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Abstract: Correctly defining and grouping electrical feeders is of great importance for electrical
system operators. In this paper, we compare two different clustering techniques, K-means and
hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The
raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii)
a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a
seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan
load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five
linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index
scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best
performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index
scores with a configuration of six clusters.

Keywords: energy; clustering; distribution network; feeder

1. Introduction

In electric distribution networks, the identification of electric load profiles is of great
interest for electric energy distribution network planners and operators [1] (DNOs). The
grouping distribution of feeders can be useful for tasks such as the simulation of the impact
of new grid technologies, new tariffs, or network re-configurations [2]. Furthermore, the
identification of a set of representative feeders allows the load distribution to be modeled
avoiding an exhaustive simulation process on every feeder of the network.

To identify representative feeders, operators often use deterministic and aggregated
load models [3]. This approach is straightforward to apply and clear to assess. However, it
fails in the presence of uncertainties leading to suboptimal solutions. In order to integrate
the uncertainties, probabilistic and optimization load modeling approaches have been
applied [4]. Despite the improvement with respect to the aggregated model, they require
detailed knowledge or assumptions at an appliance level [5]. To overcome this problem, the
clustering approach finds the best model according to the data. In this approach, different
electric characteristics are taken into consideration to generate the model [2]. In [6], a
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data-driven time series clustering method is proposed to provide meaningful and intuitive
profiles to describe the behaviors of consumers at the local electrical grid level. Other
important applications of electrical consumption clustering include the characterization of
load curves in a real distribution system [7] and load profiling for tariff design and load
forecasting or distribution planning [8].

The application of descriptive analyses to electric consumption data allows insights
about electrical usage behaviour to be obtained. For example, in [9], a clustering analysis is
applied for the determination of the optimal placement of distributed generation sources
in electrical distribution systems. The results reveal that the feeders with peak demand
in the early afternoon are more likely to be better candidates for distributed photovoltaic
generation. Another interesting application is the demand-side management. In [10], the
clustering analysis is helpful for identifying different consumption profiles and implement-
ing demand-side response programs or specific incentives to modify consumer demand.

In this work, we address this problem by applying two clustering strategies on a
data set containing electric consumption data generated in Paraguay and provided by
the Paraguayan electric company. In particular, we applied K-means and hierarchical
agglomerative clustering and analyzed the results. Moreover, since clustering techniques
use a distance measure to establish the clusters, we evaluated two different measures, the
Euclidean and the dynamic time warping (DTW) measures [11]. DTW was considered
convenient since data are organized as time series.

The data corresponded to the eastern region of the country and were recorded from
January 2017 to December 2020, with measurements recorded every hour and a half. It is
important to remark that these data were obtained and made public as part of the same
research protect that made this paper possible [12]. In order to be used, the raw data were
processed to obtain the following four data sets applicable to the clustering analysis:

1. Weekly time series data, where the consumption of each feeder was aggregated on a
weekly basis;

2. Monthly time series data, where the consumption of each feeder was aggregated on a
monthly basis;

3. Statistical data set—a set of statistical features was calculated from the raw data;
4. Seasonal and daily load curve feature data set—a set of features based on the daily

load curve and seasonal consumption variations was computed.

We can summarize the contributions of this work as follows:

• Analysis and comparison of the performance of different clustering algorithms using
real electricity consumption data collected from a Paraguayan electricity provider.

• Study of the suitability of four different data processing strategies.
• Evaluation of the influence of distance metrics and linkage criteria for this particular

case study.

The rest of the paper is organized as follows: In Section 2, related works are presented.
Then, the raw data, data processing, clustering algorithms and related techniques are
described in Section 3. Section 4 shows the algorithms results and, finally, in Section 5, the
conclusions and future work are proposed.

2. Related Works

There is a growing concern to address energy-related problems such as electricity
consumption, load and demand. Understanding different energy consumption patterns or
measuring the environmental impact of energy production can help the adoption of new
policies according to demand–response scenarios [13], as well as more sustainable energy
policies [14]. In the literature, much attention has been given to electricity consumption
prediction [15]. In [16], for example, Walket et al. applied several learning algorithms—
boosted tree, random forest, support vector machine (SVM) and artificial neural networks—
to predict commercial building electricity demands. Liu et al. [17] applied SVM to public
buildings’ energy consumption from Wuhan (China). In this case, the energy consumption
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data were combined with climatic and time-cycle factors. Many other works using the
supervised approach can be found [18–20].

Clustering, although to a lesser extent than said predictive methods, has also been
studied in the literature. There are several relevant works in the field. For example, Diao
et al. [21] used a clustering approach to identify and classify the behaviour of occupants
analysing energy consumption outcomes and energy time use data. Pérez-Chacón et al. [22]
applied this approach to extract the energy consumption pattern of smart cities in a big
data context. The method proposed was tested using electricity consumption during
the years 2011–2017 for eight buildings in a public university. Divina et al. [23] applied
the biclustering approach to find anomalies in the energy consumption pattern of smart
buildings from a Spanish university campus. In [24], Pinto-Roa et al. proposed to extend an
evolutionary algorithm to the time-series approach to identify consumption user profiles.

Feature extraction is another interesting approach. It entails proposing new features
from the original ones to enhance relevant information. In this context, disregarding tempo-
ral information results in the loss of time-related information and redundancy of features.
In this context, Meng et al. [25] applied a discrete wavelet transform (DWT) to decompose
the raw data. The DWT is not only capable of extracting the rising trend and periodic waves,
but it can also distinguish stochastic behavior. Neural networks (NN) were used to predict
periodic waves, which can simulate their increasing amplitude. For this work, in which
electric energy consumption data from China were under analysis, the results suggest the
competitiveness of the proposal for a forecasting purpose. In [26], Luo et al. developed an
integrated artificial intelligence-based approach that was combined with an evolutionary
algorithm to enhance an adaptive deep neural network model. The proposal was tested on
hourly energy consumption data. Liang et al. [27] presented a hybrid model. Such model
combined empirical mode decomposition, minimal redundancy, maximal relevance and
general regression neural network with fruit fly optimization algorithm. This approach,
called EMD-mRMR-FOA-GRNN, was validated using load data from the Chinese city of
Langfang. Finally, a systematic time series feature extraction method called hierarchical
time series feature extraction was proposed by Ouyanf et al. [28]. This model was used
for supervised binary classification tasks and only used user registration information and
daily energy consumption data to detect anomaly consumption users with an output of
stealing probability. The performance of this proposal was tested using data from over
100,000 customers.

3. Materials and Methods

This section introduces the nature of the electric energy consumption data and provides
the basic concepts of time series and feature-based clustering. The data used in this work,
the characteristics calculated for the feature-based clustering approach and the basic notions
of the clustering algorithms used are all described here.

Electric energy consumption data are usually represented as a time series through a
discrete sequence of data points measured at equal time intervals.

Let X = {Xi}N
i=1 be a set of N univariate time series, where Xi = {xi,t}T

t=1 is one of
them and is characterized by T real values. Thus, the sample X can be represented through
a matrix HN×T .

In the context of these particular data, each time series represents a sequence of sensor
data collected over time. Therefore, the data can be viewed as an N× T energy consumption
data matrix EM. EM is a real matrix, where each element eit represents the electric energy
consumption of a feeder (expressed in kWh) as measured by sensor i at the hour t.

Another approach to represent the electric energy consumption is to calculate a set of
features representing each electric consumption sequence instead of considering it as a time
series [29]. The main advantages of this feature-based clustering method are: the ability
to reduce the dimensionality of the original time series; the fact that it is less sensitive to
missing values; and the fact that it can handle different lengths of time series [29]. The two
feature data set representations implemented in this paper are described in Section 3.3.
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3.1. Data

The data set used in this work contained 2,967,224 records of electric consumption
measured in amperage from January 2017 to December 2020 (4 years) of 115 feeders
distributed in 17 substations of the eastern region in Paraguay.

The data set, named “Electricity consumption and meteorological data of Alto Paraná,
Paraguay”, is freely and publicly available at [12].

3.2. Data Preprocessing

A couple of transformations were applied to the data set to reduce the error in the
results. The first step was normalizing the time stamp value. For example, 23:59:59 on
a given day was converted to 00:00:00 of the next day. The elimination of negative and
zero electric consumption records was applied. Since the collected data did not have a
standard timing interval (records were saved every thirty minutes in some periods; in
others every hour), the next step was the hourly frequency normalization. All records that
did not match an o’clock time were removed from the set. Before the outlier detection and
data imputation phase, feeders with less than 90% of records were discarded. After all
the preprocessing, 24 records per day from each feeder were expected over four years, i.e.,
feeders with less than 31.536 records were removed.

The result of these steps is a reduced data set made of 55 feeders distributed in 14
substations with at least 90% of recorded hourly data during said four-year period.

With the reduced data set, outlier detection was performed using the algorithm
proposed by Vallis et al. [30]. This algorithm requires a full data set. Thus, a linear
interpolation to fill the gaps was needed before running it.

The Box–Cox transformation [31] was also used to stabilize the variance in the data,
so that they remained stationary and obtained an additive time series as described by
Chatfiel [32] and Hyndman et al. [33]. This resulted in X∗ as the Box–Cox transformation
of X. Given the time series X∗, this algorithm implements the Seasonal and Trend decom-
position using LOESS (STL) [34] to obtain the components of seasonality Sx∗ , trend Tx∗ and
remainder Rx∗ , such that X∗ = Sx∗ + Tx∗ + Rx∗ . This decomposition method allows the
seasonal component to be varied according to the nature of the series; simultaneously, it is
robust to the presence of outliers.

After this, the remainder component was recalculated as Rx∗ = X∗ − Sx∗ − X̃∗, where
X̃∗ is the median of the data considering a non-overlapping moving window of two-week
length as described in [30]. Then, the generalized extreme studentized deviate (ESD)
test [35] was applied over the resulting remainder component using both median and
median absolute deviation to detect outliers as described by Vallis et al. [30].

Finally, the inverse Box–Cox transformation was run. The outliers, as well as the
interpolated values that were added at the beginning of this phase, were removed. The
outliers quantity per feeder is shown in Figure 1.
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Figure 1. Combo bar chart representing the percentage and total numbers of outliers detected on
each feeder.

After all outliers and unwanted records were discarded, the historical average data
imputation technique [36] was applied to estimate each missing record yi as an average
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of NH representative historical records yj, j ∈ H, where | H |= NH. The set H included
all historical records where the day of the week (DOW) is the same as the one on the
missing record and within selected spans of it. The DOW guaranteed that historical
means were calculated over records of the same days of the week and similar seasonal
characteristics. The selected DOW span for this analysis was ±6 weeks. The resulting
data set contained 1,848,947 records of 55 feeders distributed over 14 substations. Figure 2
shows the percentage and number of records per feeder.
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Figure 2. Combo bar chart representing the number and percentage of records per feeder.

3.3. Data Sets and Features

In this section, the making of the four data sets used is explained.
The first data set provided the weekly demand registered by the feeders. Calculations

considered a Sunday-to-Saturday span, resulting in a time series of 207 records. Sunday
was chosen because the time series of the feeders began on that day, on 1 January 2017.
Thus, an equitable distribution of the days for each week was obtained from the start.
However, some days were dropped, even in the middle of the time series, due to missing
data and some weeks yielded data with less than seven days.

The second data set contained the monthly demand, with a time series of 48 records.
As on the first data set, some months had fewer data than others due to discarded data.
December 2020 was the month with the fewest observations, only 16 days.

The third data set was considered from the work performed by Rasanen et al. [29].
Seven statistical features were extracted from each of the feeders in a window of size equal
to one calendar week Ni throughout the entire time series, where i = 1, 2, . . . , 207 weeks. It
should be noted that, although Ni corresponds to one week, it presents different lengths
due to missing values in certain weeks.

Therefore, the features used were: mean (µ), standard deviation (σ), skewness (S),
kurtosis (K), maximum Lyapunov exponent (λ), energy (E) and periodicity (P). The mean,
calculated by Equation (1), indicates the central value of the analyzed data. In contrast, the
standard deviation (Equation (2)) indicates a measure of the dispersion of the data.

µi =
1
Ni

Ni

∑
t=1

xi,t (1)

σi =

√√√√ 1
Ni

Ni

∑
t=1

(xi,t − µi)2 (2)

Skewness (Equation (3)) is a measure that indicates the degree of asymmetry in the
distribution of the demand data [37]. Kurtosis (Equation (4)) is related to the tails in the
distribution. High Kurtosis indicates greater extremity of deviations [37].

Si =
1

Ni(σi)3

Ni

∑
t=1

(xi,t − µi)
3 (3)

Ki =
1

Ni(σi)4

Ni

∑
t=1

(xi,t − µi)
4 (4)
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Likewise, chaotic dynamical systems are common natural and artificial phenomena, in-
cluding energy demand. The measured time series comes from the attractor of an unknown
system with a certain ergodicity. In other words, it refers to a set of numerical values to-
wards which the system evolves. This ergodicity contains the attractor information [38]. The
maximum Lyapunov exponent (MLE) is the most used quantity measured on chaotic sys-
tems, as it describes the exponential divergence of nearby trajectories. For the case of a time
series xi = (xi,1, xi,2, . . . , xi,Ni ), a ν-dimensional phase attractor with delay coordinates is
considered, i.e., a point on the attractor is represented by {xi,t, xi,t+τ , xi,t+2τ , . . . , xi,t+(ν−1)τ},
where τ describes the almost arbitrarily considered delay and ν the embedding dimension.
Then, a initial point {xi,t0 , xi,t0+τ , xi,t0+2τ , . . . , xi,t0+(ν−1)τ} is chosen and the nearest neigh-
bor to it is determined [39]. The initial separation between these two selected points is
represented by the vector δZ0. Therefore, the system diverges approximately at a rate given
by δZt = eλ(t×∆t)δZ0, where λ is the maximum Lyapunov exponent and ∆t the sampling
period. Hereof, λ became more accurate when t→ Ni. Therefore, it was estimated as the
mean rate of separation of the nearest neighbors across the samples. Thus, the MLE was
expressed according to Equation (5).

λi =
1

Ni × ∆t
ln
|δZt|
|δZ0|

(5)

The energy present was also considered and was obtained using the fast Fourier
transform (FFT) [40]. For this purpose, the resulting Fourier transform sequence was
comprised by Xi[k] = Xi[1],Xi[2], . . . ,Xi[Ni]. Given this, the energy calculation was
performed by adding the squares of the magnitudes of the resultant components; then, it
was divided by the length of the sequence (Ni) to normalize the calculated measurement
(Equation (6)).

Ei =

Ni
∑
k=1
|X [k]|2

Ni
(6)

Finally, another highly relevant measure to assimilate the behavior of the time series
is periodicity. To obtain it, a periodogram was determined to estimate the power spectral
density, which also uses the FFT as the basis of the calculation. This function indicates
the distribution of the frequencies present in the signal given by the time series. Hereof,
the most powerful frequency was selected and converted into an hourly period value via
Equation (7).

Pi = argmax
T

Pxx,i(ω) (7)

where Pxx,i(ω) represents the power spectral density in the frequency domain ω and T
the period converted to hours, in which the power is higher.

The fourth data set was built in order to capture seasonal and daily effects on the
energy demand, as in Haben et al. [41]. Consequently, each day was divided into five
relevant periods that characterized the behavior of daily demand as shown in Figure 3. It
is important to note that these periods were defined considering the Paraguayan electricity
demand curve. Therefore, they are different from the proposal presented in [41]. The
intervals of the chosen time periods are detailed in Table 1.
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Figure 3. Time periods considered based on the behavior of the Paraguayan electricity demand.

Table 1. Time periods for seasonal data set consideration.

Time Period Interval

1 10:00 p.m.–04:00 a.m.

2 05:00 a.m.–09:00 a.m.

3 10:00 a.m.–01:00 p.m.

4 02:00 p.m.–05:00 p.m.

5 06:00 p.m.–09:00 p.m.

The features to be used were defined, taking into consideration such periods. For a
specific feeder and each period i = 1, 2, 3, 4, 5 over the entire time series, Pi was represented
as the mean electricity demand with σp corresponding to its standard deviation. Meanwhile,
P̂ was considered as the mean daily demand over the complete time series. In each
period, the mean demands corresponding to the summer and winter seasons, PS

i and
PW

i , respectively, were also computed. Similarly, the mean demands on weekdays and
weekends were considered in each period of the entire time series. They were noted as
PWD

i and PWE
i , respectively. As a result, the following eight features were extracted:

• Features from 1 to 5: The relative average power in each time period over the entire
time series given by

PR
i =

Pi

P̂
for i = 1, . . . , 5 (8)

• Feature 6: Mean relative standard deviation over the entire time series given by

σ̂ =
1
5

5

∑
i=1

σi
Pi

(9)

• Feature 7: A seasonal score given by

S =
5

∑
i=1

|PW
i − PS

i |
Pi

(10)

• Feature 8: A weekend vs. weekday difference score given by

W =
5

∑
i=1

|PWD
i − PWE

i |
Pi

(11)

It is important to mention that, for each data set obtained, the values of the prepro-
cessed time series were scaled within a [0, 1] range for each feeder, through the transforma-
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tion xscaled = x−xmin
xmax−xmin

, since, otherwise, the clustering process would have been carried
out as a function of the mean daily demand [42]. Finally, the conformed data sets are
represented in Figure 4.

Figure 4. The four data sets that were formed from the hourly electricity consumption records of
the feeders.

3.4. Distance Measurements

The work aims to find similarities in feeder consumption. Thus, it was essential to
determine appropriate distance measures. Since one of the strategies was based on feature
extraction, the use of Euclidean distance was reasonable. However, when considering
the strategy based on patterns present in the consumption time series, the distance mea-
sure based on dynamic time warping (DTW) proved to be a better choice [43], although
the Euclidean distance showed some promising results that should be considered for
experimentation [7].

Therefore, for the time series approach, the definition of the Euclidean distance is such
that, given two time series x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN) of lengths N, is
represented as

de(x, y) =

√√√√ N

∑
i=1
‖xi − yi‖2 (12)

In the case of feature extraction, x and y correspond to the arrangement of the consid-
ered features.

On the other hand, the DTW algorithm presents an efficient method that minimizes
shifting and distortion effects. It includes a transformation that allows similar shapes
with different phases between time series to be detected [44]. Given the time series
x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN) of lengths N, a cost matrix is created with
objects that correspond to the all pairwise distance between the x and y components,
such that M: mi,j = ‖xi − yj‖ for i, j ∈ [1, N]. From here, the optimal warping path
wp = (p1, p2, . . . , pL) is determined, where p` = (i`, j`) represents the pair of indices of
the selected components in the matrix M. The value of L corresponding to the length of
wp is such that N ≤ L < 2× N. For the determination of wp, there are three conditions
to be followed. The first one corresponds to the boundary condition, in which p1 = (1, 1)
and pL = (N, N); thus, it is ensured that such a path starts at the beginning of both se-
ries and closes at the end. The second refers to the monotonicity condition, where it is
fulfilled that i`−1 ≤ i` and j`−1 ≤ j`, in order to preserve the time-ordering of points.
The third condition is known as the step size condition, whose criterion limits the warp-
ing path of the long jumps while aligning the series. This last condition is formulated
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as p` − p`−1 ∈ {(1, 1), (1, 0), (0, 1)}. Then, wp is composed in such a way that the cost
function mwp(x, y) = ∑L

`=1 mi`,j` is minimized. Finally, the DTW distance is expressed as

dDTW(x, y) = mwp(x, y) (13)

Figure 5 shows the difference between the components considered for the calculation
of the distance between the D3 and E2 feeders, both Euclidean and DTW. The latter
shows that the pairs of components considered were not necessarily located in the same
temporal location.

Figure 5. Euclidean. and DTW distance measurements applied to feeders D3 and E2.

3.5. Clustering Techniques

In machine learning, clustering refers to the process of grouping a sample of objects
according to a similarity measure. Classically, clustering is defined as follows: Let O be a
set of no objects described by d features

ffl
j, j = 1, 2, . . . , d, so that oij denotes the value of the

feature
ffl

j for the object oi.
Clustering aims to group the no objects into K clusters C1, C2, . . . , CK so that objects in

the same cluster are more similar than those in other clusters.
The clustering algorithms used in this work are K-means [45] and hierarchical cluster-

ing [46]. The following section describes both strategies.

3.5.1. K-Means

The K-means algorithm is one of the simplest and most widely used clustering tech-
niques. It determines cluster centroids belonging to a data set, according to a K value
representing the number of clusters in which they are to be partitioned. In particular,
the algorithm repeatedly performs two steps for this purpose. First, it assigns the closest
centroid (ck) to each data in order to minimize the sum of squared distance as expressed by
Equation (14); then, it recalculates the centroids based on the mean of the data that were
assigned to it, until it finds no variation or reaches a predefined number of iterations [47].

E =
K

∑
k=1

∑
o∈Ck

‖o− ck‖2 (14)

It is worth noticing that the initialization of the centroids can be carried out randomly.
Nevertheless, for this work, the Kmeans++ optimization method was used, thus selecting
the starting points with a probability weighted by the distance from the previously chosen
initial centroids [48]. In addition, it should be noted that, when K-means was applied on
the time series data with the DTW distance measurement, the centroids were calculated
using the DTW barycenter averaging (DBA) algorithm [49].
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3.5.2. Hierarchical Clustering

Hierarchical clustering allows the construction of a hierarchy structure or linkage
between the clusters formed, which can be either agglomerative or divisive. In the ag-
glomerative method, each object is initially considered as a group. Then, the groups are
iteratively combined to form an ascending hierarchy of groups until a single root group is
reached. In contrast, the divisive method considers the complete set of objects as a single
cluster. Then, it iteratively splits the clusters to achieve a top-down hierarchy where each
object represents a single cluster [47].

The final structure of the clusters obtained is called a tree or dendrogram. The process
carried out to obtain the dendrogram requires determining the similarity between the
objects with the use of a linkage criterion [50]. In this work, a focus on the agglomerative
method was given, using the linkage criteria summarized in Table 2. The application is
described given two clusters, Ci and Cj.

Table 2. Proposed linkage criteria for use in the hierarchical algorithm.

Criterion Formula Description

Single D(Ci, Cj) = min
o∈Ci , o′∈Cj

d(o, o′) Determined by the distance of the nearest objects between clus-
ters Ci and Cj.

Complete D(Ci, Cj) = max
o∈Ci , o′∈Cj

d(o, o′) Determined by the distance of the farthest objects between
clusters Ci and Cj.

Average D(Ci, Cj) = 1
|Ci |

1
|Cj | ∑

o∈Ci

∑
o′∈Cj

d(o, o′)
Determined by the average distance between the objects of
clusters Ci and Cj.

Centroid D(Ci, Cj) = d(ci, cj)
Determined by the distance between the centroids ci and cj
corresponding to clusters Ci and Cj, respectively.

Ward D(Ci, Cj) = ∑
o∈Ci∪Cj

d(o, ci,j)
2

Determined by sum of the squares of the distance between all
objects in cluster Ci and Cj, and ci,j, centroid of the new cluster
merged from Ci and Cj.

This approach was been applied to time series data. For example, in [51], the hierar-
chical algorithm was applied using the DTW distance.

3.5.3. K-Spectral Centroid

K-spectral centroid [52] (K-SC) allows clusters to be found in the time series based on
the distinctive temporal pattern of the time series. It is an iterative algorithm similar to the
classical K-means clustering algorithm, but performs an efficient centroid calculation under
a scale-invariant and shift-invariant distance metric.

Similar to K-means, K-SC alternates between two steps to minimize the sum of squared
distances; however, the distance metric is not Euclidean, but is given by

dSC(x, y) = min
γ,q

‖x− γyq‖
‖x‖ (15)

where x and y correspond to time series, yq corresponds to the time series shifted by q time
units and γ is a scaling coefficient to time series. This measure finds the optimal alignment
and the scaling coefficient for matching the shapes of the two time series. As a result, it
allows one to compute the cluster centroids more appropriately by better acquiring the
temporal patterns of the data. Thus, this algorithm was applied to the weekly and monthly
time series of electricity demand.
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3.6. Cluster Validity Indices

Since the task of grouping objects that share similar characteristics belongs to the
area of unsupervised methods, it is challenging, at first, to select the number of sets to be
considered. For this purpose, several clustering validation indices provide a quantitative
criterion about the number of clusters formed. In this work, the Silhouette, Davies–Bouldin
and Calinski–Harabasz validation indices were considered. They have shown promising
results in comparative studies [53] and also provide enough information to select the most
optimal configuration.

The Silhouette index describes a measure of quality based on how similar an object is
to those belonging to the same cluster (cohesion) in contrast to how dissimilar it is from
those belonging to the nearest cluster (separation) [54]. This index is normalized within a
[−1,+1] range, where high values indicate a good conformation of the objects based on
their similarities concerning the distinctions of the other clusters. In this case, the average
of the Silhouette index scores for each component of a given cluster was considered. Since
αi represents the average distance of an i-th sample for the others in the same cluster and
βi represents the average distance of the same sample with respect to those in the nearest
cluster, the Silhouette index for a sample is represented by

Ii =
βi − αi

max(αi,βi)
(16)

Therefore, the average score of the Silhouette index is given by

SIL =
1
N

N

∑
i=1

Ii (17)

where N corresponds to the total amount of samples.
The Davies–Bouldin validation index represents the average similarity between clus-

ters [55]. In this case, the cohesion estimation is based on the average distance δi between
the centroid of a considered cluster i and the objects that conform it. The separation is
represented by the distance Dij between the centroids of the cluster i and another cluster
j. Thus,

Rij =
δi + δj

Dij
(18)

is maximized, where δj represents the cohesion estimation for cluster j. Therefore, the
Davies–Bouldin index is represented by the expression

DB =
1
K

K

∑
i=1

max
i 6=j

Rij (19)

where K indicates the number of clusters. The lowest score that can be obtained for this
index is 0; values close to it indicate better clustering.

Finally, the Calinski–Harabasz validation index measures the ratio of the sum of the
between-cluster dispersion and within-cluster dispersion for all clusters [56]. In this sense,
dispersion is defined as the sum of the squared distances. Therefore, when considering a set
of objects O of size no, which have been clustered in one of the K clusters, it is necessary to
determine both the between-cluster dispersion matrix B and the within-cluster dispersion
matrix W, expressed as

B =
K

∑
i=1

ni(ci − co)(ci − co)
T (20)

W =
K

∑
i=1

∑
x∈Ci

(x− ci)(x− ci)
T (21)
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where Ci indicates the set of objects belonging to cluster i, ci the center of cluster i, co the
center of O and ni the number of objects in cluster i. Once this is carried out, the traces
tr(B) and tr(W) corresponding to the matrices B and W, respectively, are considered. With
them, the Calinski–Harabasz index is defined as

CH =
tr(B)
tr(W)

× no − K
K− 1

(22)

High scores indicate well separated and dense clusters, which is expected when the
clustering algorithm is correctly applied.

3.7. Workflow

As shown in Figure 6, this work followed a rigorous process to determine the necessary
tools for experimentation. The starting point was collecting available data from the studied
feeders, followed by the corresponding preprocessing to correct the anomalies present.
Once this stage was completed, four sets were generated based on the above description.

Figure 6. Pipeline describing the steps followed to obtain the representative clusters.

The description of the different models induced on each data set are presented in
Table 3. It gives a better appreciation of the configurations to be taken into account. For each
data set, both the K-means and hierarchical clustering algorithms were applied, considering
the corresponding variation depending on the nature of the data. Thus, for data belonging
to time series, the analyses were performed for Euclidean distance measurement and DTW.
On feature-based data, the only distance applied was the Euclidean distance. Likewise,
for the models where the hierarchical algorithm was applied, the linkage criteria set out
in Table 2 were taken into account. Therefore, each model was assigned an identifier for
further analyses based on the results.

After the learning process was completed for different cluster sets, the validation index
scores were considered to determine the best performing model and the optimal number of
these clusters. Finally, the results were plotted to visualize the characteristics possessed by
the conformed clusters, as shown in the next section.
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Table 3. Description of the proposed models.

Data Set Algorithm Distance Linkage Criterion Conformed Model ID

Weekly time series

K-Means Euclidean - week_k-means_euclid
DTW - week_k-means_dtw

Hierarchical

Euclidean

Single week_hier_euclid_single
Complete week_hier_euclid_complete
Average week_hier_euclid_average
Centroid week_hier_euclid_centroid
Ward week_hier_euclid_ward

DTW

Single week_hier_dtw_single
Complete week_hier_dtw_complete
Average week_hier_dtw_average
Centroid week_hier_dtw_centroid
Ward week_hier_dtw_ward

K-Spectral Centroid - - week_k-sc

Monthly time series

K-Means Euclidean - month_k-means_euclid
DTW - month_k-means_dtw

Hierarchical

Euclidean

Single month_hier_euclid_single
Complete month_hier_euclid_complete
Average month_hier_euclid_average
Centroid month_hier_euclid_centroid
Ward month_hier_euclid_ward

DTW

Single month_hier_dtw_single
Complete month_hier_dtw_complete
Average month_hier_dtw_average
Centroid month_hier_dtw_centroid
Ward month_hier_dtw_ward

K-Spectral Centroid - - month_k-sc

Statistical Based

K-Means Euclidean - stats_k-means

Hierarchical Euclidean

Single stats_hier_single
Complete stats_hier_complete
Average stats_hier_average
Centroid stats_hier_centroid
Ward stats_hier_ward

Seasonal Based

K-Means Euclidean - seas_k-means

Hierarchical Euclidean

Single seas_hier_single
Complete seas_hier_complete
Average seas_hier_average
Centroid seas_hier_centroid
Ward seas_hier_ward

4. Results

This section presents the results obtained from the numerical experimentation carried
out using the previously defined models. The objectives defined in this work are the
following:

• Comparison of the different clustering techniques studied to identify the best models
according to the cluster validity index measures.

• Analysis of the consumption data of the best model found.l.

For the comparison of the different models, the number of clusters was varied from
two to ten. For each model, the Silhouette, Davies–Bouldin and Calinski–Harabasz index
scores were calculated. However, only the Silhouette index was taken into account because
of its data independence [54].
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However, since the preliminary results based on the Silhouette score yielded the best
configuration of only two clusters, which did not imply a good solution to the problem,
considering it did not give the DNOs the opportunity to assess different options, the
scores based on the local maximum were also considered. This opened a broader range of
clustering possibilities. The same consideration was also given to the Calinski–Harabasz
index. In contrast, the local minimum was considered for the Davies–Bouldin index.

4.1. Model Comparison

Once the defined models had been subjected to the variation of the different numbers
of clusters, the best 15 models were selected as indicated in Table 4.

Models using the data set based on seasonal demand characteristics showed better
results than on other data sets. The above indicates that the differences in energy con-
sumption in different seasons of the year and the variation in consumption during the
week provided more relevant information to characterize the similarities among feeders. In
addition, there was repeatability in terms of the number of clusters present for different
models, i.e., four, six, or seven clusters generally showed good results. It is important to
highlight that the models that made use of the data set based on time series also showed
good results, since they appeared in the ranking, starting from the 12th position. Under this
aspect, the K-SC algorithm had a higher relevance with respect to the others used in this
strategy. However, its scores were well below those of the models based on seasonal fea-
tures mentioned above. On the other hand, those models based on statistical characteristics
are not presented in the table due to their poor performance.

Additionally, with respect to the distance metrics applied to the time series and used
in the described algorithms, both the DTW methods used in K-means and the K-SC metric
showed better results in contrast to the Euclidean distance, as shown in Table 4. On the
other hand, there was no relevant difference in the results obtained by the types of linkage
criteria applied to the hierarchical algorithm, since the Silhouette indices were very similar.

Table 4. Ranking of the 15 best models according to the Silhouette score.

Rank Model ID Silhouette Score Calinski–Harabasz Score Davies–Bouldin Score Clusters

1 seas_k-means 0.432 69.439 0.789 4

2 seas_k-means 0.428 78.807 0.730 6

3 seas_hier_ward 0.421 67.129 0.723 6

4 seas_hier_complete 0.415 74.284 0.735 7

5 seas_hier_centroid 0.403 42.509 0.562 4

6 seas_hier_average 0.402 58.848 0.618 7

7 seas_hier_centroid 0.400 62.466 0.610 8

8 seas_hier_average 0.397 55.111 0.696 5

9 seas_hier_centroid 0.397 56.494 0.680 6

10 seas_hier_ward 0.393 72.616 0.749 9

11 seas_hier_complete 0.391 70.890 0.868 9

12 month_k-sc 0.250 6.236 1.791 9

13 week_k-means_dtw 0.239 13.915 1.601 3

14 week_hier_dtw_complete 0.224 12.066 1.280 4

15 week_hier_euclid_complete 0.216 13.575 1.211 5

These results were further analyzed considering the other validation indices mentioned.
Since the models to be compared now shared the same data set, there was a concordance
between the scores obtained by the Calinski–Harabasz and the Davies–Bouldin indices.
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Therefore, according to Figure 7, which shows the variation in the validation indices
based on the change in the number of groupings considered, it was possible to make a
more concrete determination of the best configuration. The points where a local maximum
appeared in the curve produced by the Silhouette scores were marked with a vertical
dashed line. It intercepted with the other curves formed for a more evident appreciation of
the comparable values.

Firstly, the points where both the Silhouette and Davies–Bouldin scores produced
better results simultaneously were determined. These corresponded to the points for the
Davies–Bouldin curve where there was a local minimum and where it intersected the
vertical dashed line. Therefore, there were only two cases where this condition was fulfilled.
One corresponded to the K-means algorithm and the other to the hierarchical algorithm
with the ward criterion, both under the consideration of K = 6 clusters.

Similarly, the points where the Silhouette and Calinski–Harabasz scores presented the
best results together were also determined. In this case, it is necessary to point out those
values that belonged to a local maximum in the Calinski–Harabasz curve and, likewise,
intersected with the vertical dashed line. Thus, five points were detected where these
considerations were satisfied. For the K-means algorithm, it was found at K = 6. Regarding
the hierarchical algorithms, with the complete criterion, one was found at K = 7. Finally,
with the centroid criterion, both for K = 6 and K = 8 were found. Thus, the conditions
were verified. When considering the average criterion, there was a point at K = 5 that also
satisfied the requirements.

Figure 7. Variation in the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores
with respect to the number of clusters considered, for the K-means and hierarchical algorithms, with
the ward, complete, centroid and average criteria for the latter.

As a result, the model based on the K-means algorithm for K = 6 clusters showed
the best configuration concerning the scores of the validation indices as a whole, as the
preferable results coincided with this one. Therefore, it is important to note that, in
the clusters formed, the objects presented a good similarity between those belonging to
the same cluster and dissimilarity between the objects of nearby clusters. Likewise, the
conformations presented a low dispersion, thus yielding dense clusters.

However, while the model based on the hierarchical algorithm with the ward criterion
for K = 6 did not perform well for the Calinski–Harabasz index, it did well with the
remaining validation indices. Therefore, it was relevant to compare to determine the
differences between the resulting clusters in contrast to the K-means cluster for the same
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number of clusters. Given the comparison illustrated in Figure 8, corresponding to the
clusters formed by the K-means model in contrast to those obtained from the hierarchical
model with Ward’s criterion for K = 6, two of them shared the same objects, that is, the
same feeders, which indicates an important relationship between those that made up
these clusters. In contrast, the remaining clusters differed in several ways between the
two models. Cluster 4 of the hierarchical model included all the objects of its homonym
belonging to the K-means model. However, it also included some objects of Clusters 3 and
5 from the latter. Another essential aspect was observed in Cluster 2 of K-means, formed
by Clusters 2 and 3 of the hierarchical model.

Figure 8. Relationship between the clusters determined by the K-means and hierarchical model with
the ward criterion for K = 6.

4.2. Analysis of Selected Model

Given the previous analysis of the validation indices, the K-means model with K=6
clusters was selected for use. Therefore, we proceeded to analyze the consumption curves
for the clusters determined.

Figure 9a shows a box plot of the average daily consumption of all clusters. Cluster 4
had a very distinct behavior on electricity consumption throughout the day, when compared
to the other clusters. In this case, the feeders that made up this cluster showed a prominent
peak at midday, with no other peak at night as usual. The other clusters considered, in turn,
presented a similar behavior with the consumption curve. There were more pronounced
peaks both at midday and at night. However, there were slight differences in the level
of consumption.

The fact that there was not a very marked distinction in these graphs is because
the clustering was performed based on the consumption characteristics of the seasons,
that is, the difference between certain times of the day, weekdays or weekends and the
seasons of the year. For this purpose, a better analysis is presented in Figure 9b. Here, the
centroid of each cluster is presented as daily consumption, where the summer and winter
seasons were considered, as well as the weekdays and weekends for each of them. Daily
consumption was similar for both weekdays and weekends in summer for all clusters,
except for Cluster 4. In winter, Cluster 5 showed a considerable drop in its consumption
that differed from the other clusters. In summer, although there were differences, they were
not so significant. The changes in the consumption levels of Clusters 1 and 3 were also
notable. In summer, Cluster 1 had a higher consumption than Cluster 3; however, in winter,
this was reversed.

In a nutshell, the feeders present in each defined cluster were exposed. Cluster 1
contained feeders A1, N1, M5, L3, K3, I1, I2, I5, D1, N4 and C2. Cluster 2 was made up of
H3, M6, G3, L1, I3, E4, G1, H1, E7, F1 and I4. Cluster 3 contained feeders C1, K2, M4, A2,
K1, J1, B5, H2, G4, G2, E6, E1, E2 and D3. Cluster 4 grouped feeders B1, B3 and B4. Cluster
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5 contained E3 and L4. Finally, Cluster 6 was made up of feeders M7, N2, D2, M3, H4, M1,
B2, N3, E5, F2, H5, M2 and L2.

(a)

(b)

Figure 9. Consumption profiles determined in the K-means based model, where (a) belongs to the box
plot of the mean daily consumption for each cluster and (b) corresponds to the mean consumption
depending on the summer and winter seasons, as well as weekdays and weekends.

5. Discussion

In this paper, a cluster analysis of real data from the Paraguayan eastern region’s
electric power system is presented for the first time. The data contain four years of hourly
electric consumption of 115 feeders distributed in 17 substations.

The data were pre-processed to generate four data sets useful for the clustering
algorithms according to the following: (i) weekly demand, (ii) monthly demand, (iii) a
statistical feature set and (iv) a seasonal and daily consumption feature set.
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The K-means and the hierarchical agglomerative clustering algorithms were used
with the Euclidean and the dynamic time warping (DTW) measures as distance metrics.
For the hierarchical algorithm, five linkage criteria were tested. In this context, a total of
36 different models were tested on the four data sets. The results were evaluated with three
index scores, the Silhouette, Davies–Bouldin and the Calinski–Harabasz.

The seasonal feature set obtained the best results; this was expected, considering that
this feature set was designed thinking in terms of the electric consumption curve with
a particular daily period of the Paraguayan load curve. The K-means showed slightly
better performance than hierarchical agglomerative clustering, although the difference was
not significant, even among the linkage criteria used in the latter. The K-means with the
seasonal features data set obtained the best Silhouette score of 0.432 with four clusters.
However, when all three metrics were considered, the K-means with six clusters presented
the best performance. All tested models, K-means, hierarchical and K-SC, exhibited the
worse performance on both time series and statistical based data sets when compared to
models using the seasonal feature data set. However, metrics applied to time series for
handling time shifting, such as DTW and K-SC’s own metric, yielded better results than
the Euclidean distance.

The three metrics considered in this paper did not score the same cluster configu-
ration as the best. Therefore, different options and optimal local results were assessed.
Showing more than one result gave the DNOs the opportunity to analyze different quality
options before deciding whether they may be studying new tariff incentives, the impact of
distributed generation, or new distribution network structures.

In future works, other clustering algorithms, such as kernel DBScan, modified fuzzy
c-means, or k-medoids-based genetic clustering [57], may be implemented on the data set.
In addition, a biclustering approach [23] is proposed as an interesting alternative for future
works of this research. We also plan to apply the methods studied in this work to other real
world data.
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List of Symbols
The following symbols are used in this manuscript:

Symbol Description
x, X, y, Y Time series
X∗ Box–Cox transformation of time series
Sx∗ Seasonal component of time series
Tx∗ Trend component of time series
Rx∗ Remainder component of time series

https://data.mendeley.com/datasets/hzfwzzsk8f/4
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H Historical records where DOW is the same as the one on the missing record
µ Mean
σ Standard deviation
S Skewness
K Kurtosis
δZ0 Initial separation vector
δZt Separation vector
λ Maximum Lyapunov exponent
T Period
P Periodicity
Pxx(ω) Power spectral density
E Energy
P Mean electricity demand
P̂ Mean daily demand over a complete time series
PS Mean summer demand
PW Mean winter demand
PWD Mean weekday demand
PWE Mean weekend demand
PR Relative average power
σ̂ Mean relative standard deviation
S Seasonal score
W Weekend vs. weekday difference score
O Set of objects
no Size of a set of objects
C Cluster
c Centroid of a cluster
E Sum of squared distances between objects and their centroid in all clusters
de Euclidean distance
dDTW Dynamic time warping distance
M Cost matrix for DTW
wp Optimal warping path
mwp Cost function for DTW
α Average distance of a sample with respect to the others in the same cluster
β Average distance of the same sample with respect to those in the nearest cluster
I Silhouette index for a sample
SIL Average score of the Silhouette index (Silhouette index)

δ
Average distance between the centroid
of a considered cluster and the objects that conform it

D Distance between centroids of two clusters
R Similarity score between clusters
DB Davies–Bouldin index
B Between-cluster dispersion matrix
W Within-cluster dispersion matrix
CH Calinski–Harabasz index

Abbreviations
The following abbreviations are used in this manuscript:

DNOs Distribution network operators
DWT Discrete wavelet transform
NN Neural networks
SVM Support vector machine
DTW Dynamic time warping
LD Linear dichroism
DOW Day of the week
MLE Maximum Lyapunov exponent
FFT Fast Fourier transform
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56. Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 1974, 3, 1–27. [CrossRef]
57. Rani, S.; Sikka, G. Recent techniques of clustering of time series data: A survey. Int. J. Comput. Appl. 2012, 52, 1–59. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2018.10.119
http://dx.doi.org/10.1111/j.2517-6161.1964.tb00553.x
http://dx.doi.org/10.1080/00401706.1983.10487848
http://dx.doi.org/10.1109/ISGT.2016.7781213
https://mathworld.wolfram.com/
http://dx.doi.org/10.1155/2010/720190
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1109/TSG.2015.2409786
http://dx.doi.org/10.1016/j.energy.2011.12.031
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1007/BF02289588
http://dx.doi.org/10.1016/j.rser.2019.109628
http://dx.doi.org/10.1016/j.patcog.2010.09.013
http://dx.doi.org/10.1016/j.eswa.2016.06.012
http://dx.doi.org/10.1016/j.patcog.2012.07.021
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1080/03610927408827101
http://dx.doi.org/10.5120/8282-1278

	Introduction
	Related Works
	Materials and Methods
	Data
	Data Preprocessing
	Data Sets and Features
	Distance Measurements
	Clustering Techniques
	K-Means
	Hierarchical Clustering
	K-Spectral Centroid

	Cluster Validity Indices
	Workflow

	Results
	Model Comparison
	Analysis of Selected Model

	Discussion
	References

