i = 1, 2, . . . , n (5)

In Equation (5), l indicates the output and input layers in iteration l. Then, k HLs are
considered as follows:

vk(l) =
N
∑

j=1
ω1

kj(l)xc
j (l) +

n
∑

i=1
ω2

ki(l)ui(l)

k = 1, 2, . . . , N
(6)

Now, xc
j (l) designates the signal that is transported from the k-th context layer, and

ω1
kj(l) describes the i-th and j-th weights of the HLs directed from the o-th nodes. Therefore,

for the input layer I, the weight of HL k is obtained from ω2
ki(l). This is accomplished using:

Wk(l) = f0(vk(l)) (7)

vk(l) =
vk(l)

max{vk(l)}
(8)

which indicates the standardized value of the HL. The next layer is the context layer. Here,
the outcome is equivalent to the subsequent expression:

Ck(l) = βC, (l − 1) + Wk(l − 1), k = 1, 2, . . . , N (9)
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In Equation (9), Wk indicates the self-connected feedback amongst [0, 1] and it is given
as follows:

y0(l) =
N

∑
k=1

ω3
ok(l)Wk, (l), 0 = 1, 2, . . . , n (10)

In Equation (10), ω3
ok determines the weight connecting the k-th to the o-th layers.

Figure 2 defines the framework of the ENN technique.
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To optimally choose the ENN parameters, the CSO algorithm was applied in this work.

3.4. Parameter Tuning Using CSO Algorithm

Finally, the weight of the abovementioned ENN model was improved based on the
CSO algorithm. The CSO algorithm is stimulated from the hierarchy and foraging behavior
of chicken flocks [21]. In the CSO, the location of every individual was considered a
candidate solution to the optimized problem. The count of individuals in the chicken
flock can be represented as N. Each individual searches for food in a D dimensional space
and upgrades their identity at each G generation. The sequence of serial numbers of each
individual can be {1, 2, 3, . . . , Nr, Nr + 1, . . . , tNhNh + 1, . . . , Nc}, whereas Nr, Nh, and Nc
indicate the maximal serial numbers of the roosters, hens, and chicks in sub-flock afterward
sorting, correspondingly. The original and updated location of each rooster is determined
as Xi,j and Xnew

i,j , whereby i ∈ {1, 2, 3, . . . , Nr}, j ∈ {1, 2, 3, . . . , D}. Roosters with low
fitness can forage food in a wide search area, as is shown in the following.

Xnew
iG j = Xi,j ·

(
1 +<andn

(
0, σ2

))
(11)

σ2 =

{
exp ( ( fn− fi)

| fi |+ζ
)

t
i f fi > fn

1t otherwise
(12)



Electronics 2022, 11, 3411 7 of 16

Now, <andn
(
0, σ2) indicates the uniformly distributed random number with an av-

erage value of 0 and standard deviation of σ2. f shows the fitness function. fi and fn
denote the fitness value of the i-th rooster and n-th rooster, correspondingly, whereas
i, n ∈ {1, 2, 3, . . . , Nr} and i 6= n. ζ denotes a number closer to 0, which is utilized to
prevent the denominator | fi|+ ζ from being 0. The original and upgraded locations of hens
are determined by Xi,j and Xnew

i,j , whereas i ∈ {Nr + 1, Nr + 2, . . . , Nh}, j ∈ {1, 2, 3, . . . , D}.
Xc,j denotes the location of the spouse, and Xd,j indicates the location of the individual,
where i hens want to steal food, in which c ∈ {1, 2, 3, . . . , tNr}, d ∈ {1, 2, 3, . . . , Nh}. The
searching and stealing capabilities of the hens are associated with their fitness value.

Xnew
i,j = Xi,j + S1 · <and ·

(
Xc,j − Xi,j

)
+ S2 · <and ·

(
Xd,j − Xi,j

)
(13)

S1 = exp
(

fi − fC

| fi|+ ζ

)
(14)

S2 = exp ( fd − fi) (15)

Now, <and indicates a random integer ranging from [0, 1]. The chick follows its
mother for food foraging. The small fitness value makes it simple for them to search food
by foraging as follows:

Xnew
i,j = Xi,j + v ·

(
Xm,j − Xi,j

)
(16)

In Equation (16), Xi,j and Xnew
i,j indicate the original and upgraded locations of chicks,

correspondingly. For every chick, i ∈ 224 {Nh + 1, Nh + 2, . . . , Nm}, and j ∈ {1, 2, 3, . . . , D}.
Xm,j shows the location of the mother hen analogous to the i-th chicks, where m ∈
{Nγ + 1, Nγ + 2, . . . , Nh}. v refers to the succeeding probability for all the chicks that
follow their mother hen to forage. Considering the variances among all the chicks, v is
generated at random among [0, 2] as presented in Algorithm 1.

Algorithm 1. Pseudo-Code of the Original CSO Algorithm

Input: Randomly allocated primary values to individuals from the chicken flock; Determine
parameters namely Nr, Nh, and Nc;
t = 0;
Compute fitness values to all individuals
While t < Tmax do
If (t % G == 0)

Rank the fitness values and classifies the flock as distinct sub-groups;
End if
For i = 1 : Nr

Upgrade Xi,j with Equation (11);
End for
For i = (Nr + 1) : Nm

Upgrade Xi,j with Equation (13);
End for
For i = (Nm + 1) : Nc

Update Xi,j with Equation (16);
End for
If f
(

Xi,j

)
< f (Xnew

i,j )

Xi,j = Xi,j;
Else

Xi,j = Xnew
i,j ;

End if
t = t + 1;

End while
Output: Optimal hyperparameter values
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The CSO algorithm derives a fitness function (FF) to obtain an improved classifier
outcome. In this study, the reduced classifier error rate is considered as the FF, as given
below in Equation (17).

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples ∗ 100

(17)

4. Results and Discussion

The proposed model was simulated using Python 3.6.5. The experiments for the
proposed model used a PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and
1 TB HDD. The parameter settings were as follows: learning rate: 0.01, dropout: 0.5, batch
size: 5, epoch count: 50, and activation: ReLU.

This section inspects the bot net classification results of the BND-BMOML model on
the N_BaIoT [22] dataset. The dataset comprises 17,001 samples with three class labels.
Table 1 provides a detailed explanation of the dataset.

Table 1. Dataset details.

Class No. of Samples

Benign 5000
Mirai 7001

Gafgyt 5000
Total Number of Samples 17,001

Figure 3 illustrates the confusion matrices formed by the BND-BMOML model. In the
entire dataset, the BND-BMOML model categorized 4933 samples into the benign class,
6963 samples into the Mirai class, and 4925 samples into Gafgyt. Moreover, in 70% of
the TR dataset, the BND-BMOML method categorized 3425 samples into the benign class,
4900 samples into the Mirai class, and 3447 samples into Gafgyt. Next, on 30% of the
TS dataset, the BND-BMOML approach categorized 1508 samples into the benign class,
2063 samples into the Mirai class, and 1478 samples into Gafgyt.

Table 2 and Figure 4 offer brief botnet detection results using the BND-BMOML
model for the entire dataset. The results show that the BND-BMOML model achieved
enhanced results under all classes. For instance, in the benign class, the BND-BMOML
model provided an accuy of 99.18%, precn of 98.54%, recal of 98.66%, Fscore of 98.60%, and
MCC of 98.02%. Furthermore, in the Mirai class, the BND-BMOML technique offered accuy
of 99.52%, precn of 99.39%, recal of 99.46%, Fscore of 99.42%, and MCC of 99.02%. Finally, in
the Gafgyt class, the BND-BMOML approach presented accuy of 99.18%, precn of 98.72%,
recal of 98.50%, Fscore of 98.61%, and MCC of 98.03%.

Table 2. Result analysis for BND-BMOML algorithm with distinct class labels using entire dataset.

Entire Dataset

Labels Accuracy Precision Recall F-Score MCC

Benign 99.18 98.54 98.66 98.60 98.02
Mirai 99.52 99.39 99.46 99.42 99.02

Gafgyt 99.18 98.72 98.50 98.61 98.03
Average 99.29 98.88 98.87 98.88 98.35

Table 3 and Figure 5 portray the detailed botnet detection results for the BND-BMOML
methodology with 70% of the TR dataset. The BND-BMOML approach demonstrated
enhanced results with all classes. For example, in the benign class, the BND-BMOML
model offered accuy of 99.12%, precn of 98.45%, recal of 98.53%, Fscore of 98.49%, and MCC
of 97.87%. Additionally, in the Mirai class, the BND-BMOML algorithm rendered accuy of
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99.54%, precn of 99.39%, recal of 99.49%, Fscore of 99.44%, and MCC of 99.05%. Moreover,
in the Gafgyt class, the BND-BMOML method achieved accuy of 99.19%, precn of 98.74%,
recal of 98.51%, Fscore of 98.63%, and MCC of 98.06%.
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Table 3. Result analysis for BND-BMOML algorithm with distinct class labels using 70% of the TR data.

Training Phase (70%)

Labels Accuracy Precision Recall F-Score MCC

Benign 99.12 98.45 98.53 98.49 97.87
Mirai 99.54 99.39 99.49 99.44 99.05

Gafgyt 99.19 98.74 98.51 98.63 98.06
Average 99.28 98.86 98.85 98.85 98.32
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Figure 5. Average analysis of BND-BMOML algorithm using 70% of the TR data.

Table 4 and Figure 6 present brief botnet detection results for the BND-BMOML
technique using 30% of the TS dataset. The BND-BMOML method displayed enhanced
results in every class label. For example, in the benign class, the BND-BMOML algorithm
rendered accuy of 99.31%, precn of 98.76%, recal of 98.95%, Fscore of 98.85%, and MCC of
98.36%. Additionally, in the Mirai class, the BND-BMOML technique presented accuy of
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99.49%, precn of 99.37%, recal of 99.37%, Fscore of 99.37%, and MCC of 98.94%. Furthermore,
in the Gafgyt class, the BND-BMOML method, offered accuy of 99.16%, precn of 98.66%,
recal of 98.47%, Fscore of 98.57%, and MCC of 97.97%.

Table 4. Result analysis for BND-BMOML algorithm with distinct class labels using 30% of the TS data.

Testing Phase (30%)

Labels Accuracy Precision Recall F-Score MCC

Benign 99.31 98.76 98.95 98.85 98.36
Mirai 99.49 99.37 99.37 99.37 98.94

Gafgyt 99.16 98.66 98.47 98.57 97.97
Average 99.32 98.93 98.93 98.93 98.43
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Figure 6. Average analysis for BND-BMOML algorithm using 30% of the TS data.

The training accuracy (TRA) and validation accuracy (VLA) attained by the BND-
BMOML method in the test dataset are shown in Figure 7. The experimental outcome
shows that the BND-BMOML algorithm gained maximum values for TRA and VLA. The
VLA was seemingly greater than the TRA.

The training loss (TRL) and validation loss (VLL) acquired by the BND-BMOML
technique in the test dataset are displayed in Figure 8. The experimental outcome shows that
the BND-BMOML technique exhibited minimal values for the TRL and VLL. Particularly,
the VLL was less than the TRL.

A clear precision-recall analysis of the BND-BMOML algorithm in the test dataset is
exemplified in Figure 9. The figure shows that the BND-BMOML algorithm resulted in
enhanced precision-recall values in every class label.
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Table 5 and Figure 10 offer a detailed comparative study of the BND-BMOML model
and existing models [23]. The results indicate that the DBN, LSTM, and CNN-RNN mod-
els reported lower classification performance. Next, the LSTM-CNN and DNN models
achieved slightly higher classifier results. Though the DNN-LSTM model reached reason-
able performance with a classification accuracy of 99.11, the BND-BMOML model shows
the maximum accuracy of 99.32%.

Table 5. Comparative analysis of BND-BMOML approach and recent algorithms.

Methods Accuracy Precision Recall F-Score

BND-BMOML 99.32 98.93 98.93 98.93
DNN-LSTM 99.11 98.37 98.24 98.16

LSTM 97.14 95.93 94.62 95.18
CNN-RNN 96.41 94.01 97.58 94.03
LSTM-CNN 98.85 96.98 97.62 96.15

DNN 98.82 96.98 96.37 94.75
DBN 96.92 95.40 96.85 96.07

Finally, a brief running time (RUNT) examination of the BND-BMOML model and
recent models is provided in Table 6 and Figure 11. The attained results show that the
LSTM and DBN models reported higher RUNTs of 3.86 ms and 3.97 ms. Along with that,
the DNN-LSTM and CNN-RNN models attained slightly improved RUNTs of 1.27 ms and
1.15 ms, respectively. The LSTM-CNN and DNN models revealed reasonable RUNTs of
0.35 ms and 0.59 ms, respectively. However, the BND-BMOML model showed superior
results, with a minimal RUNT of 0.17 ms. Thus, the BND-BMOML model was found to be
better than existing models.
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Table 6. Running time analysis for BND-BMOML approach and recent algorithms.

Methods Running Time (ms)

BND-BMOML 0.17
DNN-LSTM 1.27

LSTM 3.86
CNN-RNN 1.15
LSTM-CNN 0.35

DNN 0.59
DBN 3.97
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5. Conclusions

In this article, a new BND-BMOML system was established for the identification and
recognition of botnets in the IoT environment. To accomplish this, the BND-BMOML model
initially follows the data standardization approach. In the presented BND-BMOML model,
the BMO algorithm is employed to select a useful set of features. For botnet detection, the
BND-BMOML technique employs the ENN model in this study. Finally, the presented
BND-BMOML model uses the CSO algorithm for parameter tuning process. Experimental
validation of the BND-BMOML approach was applied using a benchmark dataset and the
results portrayed a significant improvement in performance over existing methods. Thus,
the presented BND-BMOML technique can be exploited for the real-time botnet detection
process. In the future, the performance of the BND-BMOML technique can be improved
using advanced DL models.
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