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Abstract: Indoor localization algorithms based on the received signal strength indicator (RSSI) in
wireless sensor networks (WSNs) have higher localization accuracy than other range-free methods.
This paper considers indoor localization based on multilateration and averaged received signal
strength indicator (RSSI). We propose an approach called weighted three minimum distances method
(WTM) to deal with the poor accuracy of distances deduced from RSSI. Using a practical localization
system, an experimental channel model is deduced to assess the performance of the proposed
localization algorithm in realistic conditions. Both simulated data and measured data are used to
verify the proposed method. Compared with nonlinear least squares (NLS), Levenberg–Marquardt
algorithm (LM) and semidefinite programming method (SDP), simulations show that the proposed
method exhibits better localization accuracy but consumes more calculation time.

Keywords: RSSI; multilateration; indoor localization; WSNs

1. Introduction

Localization plays a very important role in wireless sensor networks (WSNs) [1–3].
Especially in some applications, where the operation of the network is heavily dependent
on location information, positioning of sensor nodes becomes inevitable. Regarding the
problem of sensor node positioning, many techniques and algorithms have been proposed
to solve this issue. Localization techniques in WSNs can be summarized in two categories:
the range-based and range-free method [4,5]. In general, the range-based method has
higher positioning accuracy and higher complexity than the range-free method. There
exist many range-based positioning methods, such as those based on time of arrival
(TOA) [6,7], time difference of arrival (TDOA) [8–10], received signal strength indicator
(RSSI) and so on [11,12]. As for range-based localization methods, they consist of two steps
in the positioning process: distance estimation and position calculation. In the distance
estimation stage, the above-mentioned distance measurement techniques, TOA, TDOA and
RSSI are used to estimate the distance. Generally, more than one distance value will be
calculated. After obtaining a series of distance values, the localization enters the second
stage: position calculation. In this stage, the position coordinates will be determined from
distance values by some localization algorithms. Therefore, there are two ways to improve
localization accuracy: reduce distance estimation error and increase the accuracy of position
calculation. Localization algorithms based on TOA and TDOA techniques need to calculate
the propagation time from the transmitter to the receiver. The accuracy of the distance
estimation directly depends on the accuracy of the propagation time measurement. In a
short distance range, it is hard to measure the propagation time precisely. An alternative is
RSSI-based localization, which gives a better localization performance in this field. In our
work, we focus on localization algorithms based on RSSI techniques.
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RSSI is an indication of the signal strength received by the receiving node from
the sending node. This value is used to determine whether the link between the signal
sender and the receiver is reliable and stable. There is a certain relationship between RSSI
and distance. Therefore, we can estimate the transmission distance value by measuring
the RSSI value. It is also easy to obtain the RSSI value in the communication system.
Unfortunately, RSSI value is very sensitive to the environmental dynamics. Multipath
propagation, environmental noise, and transmitting conditions will affect the RSSI value.
How to establish precise relationship between RSSI and distance is of great importance to
RSSI-based methods. In this field, the RSSI-based method is divided into two categories:
channel model methods and fingerprint methods. For channel model methods, a model will
be established to express the relationship between RSSI and distance. Fingerprint methods
will create a database to store RSSI fingerprint collecting from the positioning region [13].
Furthermore, fingerprint methods heavily depend on the related Wi-Fi infrastructures, and
a huge database is needed. In [14], the authors proposed localization algorithms based
on the RSSI channel model. To construct an accurate RSSI channel model, many reference
nodes whose position is known are needed. In this process, many reference nodes are
deployed in advance and a signal propagation environment will affect RSSI value. In [15],
the authors developed a localization algorithm based on RSSI fingerprints. They drew the
relationship between RSSI values and location in the indoor positioning region. This kind
of method will take a lot of time to accomplish and create huge numbers of data. Both
methods have pros and cons. Despite having good positioning accuracy, channel model-
based methods need to update the channel parameters to resist environmental changes,
which will create computational overheads. Owing to storage of the RSSI data in advance,
fingerprint methods will complete the localization process quickly, but sometimes at a low
accuracy [16]. In our work, we try to establish an RSSI channel model to estimate distance.

As mentioned earlier, after the distance measurement is obtained, localization will
enter the position calculation stage. In this stage, there are many methods to calculate
position, such as the maximum likelihood (ML) estimator, linear least squares (LLS) [17]
estimator, nonlinear least squares (NLS) [18], Levenberg–Marquardt algorithm (LM) [19],
semidefinite programming (SDP) [20], weighed least squares (WLS) [21] and so on. These
location calculation algorithms will give position coordinates by a series of distance values.
A better algorithm will achieve a better performance and reduce the impact of environ-
mental changes. As for the ML estimator, when a better iterative solver is designed and
an appropriate initial point is assigned, this method can achieve a better performance.
In fact, owing to the feature of non-convexity, it is very difficult to search for the global
minimum value, which leads to this method not being able to achieve a satisfying local-
ization performance. To find the optimal position from a set of distances, LLS method
was developed. LLS changes a nonlinear relationship into a linear relationship, which can
improve calculation efficiency but will reduce accuracy. To increase position calculation
accuracy, NLS does not modify the original position optimization equation, which raises the
localization accuracy but consumes more computing time. To search the optimal position
in a wide region, LM is proposed to estimate the position that gives a better performance.
To further improve the performance of the position calculation, WLS is proposed, and
SDP is applied with position calculation. WLS can reduce localization error by assigning
appropriate weight values for position optimization and raise localization accuracy. SDP
tries to find a more accurate position by transforming a non-convex problem into a convex
one, which can find optimal values comprehensively and give a better performance. In [22],
the authors constructed RSSI channel model to estimate the distance and then adopted
SDP to find the optimal position. The simulation results show that this approach can
achieve better localization performance. In [23], a novel WLS was proposed to improve
the localization accuracy in a complex environment. The simulation results show that
this approach can improve positioning performance to a certain extent. In [19], the LM
algorithm was used for numerical optimization in indoor localization, which is effective for
neural network-based applications. However, when the positioning environment changes
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drastically, the performance of the above-mentioned techniques will be affected. The design
of better localization methods still needs a lot of work.

In our work, we focus on an RSSI-based localization algorithm. First, we choose a
popular channel model for distance estimation. The lognormal shadowing path loss model
is selected as the theoretical channel model. In our work, we use the RSSI channel model
to denote this lognormal shadowing path loss model. To realize this RSSI channel model,
we construct an experimental localization system, which is used to achieve real RSSI data.
Based on the measurements, the experimental RSSI channel model is deduced, which
is consistent with the popular lognormal shadowing path loss model. To confirm this
RSSI channel model, we design a ray-tracing simulator. Simulation is done using this ray-
tracing system for an environment similar to the experimental environment. Secondly, we
develop an indoor localization algorithm based on multilateration and averaged received
signal strength indicator (RSSI). Based on the principle of multilateration and distance
estimation formula, we analyze the factors affecting positioning performance, find the
law of error, verify the relationship between distance and error, deduce weighted factors
and design a novel position optimization equation. Based on the above achievements, we
propose an approach called weighted three minimum distances method (WTM). Then,
an experimental channel model is deduced to assess the performance of the proposed
localization algorithms in realistic conditions. Both simulated data and measured data
are used to verify the proposed method. Compared to nonlinear least squares distance
method (NLS), Levenberg–Marquardt algorithm (LM) and semidefinite programming
method (SDP), simulations show that the proposed method exhibits better localization
accuracy but consumes more calculation time.

The rest of the paper is organized as follows. The RSSI channel model and proposed
localization algorithm are presented in Section 2. Section 3 provides the localization
performance comparison between the proposed localization algorithm and the existing
methods NLS, LM and SDP. Main conclusions are drawn in Section 4.

2. Proposed Localization Algorithms

Most wireless communications networks provide straightforward access to RSSI val-
ues, which has made RSSI-based localization one of the most attractive network-based
localization approaches. The advantage of RSSI-based localization is that it can be im-
plemented easily on low-cost, battery-powered nodes with small memory size and low
processing capabilities. Therefore, we have chosen RSSI-based localization methods in our
work. In this section, the theoretical RSSI channel model will be presented. Meanwhile,
based on measured and simulated RSSI data, the RSSI channel model is deduced. Further-
more, we will propose and evaluate the localization algorithm by taking into account the
low accuracy of distances deduced from RSSI measurements.

2.1. RSSI Channel Model
2.1.1. Theoretical Channel Model

Model-based RSSI localization techniques have been proposed in the literature for
different radio technologies. Among several channel models proposed for outdoor and
indoor environments (Nakagami, Rayleigh, Ricean, etc.), the most popular channel model
for RSSI-based localization, thanks to its simplicity, is the lognormal shadowing path loss
model [24–26], which expresses the following relationship between the received power and
the transmitter–receiver distance:

RSSI(dBm) = A(dBm)− 10η log(d) + n (1)

where A is a constant term which takes into account the transmission power of the node
to be localized, d is the distance between the transmitter and receiver, η is the path loss
exponent and n is a zero-mean Gaussian random variable. Suppose that the distance
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estimation is based on M samples of RSSI(k,i), which represents the ith RSSI sample
measured by the kth anchor node. Then, according to (1), we have:

RSSI(k,i) = Ak − 10ηk log(dk) + n(k,i) (2)

where dk is the distance from the unknown node to the kth anchor node, Ak and ηk are the
model parameters of the kth anchor, n(k,i) is a zero-mean white Gaussian random variable
with standard deviation σk.

In the channel model, the noise is assumed to be Gaussian distributed. When a variable
is Gaussian distributed, its mean value is equal to its averaged value. However, in practical
conditions, where some outliers may exist, it is better to use the averaged value to estimate
the distance since it is more robust to outliers.

To achieve a good performance, the averaged value of RSSI(k,i) is used to obtain the
distance estimate:

d̂k = 10
Ak−RSSIk

10ηk (3)

where RSSIk, the averaged RSSI value measured by the kth anchor, is given by:

RSSIk =
1
M

M

∑
i=1

RSSI(k,i) (4)

2.1.2. Experimental Channel Model

To characterize the RSSI model in an indoor environment, measurements have been
realized. The experiment was done in a large hall. The testing scene is shown in Figure 1.
It should be noted that this testing region is an indoor environment. There exists a glass
dome above this courtyard. The dome is not visible in the testing picture. The experimental
testbed has been built using three Wi-Fi access points (AP) and a mobile Wi-Fi device. The
three Wi-Fi access points represent the three anchor nodes and the mobile Wi-Fi device
is considered to be the unknown node. In this experiment, a Raspberry Pi is adopted to
build the localization system. Raspberry Pi model A is configured as an access point in our
localization system and Raspberry Pi model B is defined as a mobile node.

To establish a practical channel model in this hall, many measurements have been
performed at different positions. The distances between the transmitter (mobile device) to
receiver (one of the three AP), are from 1 m to 10 m. In the testing, we find that the received
RSSI value is always −10dBm when the distance is not more than 1 m. Therefore, in the
measurement, we start the distance form 1 m. To obtain different samples of RSSI for one
position, in the measurement, we can adopt the following procedures. First, we change
mobile point position to a very small distance. This changing distance is so small that it can
be negligible for localization. Second, we can put some obstacles in the measurement region
to make the environment more complicated. Third, a person is moving in the localization
region when the measurement is being done. These measurement means will change the
transmission environments between signal receiver and sender, and many fluctuating RSSI
values for one position will be collected. The averaged RSSI is calculated from many RSSI
values based on different distances. For one same position, we change the mobile position a
very small distance, or a person is walking in this region when the measurements are being
performed. In this manner, 30 different RSSI values will be collected for one position. Then,
we calculate the average RSSI from 30 RSSI values. For example, at a distance of 5 m, the
position of the mobile point is changed by a very small distance 30 times, and 30 different
RSSI values are collected for calculating the averaged RSSI value.
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Figure 2a presents the measured averaged RSSI as function of the distance. As ex-
pected, we can find that the RSSI value decreases with the distance. From these results we
can deduce the following channel model:

RSSIk = −9.3973− 22.7135 log(dk) + nk (5)

with nk a zero-mean random variable with standard deviation σk.
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Figure 2. (a) Relationship of measured RSSI values and distance. (b) Relationship of the noise
standard deviation and distance for measured data.

Comparing Equations (1) and (5), we can find that the parameter ηk is equal to 2.27135.
Parameter ηk denotes the complexity of the environment. The larger the value of ηk, the
more complex the environment. In Equation (5), we also need to know the nk. To determine
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the relationship between the variance of the noise and distance, based on the M = 30 RSSI
values that have been acquired as before and the standard deviation of the noise, we use:

σ̂k =

√√√√ 1
M

M

∑
i=1

[
RSSI(k,i) − RSSIk

]2
(6)

where RSSIk is defined in Equation (4).
The obtained results are shown in Figure 2b. From the experimental results, the

standard deviation of the noise, in terms of the distance from 1 to 10 m, can be expressed as:

σ(d) = −0.0939d2 + 1.9440d− 0.9698 (7)

The variance model defined by Equation (7) is specific to our measurement condition
but indicates that the RSSI variance tends to increase with distance, which has already been
observed in some work [27]. The relationship of the noise variance and distance depends on
the environment size and complexity. It is worth noting that this channel model expressed
by Equations (5) and (7) is specific to the measurement environment and based on the
distance below 10 m. It needs to be emphasized that this channel model is only suitable for
the distance below 10 m and cannot be generalized for larger distances. In our work, we
consider the distance below 10 m. In the test, we also collected data from larger distances,
such as above 10 m. We found that large distances will give large variances. We also found
that large distances will also give large localization errors. Therefore, in our work, we
only consider the distance below 10 m to achieve a better localization performance. We
did measurements on the condition that the distance is within 10 m and analyzed these
measurements. If we want do localization in a larger region, we can subdivide this region
into some smaller ones by adding more anchors into it or we need to do measurements
based on larger distances, such as 15 m, 20 m and so on to construct the RSSI model.

2.1.3. Simulated Channel Model

The previous subsection presents the channel model based on measured RSSI data,
which are provided by a practical testing system. The results show that the RSSI value
decreases with increased distance. The noise variance increases with increased distance.
To confirm this trend, we have designed a ray-tracing system whose simulation scenario
is shown in Figure 3. Simulation is done using this ray-tracing system for an indoor
environment similar to the experimental environment. We simulate a workshop for the
indoor environment. Signal sending and receiving occur within this workshop. In this
ray-tracing system, four cases are considered to define different environment conditions.
Two cases have obstacles in an indoor workshop and another two cases have no obstacles
in them. As illustrated in this simulation scenario, there is a simulated workshop with two
obstacles in it. A transmitter denoted by TX sends a signal to a mobile receiver denoted by
RX, which moves from position 1 to position 2. In the simulation, the averaged RSSI value
is calculated based on these simulated data. The relationships between the distance and
standard deviation of noise for four cases are observed.

In the first two cases, we observe the relationship between the RSSI values and distance
with no obstacle in the room. The size of workshop for case 1 and 2 are different. In the
third and fourth cases, we change the room size or put two obstacles in it. The detailed
information for these four cases is illustrated in Table 1. In case 1 and case 3, the length,
width and height of the workshop are set to 15 m, 8 m and 5 m. In case 2 and case 4, the
length, width and height of the workshop are set to 30 m, 10 m and 5.5 m. Meanwhile,
there is no obstacle in the workshop for case 1 and case 2. Two obstacles, as shown in
Figure 3, are placed between the sender and receiver and do not block the signal sender
and receiver completely in the workshop for case 3 and case 4. Moreover, we set the
transmission power at −100 dBm consistently for four cases. Similarly, the frequency is
assigned as 2465 MHz for all cases. In the ray-tracing work, we consider 3 reflections for
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case 1 and 2, and 5 reflections for case 3 and 4. To simplify this ray-tracing process, we do
not consider signal scattering and others. As for attenuations caused by reflections, we
set reflection attenuation factor as 0.25. That is to say that the reflected signal power will
be decreased to 25% of that of incident signal. We use free space path loss model in this
process to calculate signal attenuation. In this simulation, we suppose the receiver has a
better sensitivity, which can receive very low-power signal, far below −100 dBm.
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Table 1. Environment information for four cases.

Case Length
(m)

Width
(m)

Height
(m)

Obstacle
Number

Transmitting
Power (dBm)

Frequency
(MHz)

Reflection
Number

Case 1 15 8 5 0 −100 2465 3
Case 2 30 10 5.5 0 −100 2465 3
Case 3 15 8 5 2 −100 2465 5
Case 4 30 10 5.5 2 −100 2465 5

The interface of ray-tracing system is shown in Figure 4. At the top of this interface,
we can set some parameters in this simulator. Specification of the workshop is regulated by
a txt file and will be imported into simulator. This txt file will define the workshop size
and the number of obstacles. The positions of two obstacles are also defined in this txt
file. The position of signal sender and receiver can be set. Furthermore, other parameters,
such as frequency, step and so on also can be set in this simulator. For four cases, the
position signal sender TX and position of RX 1, 2 are set to be (1.15, 1, 1.45), (1.2, 2, 1.5),
(1.2, 11, 1.5) respectively. The step sensor is set as 0.05, which denotes the moving step
from position 1 to 2. We can draw the room and ray path by the buttons at the top right of
the interface. The simulated RSSI values will be saved in a txt file. In the simulation, for
one position, 30 different RSSI values are measured, and 180 positions are considered by
changing the distance from 1 m to 10 m with interval of 0.05 m. Therefore, in this simulator,
we also consider the distance to be below 10 m to construct the channel model in line with
the measurement system. Similarly, in a similar manner to the real RSSI collection from the
previous system, simulated RSSI values are acquired from this ray-tracing system. Then,
the averaged RSSI are calculated for one distance and the relationship between the distance
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and RSSI are plotted for four cases. These results are shown in Figure 5a–d. Moreover, the
linear approximations for the four cases are plotted in Figure 6. Based on these simulated
RSSI data, the values of parameters A and η for all cases are estimated and given in Table 2.
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Table 2. Different parameter values for four cases.

Case A η

1 −100.20 1.95
2 −99.99 1.99
3 −99.92 2.01
4 −99.70 2.04

From these results, we can compare the channel model parameters for four cases. In
the first and second cases, there is no obstacle in the workshop. In the second case, we
enlarge the room size. By comparing the parameters of case 1 and 2, we can find that A
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value increases from −100.20 to −99.99, which represents a very small evolution. Similarly,
η value decreases from 1.95 to 1.99. This is because the reflected signal strength weakens
when the room size is enlarged. It needs to be explained that the values in Table 2 are
based on the fitting curves of the simulated data. We can find that the A value is larger
than the transmitting power −100 dBm. This does not mean that the RSSI values will be
larger than −100 dBm. All the simulated RSSI values are below −100 dBm. In the channel
model, η value denotes the signal attenuation. In a more complex environment, signal will
attenuate quickly, which will involve a larger η value. As shown in Figure 5, for all cases,
RSSI values decrease with the increased distance, which is in line with the change tendency
of the measured RSSI from the testing system. For four cases, as shown in Figure 6, they
give different attenuation factors depending on different transmitting environments.

In the third and fourth cases, we put two obstacles in the room, as shown in Figure 3.
It indicates that η increases when obstacles are put in the measurement space. This is
because the signal attenuates when there are obstacles between the transmitter and receiver.
Moreover, all η values based on measured data are larger than that based on the simulated
data. The reason for this difference is first that the simulation scenario is simpler than the
real measurement environment, and secondly that the simulator simplifies the physical
phenomena of propagation.

Similar to the calculation means on measured RSSI data, the relationship of standard
deviation of noise and distance based on the simulated RSSI also be drawn. The rela-
tionships between the standard deviation of noise and distance for four cases are plotted
in Figure 7a–d. Moreover, comparison of the relationship between the noise standard
deviation and distance based on simulated data for four cases is plotted in Figure 8. The
standard deviation of the noise, in terms of the distance from 1 to 10 m, can be expressed
by Equation (8) for case 1, Equation (9) for case 2, Equation (10) for case 3 and Equation (11)
for case 4, respectively.

σ(d) = −0.13d2 + 1.66d− 0.29 (8)

σ(d) = −0.13d2 + 1.78d− 0.27 (9)

σ(d) = −0.13d2 + 1.89d− 0.30 (10)

σ(d) = −0.15d2 + 1.96d− 0.31 (11)

From the above analysis on the simulated RSSI data, it can be observed that the real
and simulated data have a similar tendency in terms of the relationship between the noise
standard deviation and distance. The noise standard deviation increases with distance
when the distance is restricted below 10 m. However, due to the complex environment,
the standard deviation based on real data is larger than the simulated data. These channel
model experiment results show that a more complex signal transmitting environment will
give a larger attenuation factor and a larger noise, which is consistent with the theoretical
channel model.

2.2. Localization Algorithms

The previous section has shown that the relationship between the RSSI value and
distance can be written as:

RSSI(dBm) = A(dBm)− 10η log(d) + v (12)

where A and η are channel parameters whose values change with the environment and v is
a noise whose variance is also largely variable.
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Figure 7. (a) Relationship of the noise standard deviation and distance based on simulated data for
case 1; (b) Relationship of the noise standard deviation and distance based on simulated data for
case 2; (c) Relationship of the noise standard deviation and distance based on simulated data for
case 3; (d) Relationship of the noise standard deviation and distance based on simulated data for
case 4.

Therefore, the RSSI is not reliable for deducing distance. The objective of this section
is to propose and evaluate some localization algorithms by taking into account the low
accuracy of distances deduced from RSSI measurements. Based on the principle of multi-
lateration and distance estimation formula, we analyze the factors affecting positioning
performance, find the law of error, verify the relationship between distance and error,
deduce weighted factors, and establish a novel position optimization equation. Based on
the above achievements, an approach named weighted three minimum distances method
(WTM) is proposed. Using the testbed described in the last section, an experimental chan-
nel model is deduced to verify the performance of the proposed algorithm under realistic
conditions. Simulations will be done to show that the proposed method can achieve better
accuracy. In the following subsections, the proposed localization algorithm is detailed and
performance comparisons are presented.
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Figure 8. Comparison of relationship between the noise standard deviation and distance based on
simulated data for four cases.

2.2.1. Distance Estimation from RSSI

The proposed algorithm is based on the distance estimated from RSSI. Therefore,
the first step of the study is to define a method to do this estimation and to evaluate the
distance accuracy.

Suppose that the distance estimation is based on M samples of RSSI(k,i), which repre-
sents the ith RSSI sample measured by the kth anchor node. To achieve a good performance,
the mean value of RSSI(k,i) is used to obtain the distance estimate:

d̂k = 10
Ak−RSSIk

10ηk (13)

where RSSIk, the mean RSSI value measured by the kth anchor, is given by:

RSSIk =
1
M

M

∑
i=1

RSSI(k,i) (14)

It should be noticed that the mean value can be replaced by the median value in
practical situations, with the advantage that the median value is less sensitive to outliers.
In our model, because the RSSI(k,i) is Gaussian distributed, the mean value is equal to the
median value.

Using a channel model defined by Equation (2) and substituting Equation (14) into
Equation (13), we can deduce the estimated distance as:

d̂k = dk10
− 1

10ηk
1
M

M
∑

i=1
v(k,i)

(15)

If the noise is small or the number of samples M is large, the estimated d̂k can be
approximated by:

d̂k ' dk[1−
ln10
10ηk

1
M

M

∑
i=1

v(k,i)] (16)
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Then the measurement error can be evaluated by the following additive noise:

ne = −dk
ln10
10ηk

1
M

M

∑
i=1

v(k,i) (17)

Its variance is given by:

σ2
e = d2

kσ2
k (

ln10
10ηk

)
2 1

M
(18)

To confirm this theoretical derivation, simulations are performed to observe the rela-
tionship between the distance variance σ2

e and the sample number M. In Figure 9, a distance
value dk is given to be 5 and the relationship between the distance variance σ2

e and the
sample number is plotted. These results indicate that the simulation results match well
with the deduced expression although there exists error caused by noise. With the increase
of the sample number M, the error between the measured distance variance and theoretical
value becomes smaller.
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e and M for dk = 5.

When the distance value is set to 8, a similar result can be obtained which is illustrated
in Figure 10. As expected, the distance variance becomes larger when the distance increases.
From Equation (18) we can deduce that the variance of the estimated distance depends
on the distance and on the measurement noise variance. From the previous study, we
also know that the noise variance increases with the distance. It is clear that a large
distance corresponds to a stronger estimation variance, giving a less precise estimation of
the distance. Analysis results of the distance estimation error, expressed by Equation (18),
provides some guidance to reduce localization error, such as using the smallest distance
from the unknown node to anchor nodes or increasing the sample number M. This error
analysis conclusion will be used to design a novel algorithm in our work.
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2.2.2. Multilateration

The multilateration algorithm is a basic positioning method, widely used in many
localization systems [28,29]. In this algorithm, at least three anchor nodes are needed for
two-dimensional localization. The position of the anchor nodes is assumed to be known.
The relationship between the unknown node position and N anchor nodes positions can be
expressed as: 

(x− x1)
2 + (y− y1)

2 = d2
1

(x− x2)
2 + (y− y2)

2 = d2
2

...
...

...
(x− xN)

2 + (y− yN)
2 = d2

N

(19)

where (x, y) is the coordinates of the reference or unknown nodes, (x1, y1), (x2, y2), · · · ,
and (xN , yN) are the coordinates of the N anchors.

In ideal conditions, in the absence of fading, noise and channel model error, the above
equations represent N circles that will intersect at only one position. This intersected point
is the actual position. Unfortunately, in practical conditions, the N circles do not intersect
at one position due to fading and noise impacts. For example, when the number of anchors
is equal to 3, Figure 11a,b show the three circles under ideal conditions and under real
conditions. In the case of real conditions, we need to find the most likely position in
other ways.
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Figure 11. (a) Location relationships of three circles in ideal conditions; (b) Location relationships of
three circles in real conditions.

2.2.3. Proposed Method

To approximate the most likely position, nonlinear least square (NLS) has been pro-
posed. The nonlinear optimization problem can be solved using the sequence quadratic
programming algorithm [30,31]. In this paper, we propose a novel method based on NLS,
called WTM. For this proposed method, the objective minimization function is modified,
and the best position is given by:

x̂ = argmin
x∈R2

N

∑
k=1

αk[‖x− xk‖ − d̂k]
2

(20)

x̂ =

[
x̂
ŷ

]
(21)

xk =

[
xk
yk

]
(22)

where N is the number of anchors, x̂ is the estimated position, xk is the coordinates of the
kth anchor and d̂k the estimated distance from the averaged RSSI value at the kth anchor.
We introduce a weight αk used for each estimated distance d̂k.

The weights are introduced to deal with the fact that the distance estimation variance
increases with the distance. The weight values differ with different estimated distances. For
proposed WTM, first, the n (3≤ n≤N) smallest estimated distances are selected from the N
available distances. Then, different weight values are assigned for the n selected distances.
For example, when n equal to 3, the three smallest estimated distances are selected from
N available distances, and when n is equal to N, all the estimated distances are selected
from N available distances. The value n can be adapted and can vary from 3 to N in the
proposed algorithm. Therefore, the weight values αk are assigned as:

αk =

{
1

d̂4
k σ̂4

k
k = m1, m2, · · ·mk · · · , mn

0 k 6= m1, m2, · · ·mk · · · , mn
(23)

From the above study, we know that the noise variance increases with the distance.
It is clear that a large distance corresponds to a stronger estimation variance, giving a
less precise estimation of the distance. According to Equation (18), we assigned different
weighted values to different distances. Therefore, using the weight value assigned in
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Equation (23), the uncertainty of the measured distances can be taken into account in
the objective function. Considering both Equations (18) and (20), and for reducing the
computation complexity, we set the power exponent in the weight value as 4. In practice,
the estimated standard deviation σ̂k in Equation (23) is estimated from Equation (6).

3. Experiment and Analysis

To evaluate the proposed localization algorithm, the experiment and analysis will be
done in this section. In the performance comparison, we choose three existing algorithms:
NLS, LM, and SDP, to compare. For WTM, two cases: n = 3 and n = N are considered in the
performance comparison. Both simulated and measured RSSI data will be used to verify the
performance of NLS, LM, SDP and WTM, which will be detailed in the following sections.

3.1. Simulated Data Verfication

After acquiring the channel model from the experimental data, the whole localization
process can be evaluated in a given region. As shown in Figure 12, eight anchor nodes
which are denoted by red dots are set in the predefined positions with coordinates A(0,6),
B(0,0), C(6,0), D(6,6), E(0,3), F(3,0), G(6,3), H(3,6). In the coordinate scale, 1 denotes 1 m.
When the number of anchors is three, the anchor nodes are located at A, B, and C. When
this number is four, the fourth node is located at D. In a similar letter order, more anchors
positions can be determined. When the anchor number is eight, the eight anchor nodes are
deployed regularly on the edge of this region.
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In the simulation, the unknown node position is randomly selected from the intersec-
tion points of the grid, which is denoted by black dots, as shown in Figure 12. We define
this localization region to simulate a room. We will locate the anchor nodes on the wall of
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the room. In this indoor localization region, all the moving objects within this room will be
surrounded by all anchor nodes. Based on this application scenario, in our work, we only
consider the localization problem inside an area formed by the anchors. Then, for each
selected position, we calculate the root mean square error (RMSE) [32] value defined as:

RMSE =
1
T

T

∑
t=1

√
(x̂(t)− x(t))2 + (ŷ(t)− y(t))2 (24)

where (x(t), y(t)) is the real selected position. (x̂(t), ŷ(t)) is the position estimated by the
compared localization methods. T is the number of randomly chosen positions. In the
simulation, T is equal to 500.

To increase the accuracy of the localization methods, we need to acquire many RSSI
values for the proposed algorithms. Using simulation results based on the experimental
channel model, M different samples of RSSI are acquired for each selected position. Then
the averaged RSSI value is calculated from M sampled values and the coordinates of the
position are estimated. In this simulation, in line with the sample number in the channel
model, the number of samples M is equal to 30. In the practical application, a higher
sample number M will give higher localization accuracy. If we increase this value, the
accuracy of the algorithms will increase. Meanwhile, collecting RSSI data will consume
time. A large sample number will increase time delay. We need to make a tradeoff between
localization time and accuracy. In our work, we choose a moderate sample number of 30.
In the following sections, we will present the comparison of localization performance in
terms of accuracy and time overhead for the four compared localization algorithms.

3.1.1. Localization Accuracy

In this special simulation scenario, the possible searched region is defined by the
square area limited by A, B, C and D. From Equation (24), we know that a smaller RMSE
value indicates a higher accuracy. As illustrated in Figure 13, the changing RMSE tendencies
for the four compared algorithms based on different anchor number are plotted. Overall,
among these four algorithms, WTM (n = N) gives the highest localization accuracy and
NLS gives the lowest. Since the proposed algorithms are based on an improved NLS, we
can see that the improvement in the term of accuracy is obvious. When the number of
anchors is 3, WTM (n = 3) and WTM (n = N) are equivalent, so the accuracy of them is
identical. When the anchor number increases from 4 to 8, we can find that WTM (n = N)
is better than WTM (n = 3). When the number of anchors is 3, 4, 5, 6, 7 and 8, the RMSE
value of SDP is smaller than that of LM and NLS, which indicates that the accuracy of
the SDP is superior to that of NLS and LM. LM is better than NLS in terms of localization
accuracy. WTM gives higher localization accuracy than SDP, LM and NLS. Moreover, with
respect to all algorithms, when the anchor number increases, the localization accuracy will
increase. This indicates that employing more anchor nodes will increases accuracy. From
all these results, we select RMSE values for four algorithms based on eight anchors to do
quantitative analysis. When the anchor number is raised to eight, the RMSE values for NLS,
LM, SDP, WTM (n = 3) and WTM (n = N) are 0.55, 0.50, 0.46, 0.29 and 0.20, respectively.
From these results, we can see that WTM (n = N) has about 64% improvement with respect
to NLS in terms of localization, and WTM (n = 3) has about 60% improvement. Compared
with the SDP, WTM (n = N) has about 57% improvement on accuracy and WTM (n = 3)
has about 46% improvement. Among all these algorithms, the proposed WTM (n = 3) and
WTM (n = N) have better performance in the term of localization accuracy.
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Figure 13. Localization accuracy for NLS, LM, SDP and WTM based on simulated RSSI data.

3.1.2. Time Overhead

We also compared the calculated time for the four algorithms. The simulation times
(ST) for each method implemented in MATLAB software on a computer with processor
unit (CPU) of 2.6 GHz and 16 GB of RAM are observed. The time cost of each positioning
process for the four algorithms is shown in Table 3. From these calculation time results,
we can see that the influence of the number of anchors on simulation time is negligible.
This indicates that the calculation time is mainly comprised of optimal point searching
time. The calculation times for one single localization process of NLS and LM are 25 ms
and 42 ms, respectively. The calculation time is almost the same for SDP, WTM (n = 3) and
WTM (n = N), which is 58 ms. These results show that the proposed WTM (n = 3) and
WTM (n = N) will consume more calculation time. Compared with NLS, the calculation
time of WTM (n = 3) and WTM (n = N) are increased by 132%. Therefore, WTM (n = 3)
and WTM (n = N) will involve a larger time overhead. In the view of this situation, we
need to perform the localization process on the remote computing server to speed up the
localization process. In practical application, collecting RSSI data from anchor nodes will
consume time. Therefore, the whole localization time is composed of RSSI collecting time
and calculation time. Compared with calculation time, RSSI collecting time is far larger in
the localization process. When the anchor nodes number is 3, the WTM (n = 3) and WTM
(n = N) are the same. When the anchor number is more than 3, the localization accuracy of
WTM (n = N) is better than the WTM (n = 3). More anchor node will consume more RSSI
collecting time. There is always a contradiction between time consumption and localization
accuracy. If we want to achieve higher accuracy, we can choose WTM (n = N). On the
contrary, the WTM (n = 3) method will consume less localization time than WTM (n = N) in
the real application. Furthermore, we can adjust n values form 3 to N to achieve a tradeoff
between accuracy and localization time in the practical application.
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Table 3. Simulation time for one localization process in milliseconds.

Anchor Number 3 4 5 6 7 8

NLS_ST 25 25 25 25 25 25
LM_ST 42 42 42 42 42 42
SDP_ST 58 58 58 58 58 58

WTM (n = 3)_ST 58 58 58 58 58 58
WTM (n = N)_ST 58 58 58 58 58 58

3.2. Measured Data Verfication

In our work, we also did performance comparison based on measured RSSI values
form the testing system. Since there are only three anchor nodes in the experimental
positioning system, we can only verify when the number of anchor nodes is equal to 3 for
the localization algorithms based on measured data. In the experimental scenario shown in
Figure 1, we deploy three anchor nodes at points A, B, and C in an indoor environment. In
this experimental testing hall, the coordinates of the three points A, B and C are (0, 6), (0, 0),
and (6, 0) respectively. In the RSSI data collection, we selected three points (3, 2), (1, 5), and
(5, 5) to measure and collect the RSSI data. The number of RSSI data collected at each point
is equal to 30. After collecting the RSSI data, we estimated the distance to the three anchor
nodes and calculated the position for these three points by the four positioning algorithms.
Finally, we calculated the value of RSME obtained at three points, and the results are shown
in Table 4.

Table 4. Localization results for NLS, LM, SDP and WTM based on measured RSSI data for three
selected points.

Algorithm NLS LM SDP WTM (n = 3) WTM (n = N)

RMSE of point (3, 2) 1.63 1.42 1.28 0.93 0.93
RMSE of point (1, 5) 1.64 1.44 1.29 0.94 0.94
RMSE of point (5, 5) 1.66 1.47 1.32 0.95 0.95

From the RMSE results of the four algorithms obtained from the measurement data,
similar to the results based on simulated data, WTM (n = 3) and WTM (n = N) will give the
best localization accuracy. The main difference is that the RMSE values of each algorithm
based on the measured data is larger than the RMSE values based on simulated data. This
is because in the real measurement environment, due to changes in the environment, the
collected RSSI data have greater irregularities, so the positioning accuracy is lower than
the simulated data. For the three selected points (3, 2), (1, 5), and (5, 5), their localization
accuracy have slight differences. The localization accuracy of point (3, 2) is slightly better
than (1, 5), and (5, 5), which is caused by the anchor node deployment. From the RMSE
values given by point (5, 5), we can see that WTM (n = 3) and WTM (n = N) give an
identical value 0.95. Compared with NLS and SDP, the accuracy improvement is about
43% and 28% by WTM (n = 3) and WTM (n = N). These experimental results indicate that
the proposed WTM (n = 3) and WTM (n = N) will give better performance in terms of
localization accuracy.

4. Conclusions

In this paper, an approach called WTM based on multilateration is proposed to deal
with the poor accuracy of distances estimated from RSSI values. Averaged RSSI is calculated
for distance estimation, and the multilateration is adopted to estimate the position. Based
on practical data acquired from a real localization system, an experimental channel model
is constructed to evaluate the proposed algorithms. Distance estimation error is analyzed,
and the weight factors are derived from the RSSI channel model. Based on the analysis
result of the distance estimation error, a novel algorithm is proposed. The measured RSSI
data are also used to evaluate the localization performance for the compared algorithms.
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Compared with the existing NLS, LM and SDP algorithms, the proposed localization
algorithm exhibits better performance in terms of localization accuracy.
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