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Abstract: It is challenging for a visual SLAM system to keep long-term precise and robust localization
ability in a large-scale indoor environment since there is a low probability of the occurrence of loop
closure. Aiming to solve this problem, we propose a monocular visual localization algorithm for
large-scale indoor environments through matching a prior semantic map. In the approach, the line
features of certain semantic objects observed by the monocular camera are extracted in real time.
A cost function is proposed to represent the difference between the observed objects and the matched
semantic objects in the preexisting semantic map. After that, a bundle adjustment model integrating
the semantic object matching difference is given to optimize the pose of the camera and the real-time
environment map. Finally, test cases are designed to evaluate the performance of our approach, in
which the line features with semantic information are extracted in advance to build the semantic
map for matching in real time. The test results show that the positioning accuracy of our method is
improved in large-scale indoor navigation.

Keywords: large-scale indoor localization; visual-SLAM; semantic map; bundle adjustment

1. Introduction

Visual SLAM localization plays an increasingly important role in indoor navigation [1].
However, it generally relies on loop closures to remove accumulated errors. For large-scale
indoor scenarios such as airports, shopping malls, and museums, it is challenging for a
visual SLAM system to maintain long-term precise and robust localization ability since
there is a low probability of the occurrence of loop closures. Figure 1 shows a typical
framework of a visual SLAM system.
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Figure 1. A typical framework of a visual SLAM system.

As shown in Figure 2, line features are more robust and more powerful to represent
the environment than point features in the same scene [2,3]. Various approaches have
been proposed to provide better indoor localization performance by using line features in
the bundle adjustment model in SLAM systems for localization in a low-texture environ-
ment [4–7]. Gomez-Ojeda et al. designed a SLAM algorithm that involves line features in
the optimization model to enable the whole system to achieve a more stable estimation
of positional information in relatively low-texture scenarios [4]. Pumarola and colleagues
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added line feature representations to the SLAM mechanism and proposed a new method
for approximating the initialized map based on the corresponding line features [5]. Con-
sidering the occlusion and disconnection of line features, Gomez-Ojeda et al. compared
the direction and length of line features and eliminated outliers [6]. He et al. proposed a
tight-coupled monocular visual–inertial odometer system by integrating point and line
features [7]. By using line features, or integrating point and line features, the aforemen-
tioned approaches generally are able to keep a relatively sufficient localization ability in a
low-texture environment. However, since the SLAM algorithm itself is theoretically an inte-
gral computation model, it generally depends on loop closure to remove the accumulated
errors. In large-scale indoor navigation scenarios, the error of the SLAM system generally
will become increasingly bigger if there is no loop closure or an absolute position injection
for a long time.
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Therefore, it is an urgent challenge to realize long-term precise and robust large-scale
indoor navigation when there is a low probability of the occurrence of loop closure [8,9].
In the field of vehicle navigation, numerous map-matching approaches were proposed to
remove accumulated vehicle positioning errors when the GNSS signal is blocked [10,11],
which can generally provide persistent positioning ability even without any GNSS service
for 10 min or more. Map matching, assuming there are similarities between the vehicle’s
track and the shape of the road network, is able to remove the error in the vertical direction
of the road at any time and the bi-direction error generally when the vehicle makes a
turn. Based on a similar idea, continuous and high-precision localization can be achieved
in large-scale indoor scenes without loop closure by matching the SLAM reconstructed
environment and the existing semantic map model data (such as BIM models) in real time.

Aiming at the problem, we propose a monocular visual localization method for pro-
viding long-term precise and robust localization ability in large-scale indoor scenarios.
Compared with previous methods, a prior semantic map which can fully utilize the en-
vironmental information is used to solve the problem that error accumulation cannot be
effectively eliminated in large-scale indoor environments because of the lack of loop closure.
In this approach, the line features of certain semantic objects observed by the monocular
camera are extracted in real time. A cost function is designed for indicating the difference
between the observed objects and the matched semantic objects in the preexisting semantic
map. After that, a bundle adjustment model integrating the object matching difference
information is proposed to optimize the pose of the camera and the real-time environment
map. Finally, a test design is given to evaluate the performance of the proposed approach,
in which the line features with semantic information are extracted in advance to build the
semantic map for matching in real time. The test results show that the positioning accuracy
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of our method is improved in large-scale indoor localization. The main contributions are
as follows:

1. A method for maintaining high-precision persistent localization capability through
matching a prior semantic map with line features is proposed. In this method, se-
mantic objects are identified in the environment in real time and the key line features
corresponding to the objects are extracted. Subsequently, the semantic objects identi-
fied in real time are matched with the line features of the corresponding objects in the
prior map, effectively associating each key frame with the previous semantic map.

2. A bundle adjustment model integrating the semantic object matching information
using line features is proposed to achieve higher localization accuracy and robustness
performance in large scenes.

3. To verify the performance of the proposed approach, we designed test cases and pro-
pose a method to build the prior semantic map for the real-time object matching. The
test results show that our method reduces the drift of monocular vision in a large-scale
and low-texture environment and effectively improves the accuracy of localization.

The remainder of this paper is organized into four parts. Firstly, Section 2 reviews the
literature and related works. Then, the specific principles and implementation details of the
algorithm are given in Section 3. Section 4 introduces the test design and the pre-processing
of the prior semantic map, and analyzes the comparison of experimental results with
classical and state-of-the-art methods. Finally, the conclusions and potential future research
directions are summarized in Section 5.

2. Related Work

SLAM systems can be divided into two categories: filter-based [12–14] and factor
graph model-based [15–17]. Now, the factor-graph-based optimization approach has be-
come mainstream. Regarding factor graph optimization models, the most frequently used
methods are based on point features [18,19], point-line fusion [20,21], or the simultaneous
use of point-line surface features based on the Manhattan assumption [22,23]. Theoretically,
the factor graph optimization methods can work in two scenarios: one is a local optimiza-
tion using co-visual constraints of wayfinding points [24,25], and the other is a global
optimization using the loop closure constraint [26,27]. Although local optimization can
improve localization accuracy, global optimization based on loop closure is indispensable
to achieving continuous high-precision localization over a longer period of time.

If there is a low loop closure probability in large-scale indoor scenarios such as an air-
port or a shopping mall, the accuracy of the V-SLAM system could be severely downgraded.
Existing studies usually try to reduce the positioning error by combining inertial devices
such as IMU or wireless positioning methods such as WIFI/UWB [28,29], but the low-cost
IMU has the same accumulated error in terms of parameter drift, and the WIFI/UWB also
could fail to solve this problem even though additional nodes and sensors are used.

Recently, researchers have tried to use high-precision prior maps to aid real-time
visual localization. Such methods, basically based on point cloud matching, can be divided
into two main categories: (1) image information-based matching [30–32] and (2) geometry
information-based matching [33,34].

2.1. Image Information-Based Matching

In terms of matching based on image information, Pascoe et al. focused on a monocular
camera localization algorithm performed in a textured three-dimensional prior mesh [28].
In the approach, a synthetic image generated from the previous best synthetic image was
matched with the real-time camera image to optimize the current pose. Neubert et al.
integrated the 3D distance information on the map with the current visual image on the
robot camera by synthesizing the depth image into Monte Carlo localization to track a given
target trajectory [31]. Wolcott saved the point cloud map as a raster image, discarding the
height information, and measured the vehicle captured on the static 3D point cloud map for
overall image alignment to obtain the positional information [32]. However, given the raw
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depth information of the 3D map, this kind of localization approach requires additional
information, such as laser intensity [31].

2.2. Geometry Information-Based Matching

Caselitz et al. gave a visual odometry system based on the local bundle adjustment to
reconstruct a sparse set of 3D points from image features and built a positional optimization
model using the spatial location correlation of two kinds of point clouds [31]. Since the
algorithm relies only on matched geometry, it is insensitive to the luminance variation of
ambient light. The accuracy of the algorithm is highly correlated with the precision of the
reconstructed sparse points, and it is difficult to avoid the large errors of deconstructed
sparse points in long-term localization. Kim et al. matched the depth in the stereo parallax
map with the 3D LiDAR map by using a binocular camera; in the method, the six-degree-
of-freedom (DOF) camera pose was estimated by minimizing the depth residuals [34]. It is
noted that this paper proposed the concept of depth residuals and used depth residuals
instead of photometric errors to achieve sufficient localization results. The accuracy of the
above algorithms is related to the accuracy of the reconstructed point clouds, which could
be affected by the lighting or viewpoint. In a large scene, the increase in cumulative error
of the reconstruction results will cause lower accuracy of map matching.

To avoid the negative effect of viewpoint and lighting conditions, Gawel et al. per-
formed semi-dense environment reconstruction using ORB-SLAM2 and used structural
information to perform 3D feature matching [35]. This algorithm requires only point cloud
data from different light sources as input, independent of specific visual features. Zou et al.
developed a low-cost stereo visual–inertial localization system providing bounded-error 3D
navigation using LiDAR maps [36]. In this method, the registrations of visual semi-dense
reconstruction and LiDAR maps are used to update the multi-state constraint Kalman filter
(MSCKF) to correct the accumulated errors.

Overall, the above studies ignored the case of no loop closure correction in large
scenarios. In this paper, a monocular visual localization algorithm for large-scale indoor
environments through matching a prior semantic map is proposed. In the approach, the
line features of certain semantic objects observed by the monocular camera are extracted
in real time. A cost function is proposed for the evaluation of the difference between
the observed objects and the matched semantic objects in the preexisting semantic map,
and a bundle adjustment method is proposed to optimize the pose of the camera and the
real-time environment map based on the given cost function. Finally, we give a test design
to evaluate the performance of the proposed approach, in which the line features with
semantic information are extracted in advance to build the semantic map for matching in
real time. The results show that the positioning accuracy is improved in large-range indoor
localization and the drift error of monocular vision sensors within a limited amount of
computation is effectively reduced.

3. Algorithmic Approach
3.1. Overall Framework

To improve the positioning accuracy in the low-texture environment without loop
closure, a novel positioning algorithm is proposed, which matches the line features in
certain types of those semantic objects recognized in real time with those in the prior
semantic map. The structure of the proposed indoor localization algorithm is shown in
Figure 3.

In the real-time visual tracking thread, the environmental semantic information is
considered to constrain the camera poses for the purpose of correcting drift and avoiding
positional jumps. In the process of visual localization, the visibility of the gate frame lines
provided by the prior map is identified, and the 2D gate frame lines in the image are
detected in real time and matched with the gate frame line features within the field of view
in the map, so as to achieve the adjustment of the visually estimated poses.
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Figure 3. Block diagram of the proposed indoor location algorithm.

3.2. Extraction of 2D Gate Frame Lines in Real Time
3.2.1. Extraction of 2D Line

In our approach, we optimize the camera pose using the similarity information of
line features in those semantic objects detected in real time and the features stored in the
matched semantic objects in the prior map. The first step of our SLAM algorithm is to
reconstruct the line features in the detected semantic objects, which means we should first
extract lines in captured images. To simplify the representation of our algorithm, we take
the gate object as the example of semantic object matching in the paper.

Due to the interference of texture noise signals, a large number of fragmented line
segments could be generated during the process. Therefore, it is critical to extract line
segments with high consistency with the length of the gate frame lines as much as possible.
The M-LSD algorithm is able to extract line segments with better integrity [37] compared to
the LSD algorithm and the Edline algorithm [38,39]. As shown in Figure 4c, this algorithm
has adequate consistency with the geometric 3D structure (gate frame lines) and is robust to
texture noise. Therefore, in this paper, the M-LSD algorithm is used to extract line features
of those semantic objects.
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3.2.2. Selection of Gate Frame Lines

The semantic detection thread is added to the SLAM system, and 2D lines are extracted
to select the gate frame lines in a single frame. In addition, in order to improve the speed of
processing, two threads process the RGB images simultaneously to jointly complete the
screening of the gate frame lines.

In our research, RGB images are semantically segmented using SegNet networks [40].
As shown in Figure 5, if an extracted line segment is within the color block corresponding
to a gate, the corresponding semantic category label is given, and the line segment whose
label category is ‘gate’ is reserved. The details of the process are as follows:
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1. Firstly, roughly remove the line segments that are too far from the boundary of the
semantic category. Regarding the roughly identified line segments Vc = {l1, l2, · · · , li},
the straight lines close to the semantic boundary curve ξ are retained.

2. The distances dist(p, ξ) from the two endpoints and the midpoint of the line segments
to the semantic boundary ξ are calculated. Then, the maximum value of these three
distances is discarded, and the smaller two values are summed and denoted as Σi.
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When Σi is smaller than the threshold Σd, the line segment is considered to belong to
the searched two-dimensional gate frame line segments Vd.

Vd = {Vc : ∀l ∈ Vc, Σi < Σd} (1)

3. Finally, the similar line segments in Vd are merged and optimized. As shown in
Figure 6, if the overlapping part O of the line segments in the x-axis or y-axis direction
is larger than the threshold Od, the angle α and β between the line segment and
the coordinate axis are used as the judgment factors. If the value of |α− β| is less
than the threshold γd, the similar line segments are considered to be merged. The
endpoints with the top two maximum distances are denoted as the new line segment
V = {l1, l2, · · · , ln}.

V = {Vd : ∀l ∈ Vd, O < Od, |α− β| < γd} (2)
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3.3. The Model for Matching Existing Prior Semantic Map

To match the line features of the semantic objects with the corresponding line features
in the prior map, two approaches could be used: (1) mapping the 3D lines to the image,
then matching lines in 2D; (2) reconstructing 3D lines of those identified semantic objects
in real time, and matching 3D lines in the world coordinate system. In this paper, we use
the first approach. For the matching of 2D gate frame lines with the prior maps in a single
frame image, in the case of a large scene, there is a problem of a large number of gate
frame lines obtained by offline processing in the prior maps. This can seriously affect the
computing efficiency and the computation speed. Therefore, the visibility of endpoints
is used to select the 3D gate frame lines and remove the line segments which are not in
the field of view in this frame. The endpoints Xstart and Xend of the gate frame lines are
extracted. Three types of situations are handled with different strategies:

1. If Xstart and Xend are both within the field of view, this gate frame line is also considered
to be within the field.

2. One of Xstart or Xend is within the field of view. The point within the field is retained.

If Xmiddle is within the field of view, the line segment L =
{

Xstart, Xend
}

is kept. If

Xmiddle is not within the field of view, the process is repeated for the newly generated
line segment until the length of the line segment is less than the threshold l0.

3. If Xstart and Xend are not in the field of view, then this gate frame line is discarded.
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After analyzing the visibility of the 3D gate frame lines, 2D–3D gate lines will be
matched. For the gate frame line L =

{
Xstart, Xend

}
, its two endpoints are projected into

the image plane, and the projected endpoints are denoted as ln =
{

pstart
n , pend

n
}

. The angle θ,
the difference of length ∆l, and the distance d between ln and the two-dimensional line
segment lc =

{
pstart

c , pend
c
}

are computed.
The angle between lc and ln can be obtained using θ:

θ = arccos (νn·νc) (3)

ν =

(
pend − pstart)
‖ pend − pstart ‖

(4)

where νc and νn represent the normalized vectors of lc and ln, respectively, and the
difference of the length can be described using the following equation:

∆l = |lc − ln| =
∣∣∣∣√(xend

c − xstart
c
)2

+
(
yend

c − ystart
c
)2 −

√(
xend

n − xstart
n
)2

+
(
yend

n − ystart
n
)2
∣∣∣∣ (5)

where l =
√(

xend − xstart
)2

+
(
yend − ystart

)2.
Let the expression of the line where the two-dimensional line segment is located be

equal to Ax + By + C = 0. The distance d between two line segments is defined as the
distance between the two intersections of the perpendicular bisector of a 2D line segment,
as shown in Figure 7.

d =

∣∣A× (xend
n + xstart

n
)
+ B

(
yend

n + ystart
n
)
+ 2C

∣∣
2×

√
A2 + B2

(6)

where A = yend
c − ystart

c ; B = xstart
c − xend

c ; C = xstart
c × yend

c − xend
c × ystart

c .

Electronics 2022, 11, x FOR PEER REVIEW 9 of 21 
 

 

where νc and νn represent the normalized vectors of  lc and  ln, respectively, and the 

difference of the length can be described using the following equation: 

∆l = |lc − ln| = |√(xc
end − xc

start)2 + (yc
end − yc

start)2 

−   √(xn
end − xn

start)2 + (yn
end − yn

start)2| 

(5) 

where  l = √(xend − xstart)2 + (yend − ystart)2. 

Let the expression of the line where the two-dimensional line segment is located be 

equal to Ax + By + C = 0. The distance d between two line segments is defined as the 

distance between the two intersections of the perpendicular bisector of a 2D line segment, 

as shown in Figure 7.  

d =
|A × (xn

end + xn
start) + B(yn

end + yn
start) + 2C|

2 × √A2 + B2
 (6) 

where A = yc
end − yc

start; B = xc
start − xc

end; C = xc
start × yc

end − xc
end × yc

start. 

To complete the matching of 2D line segments with the prior map, all 3D gate frame 

lines within the field of view are traversed until matching conditions θ < θ0，∆l<∆l0，

and d<d0 are met. 

 

Figure 7. Distance between two line segments. 

3.4. Bundle Adjustment Integrating Linear Semantic Objects  

The incremental maps given by the visual odometer could be inaccurate over long 

time periods due to unavoidable cumulative errors. To address this problem, an optimi-

zation model for matching the real-time map and a prior map is proposed in this section. 

The error term of the matched gate frame lines in Section 3.3 is added to the bundle ad-

justment model. The motion between two consecutive frames is subsequently estimated 

iteratively to improve the positioning accuracy of the system. The details of this algorithm 

are as follows. 

As shown in Figure 8, considering the constraint of the gate frame line in the prior 

map, a new error term rl (zLi

ck , χ) is defined as the sum of the distances from the two end-

points of the gate frame line after projection to the 2D plane to the line where the 2D line 

segment is located; then, for a single image frame, the residual of the i-th spatial line ob-

served in the k-th camera frame could be written as: 

Figure 7. Distance between two line segments.

To complete the matching of 2D line segments with the prior map, all 3D gate frame
lines within the field of view are traversed until matching conditions θ < θ0, ∆l < ∆l0, and
d < d0 are met.

3.4. Bundle Adjustment Integrating Linear Semantic Objects

The incremental maps given by the visual odometer could be inaccurate over long time
periods due to unavoidable cumulative errors. To address this problem, an optimization
model for matching the real-time map and a prior map is proposed in this section. The
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error term of the matched gate frame lines in Section 3.3 is added to the bundle adjustment
model. The motion between two consecutive frames is subsequently estimated iteratively to
improve the positioning accuracy of the system. The details of this algorithm are as follows.

As shown in Figure 8, considering the constraint of the gate frame line in the prior map,
a new error term rl

(
zck

Li
,χ
)

is defined as the sum of the distances from the two endpoints
of the gate frame line after projection to the 2D plane to the line where the 2D line segment
is located; then, for a single image frame, the residual of the i-th spatial line observed in the
k-th camera frame could be written as:

rl

(
zck

Li
,χ
)
=

N

∑
i=1

∣∣∣Di·Keξ·Li

∣∣∣√
Ai

2 + Bi
2
=

N

∑
i=1

∣∣∣Aixend
ni

+ Biyend
ni

+ C
∣∣∣+ ∣∣∣Ai × xstart

ni
+ Biystart

ni
+ C

∣∣∣√
Ai

2 + Bi
2

(7)

Di = [Ai Bi Ci] =
[(

yend
ci
− ystart

ci

)(
xstart

ci
− xend

ci

) (
xstart

ci
× yend

ci
− xend

ci
× ystart

ci

)]
(8)

Li=
[
Xstart

ni
Xend

ni

]
(9)

where N is the number of line features in a single image frame, Li contains the coordinates
of the two endpoints of the three-dimensional gate frame line, and K is the number of
previous frames in the sliding window. Then, the cost function corresponding to the final
line feature part can be expressed as:

∑
(i,k)∈L

‖ rl

(
zck

Li
,χ
)
‖2

Σ
ck
Li

=
K
∑

k=0

N
∑

i=1

‖Dk
i ·Keξ·Lk

i ‖2√
Ak

i
2+Bk

i
2

=
K
∑

k=0

N
∑

i=1
‖

∣∣∣∣Ak
i xend

nk
i
+Bj

iy
k end
nk

i
+C
∣∣∣∣+∣∣∣∣Ak

i ×xstart
nk

i
+Bk

i yj start

nk
i

+C
∣∣∣∣√

Ak
i

2+Bk
i

2
‖

2 (10)
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Ultimately, under the constraint of the prior semantic map, the cost function summing
all error terms in the form of least squares can be written as:

min
χ
{∑ ‖ rp − Jpχ ‖2

Σp
+ ∑

k∈B
‖ rb

(
zbkbk+1

,χ
)
‖2

Σbkbk+1

+∑(j,k)∈F ‖ rf

(
zck

Li
,χ
)
‖2

Σ
ck
fj

+∑(i,k)∈L ‖ rl

(
zck

Li
,χ
)
‖2

Σ
ck
Li

}
(11)
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where the first term is the IMU residual item between adjacent frames in the sliding window,
the second term is the marginalization residual item, and the third term is the in-camera
visual reprojection residual of feature points in the sliding window. To iteratively optimize
the camera’s poses, Ceres Solver is used to minimize the cost function [41].

4. Experiment

To verify the performance of our proposed algorithm, comparative experiments in
sequence images obtained from a monocular camera are conducted. Considering that there
is no ground-truth trajectory for the captured sequence images, the trajectories of the laser
SLAM algorithm with higher accuracy are used as the ground-truth data. The evaluation
metrics are the absolute position error (absolute translation error, ATE) and the closure
error of the trajectory, where the ATE is expressed as:

Ei = Q−1
i SPi (12)

where Pi ∈ SE(3), i = 1, · · · , n is the estimated trajectory, Qi ∈ SE(3), i = 1, · · · , n is
the ground-truth trajectory (reference trajectory), and S is the rigid body transformation
corresponding to the least square solution of the estimated trajectory P1:m mapped to the
ground-truth trajectory (reference trajectory) Q1:m. In most cases, the root mean square
error (RMSE) of the ATE at each moment is mainly used as a criterion; the expression of
RMSE is as follows:

RMSE(Ei:n) =

(
1
m

m

∑
i=1
‖ trans(Ei) ‖2

) 1
2

(13)

The test environment for this experiment is an indoor corridor environment, and the
ZED 2i camera is used as the data acquisition device to capture the test sequence with a
resolution of 1280 ∗ 720. Before shooting, the ZED 2i left camera is calibrated with IMU,
and the results are shown in Tables 1 and 2.

Table 1. Internal parameters of ZED 2i’s left camera.

Parameter fx fy cx cy

Value 534.53 534.60 637.52 346.08

Parameter k1 k2 p1 p2

Value −1.24 2.08 0.18 0.00

Table 2. Internal parameters of IMU.

Parameter gyr_n gyr_w acc_n acc_w

Value 1.67262942× 10−3 3.85294351× 10−6 1.89324403× 10−3 4.03542685× 10−5

The testing platform is a desktop with Intel Xeon Cold 5115 CPU and a Nvidia GeForce
GTX 2080Ti GPU.

4.1. Acquisition of the Prior Semantic Map

Considering that there is no high-precision building information model (BIM) for ex-
isting indoor scenes, we propose a method for building the prior map using a reconstructed
dense point cloud map. The dense point cloud is computed using ORB-SLAM2 [18], and
the RGB images and depth maps of the scene are captured by moving in the corridor
environment of the experiment with a handheld Kinect v2.0 camera. Subsequently, the
captured information is used to construct a dataset as a prior map, and the dense point
cloud information is stored in a ply format file after running the ORB-SLAM2 algorithm.
Figure 9 shows our equipment for the data collection. To further evaluate our method
under various situations, the experiments are divided into two parts. The first part is
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conducted under a structured corridor without any closed loop, as shown in Figure 10a,
while the second part of the experiment is arranged to be executed in a circular corridor, as
shown in Figure 10b.
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The point cloud map processing is divided into two steps: (1) a semantic segmen-
tation algorithm is used to retain the local point cloud map with ‘gate’ labels, and (2) a
3D line segment detection algorithm is used to extract the gate frame lines required for
subsequent matching.

To build the prior semantic map, a deep learning network named RandLA-Net is used
to recognize environmental semantic information [42]. This network is an efficient semantic
segmentation model for large-scale point clouds, open-sourced by Hu Q et al. in 2020,
which can effectively reduce the computational cost and improve the operation speed of
the system compared with PointNet++, PointCNN, and KPConv [43–45].

After the processing of RandLA-Net, the point clouds labeled as ‘gate’ are saved as a
site point cloud map. The 3D lines in the point cloud labeled as ‘gate’ are extracted and
filtered according to the length threshold to obtain the gate frame lines.

For the extraction of 3D lines, it is difficult for the planar-based extraction method to
determine the boundaries of planes, and this method may produce unexpected lines on
non-planar surfaces when the data become complex. The sharp feature-based extraction
method is less robust because the regions with sharp features and noisy regions have
similar high surface gradients.

Therefore, we use an image-based 3D line segment detection method to extract gate
frame lines, and the details of the Algorithm 1 are as follows:

Algorithm 1: Image-based 3D line segment detection method

Input: -The local point cloud map with ‘gate’ label
Output: -The endpoints of each line ps, pe
1. Find the neighborhood IPi of each data point based on KNN
2. Estimation of the normals of adjacent surfaces nP using principal component analysis;
3. Extraction of local area Ri according to the area growth method;
4. for i < num++ i
5. Calculate the normal deviation normalDev;
6. if normalDev < thNormal
7. continue;
8. end if
9. Calculate the orthogonal distance dOrtho;
10. if dOrtho > thOrtho
11. continue;
12. end if
13. Calculate parallel distance dPara;
14. if dPara > thRadius
15. continue;
16. end if
17. end for
18. Similar regions are merged to obtain a 3D planar group Π;
19. Projection to the plane Πi from the point PΠ belonging to this plane, then transform into a
binarized image
20. Extract the above binary image contour and use RANSAC to extract the contour line
segment lj;
21. for j = 0 j < numj ++
22. Calculate the pixel coordinates (ui,vi) of each point, corresponding to the
two-dimensional plane coordinates (xi,yi);
23. Calculate each two-dimensional point (xi,yi), corresponding to the
three-dimensional point Pi
24. if j = 0 || j = num− 1
25. Output the coordinates of endpoint
26. end if
27. end for
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Figure 11 shows the processing with a section of the corridor as an example.
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Figure 11. The point cloud map processing: (a) the original image; (b) the point cloud map of the
corridor (partial); (c) after processing using RandLA-Net; (d) gate frame lines.

4.2. Absolute Position Error for Unclosed Trajectory

The LiDAR algorithm with high accuracy is chosen as the comparison reference in the
experiments, and the reference trajectory is generated by LeGO-LOAM [46]. The ZED 2i
camera is fixed to the same position with the LIDAR Robosense RS-LiDAR-16 to collect
data, which ensures that the true motion trajectory is identical. Figure 12 shows the RS-
LiDAR-16 we used during the experiment. To simulate the scenario with no closed loop,
we do not pass by the same location during the recording of the dataset.
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Figure 12. RS-LiDAR-16 used in our test.

The trajectories using the different algorithms and the accuracy on the XYZ axis are
shown in Figure 13, where the dashed lines represent the reference trajectories. The ATEs
using different algorithms are shown in Table 3, which contains the maximum value (MAX),
minimum value (MIN), and root mean square error (RMSE).
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Table 3. Comparison of ATE among algorithms. Bold numbers represent the best performances.

ATE ORB-
SLAM2

VINS-
MONO

LSD-
SLAM Ours

MAX 2.569 2.629
Lost

1.072
MIN 0.173 0.363 0.027

RMSE 0.369 0.559 0.282

From Table 3, it can be found that our method has adequate performance in the test
environment, while LSD-SLAM does not perform as well [47], with tracking lost at about
10 m from the starting point in corners where the scene changes quickly. Our algorithm has
the smallest ATE in the experiment, which effectively improves the positioning accuracy.
The ATE RMSE of our method is 0.282, while those of ORB-SLAM2 and VINS-MONO are
0.369 and 0.559, respectively. Furthermore, as shown in Figure 13c, the trajectory of our
method is closer to the reference trajectory at several corners. Thus, the performance of the
proposed method is better than that of comparison algorithms when scenes change rapidly.

4.3. Closure Error of Circular Trajectory

The experiments were conducted inside a circular building. Firstly, a landmark
is placed at the starting point, and then the camera-loaded device is made to follow
the corridor and return to the landmark after passing through four corners to obtain a
rectangular trajectory. Because the ground truth is closed, the positioning accuracy can be
expressed by the distance between the starting point and the endpoint. The smaller this
distance is, the smaller the error is. For more realistic results, the loop closing technique is
not used to correct the error during the experiment.

To verify the effect of path length on the closure error of different algorithms, experi-
ments with different numbers of loops are conducted. It is noted that the short length of
the trajectory will result in an insignificant closure error gap. On the other hand, a long
length of the trajectory allows a sufficient contrast effect, but introduces the confusion
of the chart. In the experimental validation, the numbers of path laps are determined as
one and three, and the length of the path is about 53 and 161 m, respectively. As shown
in Table 4, when the number of path laps is one, the closure errors of ORB-SLAM2 and
VINS-MONO [17] are measured to be 1.752 m and 0.972 m, respectively. The closure error
of our method is 0.389 m, accounting for 0.726% of the length, which is better than the
other two algorithms. When the number of path laps is three, the closure error of our
method increases from 0.726% (0.389 m) to 1.615% (2.615 m), while the closure errors of
ORB-SLAM2 and VINS-MONO increase from 3.252% and 1.832% to 4.364% and 3.240%.
Figure 14 shows the estimated trajectories of the camera. It is clear that our algorithm
is the least affected by the increase in trajectory length compared to other algorithms in
large-scale and low-texture environments.

Table 4. Comparison of the closure errors of algorithms. Bold numbers represent the best performances.

Number of Laps Algorithm Path Length (m) Closure Error (m) Error (%)

1
ORB-SLAM2 53.875 1.752 3.252
VINS-MONO 53.045 0.972 1.832

Ours 53.592 0.389 0.726

3
ORB-SLAM2 160.004 6.983 4.364
VINS-MONO 162.688 5.271 3.240

Ours 161.919 2.615 1.615
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affected by the increase in trajectory length compared to other algorithms in large-scale 

and low-texture environments. 

Table 4. Comparison of the closure errors of algorithms. Bold numbers represent the best perfor-

mances. 

Number of 

Laps 
Algorithm Path Length (m) Closure Error (m) Error (%) 

1 

ORB-SLAM2 53.875 1.752 3.252 

VINS-MONO 53.045 0.972 1.832 

Ours 53.592 0.389 0.726 

3 

ORB-SLAM2 160.004 6.983 4.364 

VINS-MONO 162.688 5.271 3.240 

Ours 161.919 2.615 1.615 
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5. Discussion

A monocular visual localization method combining object matching information
between a real-time map, a prior semantic map, and line features is presented in this paper,
which guarantees continuous and stable localization ability in large-scale environments.
Traditional visual SLAM localization methods have difficulty in solving the problem of
localization accumulation error in large-scale indoor environments. Although SLAM
systems using both point and line features are more powerful to represent the environment,
they still suffer from large accumulated errors when working for long periods of time.
Aiming to solve this problem, we designed a matching algorithm that combines visual
information with existing semantic map model data, and we propose a bundle adjustment
model integrating point features and semantic object matching information. The method
can effectively reduce the cumulative error without using loop closure detection and
improve the localization capability and robustness in large-scale indoor environments.

In the experiments, the ATE of the unclosed trajectory and the closure error of the
circular trajectory are used to evaluate and validate the overall performance of the method,
and our algorithm is compared with several classical SLAM algorithms. The experimental
results for Section 4.3 of the unclosed trajectory are listed in Table 3. Our method presents
better localization ability under the semantic object matching constraint and shows suf-
ficient robustness in corners where the scene changes quickly. In Section 4.3, we tested
the system performance of closure error, which is a method frequently used to test the
performance of inertial navigation systems. As shown by Table 4, our method has the
smallest error in both sets of experiments. Moreover, the closure error of our method
increases the least after the trajectory length increases. With the two different experiments,
it can be confirmed that our method possesses higher localization accuracy.

In this paper, although only the ‘gate’ semantic objects are used to show the feasibility
of our method, theoretically, it is a versatile approach that can integrate more semantic
objects into the framework. It should be pointed out that different objects show different
degrees of uncertainty; for example, some semantic objects could be occluded or moved in
a chaotic or stochastic environment. Thus, a sophisticated SLAM model using matching
information of more object types, which we plan to execute in the near future, should
carefully consider such uncertainty information; otherwise, worse results could be derived.

Limited by the COVID-19 pandemic in China, and due to the lack of ground-truth
data of the test environment, we used laser data as the ‘ground-truth’ environment data
for testing our method. In the future, we wish to test our algorithm in a more complex
environment with more kinds of spatial features and with moving objects, such as an airport
or a large shopping mall. With this approach, it is possible to provide a continuously precise
and robust localization ability in large-scale indoor navigation scenarios even just with a
camera and a building information model (BIM) through real-time object matching.

6. Conclusions

In this paper, we propose a monocular visual SLAM approach for large-scale indoor
environments by matching a prior map. In this approach, before real-time localization, a
prior map consisting of lines of certain semantic objects is built. When running the real-time
localization, the lines of a certain type of semantic object are extracted using the M-LSD
method. A cost function is proposed to describe the difference between the lines detected
in real time and the matched lines of the semantic objects in the prior map. A bundle
adjustment model considering the aforementioned cost function is given to optimize the
camera pose in real time. We designed a method to evaluate the performance of our
approach and a method to build the prior semantic map by using an RGB-D camera. The
test results show that our approach can effectively remove the accumulated error in the
large-scale indoor visual localization process and provide precise and robust localization
ability even without loop closure.
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Our future research will be focused on integrating more semantic objects into the
theoretical framework, fully considering their different degrees of uncertainty with a CAD,
BIM, or another style of semantic map.
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