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Abstract: Speech emotion recognition is an important part of human–computer interaction, and
the use of computers to analyze emotions and extract speech emotion features that can achieve
high recognition rates is an important step. We applied the Fractional Fourier Transform (FrFT),
and then constructed it to extract MFCC and combined it with a deep learning method for speech
emotion recognition. Since the performance of FrFT depends on the transform order p, we utilized an
ambiguity function to determine the optimal order for each frame of speech. The MFCC was extracted
under the optimal order of FrFT for each frame of speech. Finally, combining the deep learning
network LSTM for speech emotion recognition. Our experiment was conducted on the RAVDESS,
and detailed confusion matrices and accuracy were given for analysis. The MFCC extracted using
FrFT was shown to have better performance than ordinal FT, and the proposed model achieved a
weighting accuracy of 79.86%.

Keywords: speech emotion recognition; the fractional fourier transform; MFCC; LSTM; RAVDESS;
ambiguity function

1. Introduction

With the rapid development in the field of speech recognition, researchers have real-
ized that speech can convey more than just textual information, but also contains emotional
information. In speech feature extraction, there are traditional methods such as prosodic
features, voice quality features, and spectral features [1]. The Mel-Frequency Cepstral
Coefficient (MFCC) [2] reflects the frequency characteristics of the human auditory system
and has the advantages of being simple to calculate, highly discriminatory, and resistant
to noise [3], and is, therefore, the most widely used speech feature at present. In 2017,
Likitha [4] et al. proposed a speech emotion recognition method that uses MFCC and stan-
dard deviation values to detect emotions with 80% efficiency even in noisy environments.
In 2018, Dhruvi [5] reviewed research on emotion recognition through speech signals, and
this literature showed that MFCC provided a high level of recognition accuracy. In the
same year, Jagtap [6] et al. proposed a system to detect seven emotions, which proposed
using MFCC to reduce the frequency information contained in the speech signal to a small
number of coefficients, and showed that the accuracy of the system depended on the
database used for training.

Traditional speech spectrum feature extraction methods are mainly based on the
Short Time Fourier Transform (STFT), which treats speech as short-term stability and only
reflects the frequency components of the signal; however, speech signals are nonstationary
signals whose frequency varies with time, so STFT is not suitable for processing speech
signals. Therefore, our paper introduces a new speech analysis tool—the Fractional Fourier
Transform (FrFT) [7].

As a new time-frequency transform tool, the Fractional Fourier Transform (FrFT)
is a generalization of the Fourier Transform, capable of transforming a signal to any
intermediate domain between the time and frequency domains. It was first proposed in a
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purely mathematical way by Namias in 1980. Then Almeida analyzed its relationship with
the Wigner–Ville distribution (WVD) and interpreted it as an algorithm for the rotation of
the time-frequency plane [8]. As FrFT can be considered as a decomposition of the linear
frequency modulation (LFM) signal, it can significantly reduce processing complexity
without reducing resolution, making FrFT well suited for processing speech signals. In
2008, Zhang et al. [9] proposed a fractional auditory cepstrum coefficient feature and
applied it to language identification, reducing the equal error rates by 10.5% compared to
conventional MFCC. In 2009, Yin [10] adaptively set the optimal transform order of FrFT
according to the rate of in-frame pitch change and applied it to speech recognition, where it
was shown that this method could obtain better discriminatory power for tones and vowels
and had a higher recognition rate compared to traditional MFCC. Since FrFT has certain
advantages in analyzing nonstationary signals, especially signals with transition frequency
following time evolution, in 2011 Ma et al. [11] took advantage of this and combined it with
the cepstrum analysis to separate the vocal tract and excitation of speech signals, using
an appropriate Signal Interference Ratio as the search criterion to adaptively search for an
appropriate transform order, and applied it to experiments on the fundamental frequency
tracking of noisy Chinese vowels. Research on FrFT in the field of speech signal processing
has focused on speech enhancement [12]; however, it has not yet been used in speech
emotion recognition.

Compared to time-frequency transformation methods such as spectrograms and
Wigner distributions, FrFT has a more flexible time-frequency representation due to the
existence of the transformation order p, which can make the algorithm more flexible, but
finding the optimal transformation order has also been a challenge. The step search method
is simple to use, but the calculation is too complex and computationally intensive, so it is
inconvenient to use. Therefore, our paper used the ambiguity function (AF) to determine
the optimal transformation order.

Speech signals are time-varying signals that require special processing to reflect time-
varying properties. In contrast, Long Short-Term Memory (LSTM) networks can effectively
remember relevant long-term contextual information from the input [13]. Therefore, LSTM
networks are introduced to build models for speech emotion recognition.

The diagram of the speech emotion recognition system constructed in our paper is
shown in Figure 1.
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Figure 1. Speech emotion recognition system.

This paper is organized as follows.
Section 2 introduces the extraction of speech features: Section 2.1 introduces the defi-

nition and some basic properties of FrFT. Section 2.2 introduces the method of determining
the optimal transform order using AF. Section 2.3 introduces a new feature extraction
method based on FrFT for MFCC extraction.

Section 3 introduces the construction of a classification model, giving the basic defini-
tion of LSTM and the basic structure of the classification model.

Section 4 gives the experimental parameters and results of applying the MFCC ex-
tracted by FrFT on the LSTM speech emotion recognition classification model.

Section 4 concludes this experiment.
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2. Feature Extraction
2.1. Definition of the Fractional Fourier Transform

The FrFT representation of the signal x(t) is:

Xp(u) = Fp[x(t)] =
∫ +∞

−∞
x(t)Kp(u, t)dt (1)

where F[•] denotes the FrFT operator, p is the order of the FrFT and is a real number, and
Kp(u, t) is the kernel of the FrFT; the expressions are as follows:

Kp(u, t) =


√

1−jcotα
2π exp

(
j u2+t2

2 cotα− jut
sinα

)
α 6= nπ

δ(u− t) α = 2nπ

δ(u + t) α = (2n± 1)π

(2)

where α = pπ/2 is the transformation angle. The kernel function has the following properties:

K−p(u, t) = K∗p(u, t) (3)∫ ∞

−∞
Kp(u, t)K∗p

(
u′, t

)
dt = δ

(
u− u′

)
∞ (4)

Hence, the inverse of FrFT can be expressed as:

x(t) = F−p
[
Xp(u)

]
=
∫ ∞

−∞
Xp(u)K−p(u, t)du (5)

Equation (5) shows that x(t) can be viewed as a decomposition of the basis formed
by an orthogonal LFM function in the u-domain. This also indicates that this LFM signal
can be transformed into an impulse in a certain fractional domain. Thus, FrFT has a good
localization effect on the LFM signal.

2.2. Determination of the Optimal Orders

The FrFT of the signal introduced in the previous section can be interpreted as the
basis of the signal consisting of an orthogonal LFM function, so the optimal order is related
to the chirp rate of the LFM signal.

Among the methods to find the optimal order, a simpler method is the step search
method based on the Wigner–Ville Distribution (WVD) [14]. The basic principle is to use
the FrFT of a signal with a continuously variable rotation angle to obtain the 2D parameter
distribution of the signal, and then search for the maximum value of the signal in that 2D
plane as a way to perform the detection and estimation of the LFM signal. However, this
method is too computationally intensive because it is calculated on a 2D plane. Another
method is to use the ambiguity function (AF) [15], which can search for the 2D plane
simplified to a search in the 1D plane; this greatly reduces the amount of computation.

Since AF is simple to understand and has low computational complexity, our paper
used AF to find the optimal order.

The AF of the signal is defined as:

Az(τ, v) =
∫ ∞

−∞
z
(

t +
τ

2

)
z∗
(

t− τ

2

)
exp(−j2πvt)dt (6)

The general expression for the LFM signal is:

z(t) = A exp[j2π
(

f0t + 0.5 fmt2
)
] (7)

where A is the amplitude, f0 is the initial frequency, and fm is the chirp rate.
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Bringing the expression for the LFM signal in Equation (7) into the definition of the
AF in Equation (6), the AF of the LFM signal can be obtained:

Az(τ, v) = A2δ(v− fmτ) exp(j2π f0τ) (8)

From Equation (8), we can see that in the ideal condition, the amplitude of the AF of
an LFM signal is linearly an impulse function. It passes through the origin and its slope is
equal to the chirp rate. From this, we can detect the optimal order we want to obtain by
simply calculating all linear integrals through the origin:

η( fm) =
∫ ∞
−∞|Az(τ, v)|δ(v− fmτ)dτdv

=
∫ ∞
−∞|Az(τ, fmτ)|dτ

(9)

By searching the maximum value of the integration value, the chirp rate f̂m can be derived.
Having found the chirp rate f̂m, the specific relationship between the order p and the

chirp rate is further explained below.
The important relationship between FrFT and WVD is given: the projection of the

linear integral of the WVD of a signal over the fractional domain is the square of the
FrFT magnitude of that signal over this fractional domain. The WVD of the LFM signal
is a straight line which has a maximum magnitude only in the projection at a point in
the fractional domain perpendicular to it [16]. When the axis is rotated by an angle α so
that the LFM signal ( fm = tan β) forms an impulse in the fractional Fourier domain, then
tan β = cot(−α), is the optimal rotation angle found [17], as shown in Figure 2.
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Thus, the optimal order to find is:

p = 2arccot
(
− f̂m

)
/π (10)

The FrFT amplitude spectrum of a certain frame of the speech signal with several fixed
orders and the found optimal order p is given below.

As can be seen from Figure 3, the energy of the speech signal is relatively discrete in
the time domain, and after FrFT processing, there is a certain degree of energy aggregation.
This shows that the closer it is to the optimal order p (the optimal order p = 1.0323 for
this frame of speech), the more obvious the energy aggregation effect. The best energy
aggregation of the signal after FrFT processing is achieved when the optimal order p is
reached. The experimental results are consistent with the fact that the LFM signal can be
transformed into an impulse in some fractional domain as mentioned above, and show that
FrFT has an excellent localization performance for the LFM signal. Therefore, FrFT is well
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suited for processing time-varying speech signals and can lead to better results for speech
emotion recognition.
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2.3. New MFCC Feature Extraction

MFCC uses mathematical calculations to represent the auditory system of the human
ear and can achieve high recognition rates; therefore, MFCC is chosen as a feature for speech
emotion recognition in this paper. However, the standard cepstrum parameter MFCC
only reflects the static features of speech parameters, so this paper further calculates the
dynamic features through the differential spectrum of static features. System performance
is improved by combining static and dynamic features [18]. The optimal order p of FrFT is
first obtained using the AF approach and is then applied to the extraction of MFCC features.
The general steps are as follows:
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1. Pre-processing of speech signals: First, pre-emphasis of the original speech signal
occurs, so that the signal passes through the filter with H(z) =

(
1− 0.97z−1). Then,

the signal is divided into frames of 20 ms in length and 10 ms in shift. Finally, windows
are added with Hamming Windows.

2. AF is used for each frame of the pre-processed speech signal to find the optimal order p.
3. The Discrete FrFT(DFrFT) is performed on each frame of the speech signal in combination

with the optimal order p found, and then further squared to obtain the energy spectrum.
4. The energy spectrum passes through a Mel filter bank where the filter bank is uni-

formly spaced, converting the linear frequency scale to a Mel frequency scale and
followed by the logarithmic compression. The relationship between the Mel-scale and
the frequency is:

Mel( f ) = 2595lg
(

1 +
f

700

)
(11)

5. The discrete cosine transform (DCT) of the logarithmic energy of the filter bank is
calculated to obtain 13 static Mel-Frequency Cepstral Coefficients (MFCCs), and
the first-order differential and second-order differential are further calculated to
obtain first-order dynamic features and second-order dynamic features, for a total
of 39 acoustic features. The formula for calculating the dynamic characteristics is as
follows [19]:

dt =
∑K

k=1 k(Ct+k − Ct−k)

2 ∑K
k=1 k2

(12)

where dt is the first-order dynamic features, Ct is the cepstrum coefficient, and typically
K = 2. By replacing Ct by dt one can similarly derive the second-order dynamic features.
The framework of the new MFCC extraction algorithm is shown in Figure 4.
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3. Classification Model

The LSTM network, a further modified version of the Recurrent Neural Network
(RNN), is used to learn long-term contextual relevance and therefore has the advantage of
providing better performance when the data is sequential. The correlation between frames
should be considered when performing speech emotion recognition; therefore, this paper
uses LSTM as a classification model. The LSTM structure is shown in Figure 5.
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The equations describing the LSTM model are as follows:

ft = σ
(

xtU f + ht−1W f + b f
)

it = σ
(
xtUi + ht−1Wi + bi)

C̃t = tanh(xtUg + ht−1Wg + bg)

Ct = ft ∗ Ct−1 + it ∗ C̃t
Ot = σ(xtUo + ht−1Wo + bo)

ht = tanh(Ct) ∗Ot

(13)

where U is the weight matrix containing the hidden layer inputs, W is the weight matrix
connecting the current layer to the previous layer, C̃t is the candidate hidden state calculated
based on the current input and the previous hidden state, and C is the cell state [20].

The data is connected to the fully connected layer after learning temporal aggregation
in the LSTM network and finally fed to the softmax classifier for speech emotion classifica-
tion. Softmax is a generalization of logistic regression to multi-category problems, where
the category label y takes on more than two values. Softmax is defined as follows:

zi = ∑
j

hjWji (14)

softmax(z)i = pi =
ezi

∑n
j=1 ezi

(15)

where zi is the input to the softmax layer, hj is the activation of the previous layer, and Wji
is the weight matrix connecting the previous layer to the softmax layer. The predicted class
labels are defined as follows:

ŷ = argmax(pi)
i

(16)

4. Experimental Data and Results
4.1. Databases

The experiment was conducted on the RAVDESS [21]. The RAVDESS database is a
gender-balanced database containing 7356 files with voice data for 12 female actors and
12 male actors. This paper used only the voice files containing 1440 files: Each of the
24 actors performed 60 experiments with voice files containing both “children talking next
to the door” and “dog sitting next to the door”. There are eight emotions: neutral, calm,
happy, sad, angry, fearful, surprise, and disgust. Each expression is produced at two levels
of emotional intensity (normal, strong), with an additional neutral expression. The file
format of the audio is 16 bit, 48 kHz and is stored in wave format.

4.2. Experimental Parameters

In this experiment, we applied ten-fold cross-validation. In each fold, firstly, the
experimental data were randomly divided into two parts; the test set took 10% of the
data. Then, the remaining 90% of the data was divided into 10 equal parts: nine parts for
training and one part for validation. First, the MFCC is extracted from the preprocessed
speech signal by the FrFT method. Then it is fed into an LSTM with 128 hidden layers
to learn the temporal aggregation. A dropout rate of 0.5 was set for the dropout layer to
prevent over-fitting. After that, the fully connected layer with the ReLU activation function
is connected and finally fed into a softmax classifier for speech emotion classification,
resulting in a classification result.

Table 1 shows the structural data of the model.
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Table 1. The structural data of the model.

Layers Activation Output Units

LSTM - 128
Dropout - 128

Dense Reply 32
Dense Softmax 8

The training parameters and parameter values for this paper are shown in Table 2.

Table 2. Training parameters and parameter value.

Parameter Value

Epoch 130
Batch size 30

Learning rate 0.0001
Hidden size 128
Dropout rate 0.5

Optimizer Adam

4.3. Experimental Results and Analysis

In this paper, we use AF to find the optimal order p of FrFT and apply it to extract
speech features MFCC, which is combined with the sequence model LSTM for speech
emotion recognition. To verify the validity of the features, this paper conducts experiments
on the RAVDESS.

The preliminary results are shown in Figure 6.
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Figure 6. (a) Accuracy curve; (b) Loss curve.

As demonstrated in Figure 6, the accuracy and loss start stabilizing after the 40th epoch.
Meanwhile, the weighted accuracy (WA) and unweighted accuracy (UA) were calcu-

lated in this experiment to evaluate the model’s performance [22]. The WA is often used
to evaluate the system’s expected performance, whereas the UA is often used to assess its
ability to discriminate between classes. The experiment achieved 79.86% WA and 79.51%
UA. Initially, it can be seen that the experiment yielded good results.

Table 3 illustrates the comparison between this paper and other research evaluated
using the UA results; all of the experiments used RAVDESS as the data set.
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Table 3. Comparison with other research using UA.

Paper Feature Network UA

Parry et al. [23] Mel filterbank coefficients LSTM 53.97%

Jalal et al. [24]
F0, MFCCs and log-energy

augmented by delta and
delta-delta

BLSTM, CNN, and
Capsule networks 56.20%

Yadav et al. [25] MFCC CNN, BiLSTM 73%
Zisad et al. [26] MFCC CNN 74.40%

This paper New MFCC LSTM 79.51%

As illustrated in Table 3, the improved feature outperforms the original feature.
Furthermore, a confusion matrix was generated to show the classification results of

each emotion more clearly. The confusion matrix on the RAVDESS dataset is shown in
Figure 7.
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As demonstrated in Figure 7, disgust, surprise, sadness, and fearful achieved high
recognition accuracies of 94%, 94%, 89%, and 88%. However, neutral and happy only
obtained recognition accuracies of 55% and 64%. It can be seen that major confusion
occurs between neutral and happy, so the cognition accuracy is relatively poor, and the
cognition accuracy is relatively good for emotional fluctuations such as sadness, angry,
fearful, disgust, surprise.

5. Conclusions

In our paper, FrFT is applied to speech feature extraction. The optimal fractional
order p was obtained using AF, extracting the new MFCC, and then obtaining the emotional
classification of speech by sequence model LSTM classification. Due to applying FrFT, the
new MFCC shows better performance, and the resulting features are better than the original
MFCC features. Experiments show that better results can be obtained for the emotion
categories on the RAVDESS, especially for sadness, angry, fearful, disgust, surprise.

However, there are some shortcomings in this experiment; that is, there is some room
for improvement in the accuracy of the classification of emotions such as neutral, happy
and calm. Therefore, the classification model will be further improved after this experiment
to obtain better accuracy and reduce the loss rate.



Electronics 2022, 11, 3393 10 of 11

Author Contributions: Methodology, L.H.; software, L.H.; writing—original draft preparation, L.H.;
writing—review and editing, X.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El Ayadi, M.; Kamel, M.S.; Karray, F. Survey on speech emotion recognition: Features, classification schemes, and databases.

Pattern Recognit. 2011, 44, 572–587. [CrossRef]
2. Davis, S.; Mermelstein, P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken

sentences. IEEE Trans. Acoust. Speech Signal Process. 1980, 28, 357–366. [CrossRef]
3. Sowmya, V.; Rajeswari, A. Speech emotion recognition for Tamil language speakers. In Proceedings of the International

Conference on Machine Intelligence and Signal Processing, Allahabad, India, 7–10 September 2019; Springer: Singapore, 2019;
pp. 125–136.

4. Likitha, M.S.; Gupta, S.R.R.; Hasitha, K.; Upendra Raju, A. Speech based human emotion recognition using MFCC. In Proceedings
of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai,
India, 22–24 March 2017; pp. 2257–2260.

5. Dhruvi, D. Emotion recognition using Speech Signal: A Review. Int. Res. J. Eng. Technol. (IRJET) 2018, 5, 1599–1605.
6. Jagtap, S.B.; Desai, K.R.; Patil, M.J.K. A Survey on Speech Emotion Recognition Using MFCC and Different classifier. In

Proceedings of the 8th National Conference on Emerging Trends in Engg and Technology, New Delhi, India, 10 March 2018.
7. Namias, V. The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 1980, 25, 241–265.

[CrossRef]
8. Almeida, L.B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 1994, 42, 3084–3091.

[CrossRef]
9. Zhang, W.Q.; He, L.; Hou, T.; Liu, J. Fractional Fourier transform based auditory feature for language identification. In Proceedings

of the APCCAS 2008-2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, China, 30 November–3 December 2008;
pp. 209–212.

10. Yin, H.; Nadeu, C.; Hohmann, V. Pitch-and formant-based order adaptation of the fractional Fourier transform and its application
to speech recognition. EURASIP J. Audio Speech Music. Process. 2010, 2009, 304579. [CrossRef]

11. Ma, D.; Xiang, X.; Jing, W.; Kuang, J. Pitch Tracking of Noisy Speech Using Cepstrum Based on FrFT. Sci. Online 2011, 6, 310–314.
12. Ma, D.; Xie, X.; Kuang, J. A novel algorithm of seeking FrFT order for speech processing. In Proceedings of the 2011 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011;
pp. 3832–3835.

13. Verkholyak, O.V.; Kaya, H.; Karpov, A.A. Modeling short-term and long-term dependencies of the speech signal for paralinguistic
emotion classification. SPIIRAS Proc. 2019, 18, 30–56. [CrossRef]

14. Barbarossa, S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Trans. Signal Process.
1995, 43, 1511–1515. [CrossRef]

15. Jennison, B.K. Detection of polyphase pulse compression waveforms using the Radon-ambiguity transform. IEEE Trans. Aerosp.
Electron. Syst. 2003, 39, 335–343. [CrossRef]

16. Yongqiang, D.; Ran, T.; Siyong, Z.; Yue, W. The Fractional Fourier Analysis of Multicomponent Chirp Signals with Unknown
Parameters. Trans. Beijing Inst. Technol. 1999, 5, 612–616.

17. Capus, C.; Brown, K. Short-time fractional Fourier methods for the time-frequency representation of chirp signals. J. Acoust. Soc.
Am. 2003, 113, 3253–3263. [CrossRef] [PubMed]

18. Huang, X.; Acero, A.; Hon, H.W. Spoken Language Processing: Guide to Algorithms and System Development, 1st ed.; Prentice Hall
PTR: Hoboken, NJ, USA, 2001; pp. 423–424.

19. Shi, T.; Zhen, J. Optimization of MFCC algorithm for embedded voice system. In Proceedings of the International Conference in
Communications, Signal Processing, and Systems, Changbaishan, China, 4–5 July 2020; Springer: Singapore, 2020; pp. 657–660.

20. An, S.; Ling, Z.; Dai, L. Emotional statistical parametric speech synthesis using LSTM-RNNs. In Proceedings of the 2017
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur,
Malaysia, 12–15 December 2017; pp. 1613–1616.

21. Livingstone, S.R.; Russo, F.A. The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic,
multimodal set of facial and vocal expressions in North American English. PLoS ONE 2018, 13, e0196391. [CrossRef] [PubMed]

22. Konar, A.; Chakraborty, A. Emotion Recognition: A Pattern Analysis Approach; John Wiley & Sons: Hoboken, NJ, USA, 2015; p. 250.
23. Parry, J.; Palaz, D.; Clarke, G.; Lecomte, P.; Mead, R.; Berger, M.; Hofer, G. Analysis of Deep Learning Architectures for Cross-

Corpus Speech Emotion Recognition. In Proceedings of the Interspeech, Graz, Austria, 15–19 September 2019; pp. 1656–1660.

http://doi.org/10.1016/j.patcog.2010.09.020
http://doi.org/10.1109/TASSP.1980.1163420
http://doi.org/10.1093/imamat/25.3.241
http://doi.org/10.1109/78.330368
http://doi.org/10.1155/2009/304579
http://doi.org/10.15622/sp.18.1.30-56
http://doi.org/10.1109/78.388866
http://doi.org/10.1109/TAES.2003.1188915
http://doi.org/10.1121/1.1570434
http://www.ncbi.nlm.nih.gov/pubmed/12822798
http://doi.org/10.1371/journal.pone.0196391
http://www.ncbi.nlm.nih.gov/pubmed/29768426


Electronics 2022, 11, 3393 11 of 11

24. Jalal, M.A.; Loweimi, E.; Moore, R.K.; Hain, T. Learning temporal clusters using capsule routing for speech emotion recognition.
In Proceedings of the Interspeech 2019, ISCA, Graz, Austria, 15–19 September 2019; pp. 1701–1705.

25. Yadav, A.; Vishwakarma, D.K. A multilingual framework of CNN and bi-LSTM for emotion classification. In Proceedings of the
2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India,
1–3 July 2020; pp. 1–6.

26. Zisad, S.N.; Hossain, M.S.; Andersson, K. Speech emotion recognition in neurological disorders using convolutional neural
network. In Proceedings of the International Conference on Brain Informatics, Padua, Italy, 19 September 2020; Springer: Cham,
Switzerland, 2020; pp. 287–296.


	Introduction 
	Feature Extraction 
	Definition of the Fractional Fourier Transform 
	Determination of the Optimal Orders 
	New MFCC Feature Extraction 

	Classification Model 
	Experimental Data and Results 
	Databases 
	Experimental Parameters 
	Experimental Results and Analysis 

	Conclusions 
	References

