
Citation: Zaki, A.; Métwalli, A.; Aly,

M.H.; Badawi, W.K. Wireless

Communication Channel Scenarios:

Machine-Learning-Based Identification

and Performance Enhancement.

Electronics 2022, 11, 3253. https://

doi.org/10.3390/electronics11193253

Academic Editors: Dejan Drajic,

Zoran Cica and Philipp Svoboda

Received: 7 September 2022

Accepted: 2 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Wireless Communication Channel Scenarios:
Machine-Learning-Based Identification and Performance
Enhancement
Amira Zaki , Ahmed Métwalli, Moustafa H. Aly and Waleed K. Badawi *

College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport,
Alexandria 1029, Egypt
* Correspondence: waleedbadawi@aast.edu

Abstract: Wireless communication channel scenario classification is crucial for new modern wireless
technologies. Reducing the time consumed by the data preprocessing phase for such identification is
also essential, especially for multiple-scenario transitions in 6G. Machine learning (ML) has been used
for scenario identification tasks. In this paper, the least absolute shrinkage and selection operator
(LASSO) is used instead of ElasticNet in order to reduce the computational time of data preprocessing
for ML. Moreover, the computational time and performance of different ML models are evaluated
based on a regularization technique. The obtained results reveal that the LASSO operator achieves
the same feature selection performance as ElasticNet; however, the LASSO operator consumes less
computational time. The achieved run time of LASSO is 0.33 s, while the ElasticNet corresponding
value is 0.67 s. The identification for each specific class for K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), and k-Means and Gaussian Mixture Model (GMM) is evaluated using Receiver
Operating Characteristics (ROC) curves and Area Under the Curve (AUC) scores. The KNN algorithm
has the highest class-average AUC score at 0.998, compared to SVM, k-Means, and GMM with values
of 0.994, 0.983, and 0.989, respectively. The GMM is the fastest algorithm among others, having the
lowest classification time at 0.087 s, compared to SVM, k-Means, and GMM with values of 0.155, 0.26,
and 0.087, respectively.

Keywords: 6G; machine learning; computational time; feature selection; ROC curves; AUC scores;
LASSO; ElasticNet

1. Introduction

It is widely known that artificial intelligence (AI) has become an essential addition to
industries related to wireless communications. The data obtained from the surrounding
environment are huge in volume, as the number of smart devices is increasing—especially
in industry, scientific, and medical domains [1,2]. Connecting rural and distant locations
has become crucial for future networks due to the rise in global communication needs and
the growth of the Internet of Things [3]. As the variety of smartphones, laptops, tablets,
and data-driven sensors are all typical data transceiver devices, their data can be and are
processed by AI. The main functionality of AI is to train algorithms to make decisions and
take actions. ML is a subset of AI in which large amounts of data are used in training
an ML algorithm to allow it to learn more about the processed information [4]. Once
the ML algorithm is trained on the training data, it can successfully make predictions
or decisions with new data and execute tasks using inferential statistics and arithmetic
calculations. This can permit and facilitate ML modeling for wireless communication
system availability, mobility accessibility, cross-communication management, and the
optimization of automated networks based on 6G data. The aim is to ensure that the
key performance indicators are meeting the quality-of-service (QoS) requirements. It is
anticipated that the 6G network will offer diverse services and seamless network coverage
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for everyone and everything. The integrated satellite–terrestrial network design combines
the benefits of both satellite and terrestrial networks. The current promises are to provide
worldwide broadband connectivity for all sorts of users [5–8]. It has attracted much interest
from both academia and business.

A wireless communication system mainly consists of a physical layer, a middle layer,
and an end-user layer, as shown in Figure 1. Each layer requires different AI approaches
to enhance the QoS, system security, privacy, latency, power allocation and control, and
channel capacity [9].
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The main concern of the use of ML in the physical layer is the channel encoding,
decoding, and estimation. One of these ML applications is scenario classification, which
can be regarded as channel estimation. A scenario for a wireless channel is defined as the
specific channel environment of data transmission [9]. For example, rural, suburban, urban,
and indoor hotspots and satellites are all typical scenarios. The rural macro-cell (RMa) and
the urban macro-cell (UMa) are two typical different scenarios. The UMa is deployed in
urban areas as it indicates a city or a town, while the term RMa is used for rural areas or
countries with smaller populations and less scattering.

In some cases, a number of circumstances or scenarios regularly occur. Users that use
high-speed transportation, such as high-speed railways, may attest to this. As the user
navigates across a variety of possible scenarios, including deserts, mountains, stations, and
other impediments, the user places substantial strain on existing communication systems.
Therefore, accurately defining wireless channel scenarios is important for meeting user
QoS needs. However, the traditional forms of statistics in radio propagation, such as the
Okumura and Hata models, were introduced under the assumption that the propagation
model of the scenario was previously known, such as in urban scenarios [10]. This can
lead to certain inaccurate classifications or mistakes. In response, minimizing complex-
ities and run times and precisely identifying the scenario task are crucial for increasing
communication system reliability. Moreover, the power efficiency, beam management,
maintenance, bandwidth allocation efficiency, network setup, operation, throughput, QoS
prediction, and coverage performance can be tackled by AI-based solutions. Deep-learning
methods are usually used in solving complex problems, but require more computational
time. The extraction of elevation and azimuth angles from CIR to distinguish the NLoS
and LoS scenarios in urban places was performed in [11]. Also, an accurate classification
performance was achieved using convolutional networks in the problem of fingerprint
feature extraction and classification [12]. The authors of [13] demonstrated via their ML
approaches that supervised classification algorithms and unsupervised learning clustering
algorithms can be effective classification strategies for scenario identification.
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In a previous work [14], we introduced an enhanced feature-selection process based
on the regularization concept to enhance the classification performance of [14] and reduced
the computational complexity of the ML algorithms with high generalization ability. The
authors of [15] initiated the problem formulation of classification of typical terrestrial scenar-
ios. However, the latency of transition and classification was not their concern. Therefore,
to iterate upon their results, the time consumption of the preprocessing workflow and ML
classification time are crucial issues to address. Minimizing the preprocessing procedure
computations and the classification time of the algorithm are required to have quick sce-
nario identification when a transition between multiple scenarios occurs. The ROC curve is
important as an evaluation parameter as it contains both true positive rate (TPR) and false
positive rate (FPR). The main motivation for this work is enhancing recent work [14,15]
in terms of preprocessing time and performance of the wireless communication scenario
identification. The proposed method has considered the latency of the classification scheme.

Hence, this paper contributes the following:

1. Reduction of the model response and latency for the preprocessing workflow of each
regularization technique instruction used in the previous model [14]. The previous
model adopted ElasticNet without studying the time consumption. In this work, the
performance and time efficiency results prove that adopting the LASSO is more suit-
able than ElasticNet. It achieves the same feature-selection performance of ElasticNet
but in much less time.

2. Calculation of the classification time of KNN, SVM, k-Means, and GMM. The training
phase and testing phase runtimes are computed and compared for both supervised
algorithms (KNN and SVM). The formulation of clusters and the “fit and predict”
runtime for the unsupervised learning k-Means and GMM are revealed.

3. Calculation and study of the ROC curves and AUC scores for each class in each model.
Both ROC curves and AUC scores of the classes are calculated as one over all, where
the evaluation is taken as a binary such that every class is distinguished from the
others (e.g., the RMa LoS represented as ‘1’ versus the other classes presented as ‘0’).

The rest of this paper is organized as follows. Section 2 provides information about the
dataset used in this research, the model specification, and preprocessing and processing pro-
cedures. Section 3 shows the results and discussion of the preprocessing and classification
phases, including time and ROC curves. Section 4 is devoted to the main conclusions.

2. Model Planning Procedures

In this section, the dataset adopted in this work is discussed. The features that are
preprocessed describe each wireless communication scenario, such as delay spread (Dσ),
path loss (PL), k-factor (KF), elevation spread angle of arrival (σEoA), elevation spread angle
of departure (σEoD), azimuth spread angle of arrival (σAoA), and azimuth spread angle of
departure (σAoD). In addition, this section introduces the preprocessing procedure and the
methods of evaluation.

2.1. Dataset Origination and Parameters

The dataset is taken from [14], where each scenario parameter is validated through
the 3GPP standard. These parameters describe the large-scale fading and small-scale
fading parameters such as Dσ, PL, KF, σEoA, σEoD, σAoA, and σAoD. The angular information
is extracted from CIR using the space-alternating generalized expectation-maximization
algorithm in MIMO model using 31 antenna elements [14,15]. The CIR snapshots are
generated from the reception of the signal from mobile terminal (MT) to base station (BS).
These CIR snapshots are supposed to be processed from the BS end as shown in Figure 2.
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Figure 2. LoS and NLoS scenarios.

The NLoS and the LoS cases are obtained for both RMa and UMa, so the number of
classes is four. As mentioned before, the UMa scenario is specified in urban places as it
refers to a town or a city, while the RMa is defined for rural areas such as towns that have
small population and reduced scattering.

PL is defined as a decrease of power due to a distance. It is the relation between the
distance d and the actual path loss, denoted as PL(d0), in a unique scenario and is expressed
as PdB [16]:

PdB = PL(d0) + 10 γ log10(
d
d0

) + Sσ[dB], (1)

where the PL exponent is defined as γ, d0 is the reference distance, and Sσ[dB] represents
the standard normal distribution.

KF is an essential small scale fading (SSF) parameter. It is the ratio between the power
of a dominant LoS component and the NLoS multipath components. At every CIR snapshot
capture, the KF (KdB) can be denoted as [17]

KdB = 10 log{
(
|h(τm0)|max

)2

∑τm 6=τm0
(| h(t)|)2 }, (2)

where τm represents the current period of the mth component delay, the highest amplitude
occurs at τm0 index, and m = 1, 2, 3 . . . M. h(t) expresses the CIR in time domain. The
value of KdB is always greater in LoS scenarios.

Dσ is also an important SSF parameter that indicates the channel dispersion of a CIR
snapshot in terms of time delay. Dσ can be represented as [18]

Dσ =

√√√√ΣM
m=1 (τm − τ) | h(τm) |2

ΣM
m=1 | h(τm) |2

, (3)

where M denotes the total number of mth components and τ is the mean excess delay and
is denoted as

τ =
ΣM

m=1τm | h(τm) |2

ΣM
m=1 | h(τm) |2

(4)

The channel capacity is dependant on Dσ, where a scenario that has multiple rich
scatters will have a larger Dσ. Therefore, an NLoS scenario has a higher root mean square
(RMS) delay spread (DS).
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The angular spread (σθ) denotes the channel dispersion for a CIR snapshot in terms of
angular information, where σθ is obtained as [19]

σθ =

√√√√ΣM
m=1θ2

m,µ. | h(τm) |2

ΣM
m=1 | h(τm) |2

, (5)

θm,µ = mod
((

θm − θ + π, 2π
))
− π, (6)

θ =
ΣM

m=1θm,µ| h(τm) |2

ΣM
m=1 | h(τm) |2

. (7)

The declaration of angle θ is taken for azimuth angle of departure (AoD), azimuth
angle of arrival (AoA), elevation angle of departure (EoD), and elevation angle of arrival
(EoA). The NLoS scenario has more clusters than the LoS scenario. As a result, the value of
σθ is higher in NLoS scenarios than LoS scenarios.

2.2. Preprocessing and Processing Procedures

Figure 3 shows the model planning procedures that represent the flow of the dataset
mentioned in the previous section, including the data preprocessing criteria, processing
phase, and model evaluation.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 14 
 

 

The angular spread (𝜎 ) denotes the channel dispersion for a CIR snapshot in terms 
of angular information, where 𝜎  is obtained as [19] 

𝜎 = 𝛴 𝜃 , . | ℎ(𝜏 ) |𝛴  | ℎ(𝜏 ) | , (5) 

𝜃 , = 𝑚𝑜𝑑((𝜃 − �̅� + 𝜋, 2𝜋)) − 𝜋, (6) 

�̅� = , | ( ) | | ( ) | . 
(7) 

The declaration of angle 𝜃 is taken for azimuth angle of departure (AoD), azimuth 
angle of arrival (AoA), elevation angle of departure (EoD), and elevation angle of arrival 
(EoA). The NLoS scenario has more clusters than the LoS scenario. As a result, the value 
of 𝜎  is higher in NLoS scenarios than LoS scenarios.  

2.2. Preprocessing and Processing Procedures 
Figure 3 shows the model planning procedures that represent the flow of the dataset 

mentioned in the previous section, including the data preprocessing criteria, processing 
phase, and model evaluation. 

 
Figure 3. Model planning procedures: data preprocessing, data ML processing, and model evalua-
tion. 

The preprocessing procedures are sequential, including normalization, regulariza-
tion, and dimension reduction. The preliminary dataset enters the preprocessing phase 
with a data shape of 2000 row and 7 columns, excluding the output label. The dataset can 
be represented as 𝐴 , where 𝐴 = {𝐷 , 𝑃 ,  𝐾 , 𝜎 , 𝜎 , 𝜎 , 𝜎 , L}, and L represents 

Figure 3. Model planning procedures: data preprocessing, data ML processing, and model evaluation.

The preprocessing procedures are sequential, including normalization, regularization,
and dimension reduction. The preliminary dataset enters the preprocessing phase with
a data shape of 2000 row and 7 columns, excluding the output label. The dataset can be
represented as A , where A = {Dσ, PL, KF, σEoA, σEoD, σAoA, σAoD, L}, and L represents
the outcome label that specifies whether it is Uma LoS, Uma NloS, Rma LoS, or RMa
NLoS. Each row, Ai, represents a single data point that will be normalized using a Z-score
normalization method. The ML models may exhibit bad performance due to the outliers of
un-normalized data [16]. The Z-score is applied on each data point Aj

i , where it represents
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the distance of a data point to the mean divided by a standard deviation and can be denoted
as [20]

Aj
i =

Aj
i − Aj

σAj
(8)

where Aj and σAj are the average and standard deviation of each feature j.
Then, the correlation matrices are used to validate the inter-parameter correlation

revealed before normalizing the features and after normalization. The normalized data
points are then regularized to drop the unwanted features and to enhance the classification
performance [15]. The LASSO operator is L1 regularization type, while the ElasticNet is
a combination of both L1 and L2 regularization type. L1 stands for Least Absolute Error,
and L2 stands for Least Square Errors [21]. The LASSO regression B̂lasso and ElasticNet
regression B̂elastic can be denoted, respectively, as

B̂lasso = argmin

{
1
2

N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j

)
+ λ

p

∑
j=1

∣∣β j
∣∣}

subject to ∑p
j=1

∣∣β j
∣∣ ≤ t (9)

B̂elastic = argmin

∑i
1
2

∣∣∣∣∣yi − β0 −
p

∑
j=1

xijβ j

∣∣∣∣∣
2

2

+ λ

(
α1

p

∑
j=1

β j + α2

p

∑
j=1

β j
2

), (10)

where both α1, α2 affect the ratio of penalty (α1 + α2 = 1), and λ is the weight of shrinkage.
λ expresses the regularization penalty, where 1 ≥ λ ≥ 0. β0 is a coefficient with a
constant value, while β = (β0, β1, β2, . . . , βN) is the coefficient vector; t denotes the degree
of regularization.

The evaluation of the regularization process is conducted using process runtime and a
regularization coefficient evaluation. Here, the runtime was tested on an Intel® Core™ i3-
2365M CPU (1.40 GHz) processor using the Python timing library. Once the regularization
coefficient of a certain feature obtains 0, t the feature is considered as unwanted noisy data.

The last preprocessing step is the dimension projection. This is used to reduce the
number of predictors for the ML, which reflects on the computational complexity reduc-
tion [22]. Here, the kernel principal component analysis (k-PCA) is adopted. The kernel
type in this paper is a radial basis function (RBF) and can be denoted as

K(Aa, Ab) = exp
(
−ρ||Aa − Ab||2

)
, (11)

where Aa, Ab are two different points and ρ is a hyper-parameter threshold [23]. Then, the
output components are visualized as function of probability density function (PDF).

After preprocessing the data, the dimension reduction output is the number of ana-
lyzed principal components that are used as ML input predictors. The data are split into
training data and validation data. The problem formulation is a classification problem in
order to classify between four different scenarios {RMa LoS, RMa NLoS, UMa LoS, UMa
NLoS} efficiently. There are two supervised learning algorithms used, KNN and SVM,
which require label training. Moreover, two unsupervised learning clustering algorithms
are used: k-Means and GMM. The algorithms are then evaluated using ROC curves and
their runtime.

The KNN classifies a novel unknown data point based on the majority of the sur-
rounding points based on the nearest distances [24]. The SVM attempts to create different
support vectors, then determines the optimal hyper-planes in order to minimize the error
and widen the maximal margins for each group of data [25]. The k-Means and GMM are
both unsupervised learning methods that create clusters based on the inferential statistics
of the data [14].
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Each algorithm is then evaluated using the computational time and the ROC curves.
The ROC curve shows the relation between the true positive rate and the false positive rate.
Figure 4 shows an illustration of an ROC curve [26].
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The perfect classification occurs when the area under the curve is maximized. The
worst classification occurs when the line becomes straight.

3. Results and Discussion

In this section, the results of each process discussed in the preprocessing and pro-
cessing procedure are revealed. The correlation matrices of each scenario are discussed
before normalization and after using Z-score. The performance and the runtimes of the
process of regularization for both LASSO and ElasticNet are compared. The ROC curves of
each scenario are discussed for each algorithm. Moreover, the runtime of each algorithm
is revealed.

3.1. Z-Score Normalization Impact on Inter-Parameter Correlations

Figure 5 shows the dataset inter-parameter correlations before and after normalization
of Z-score for different channel scenarios. The highly positive correlations tend to be bright
orange. The highly negative correlations tend to be dark blue. All Dσ, PL, KF, σEoA, σEoD,
σAoA, and σAoD are represented as DS, PL, KF, esD, esA, asD, and asA, respectively.

The parts Figure 5a,c,e,g represent the correlation matrices for each scenario before
normalizing the features, while the parts Figure 5b,d,f,h display the final result for the
correlation after normalization. It is easily noted that the correlation coefficients differences
between normalized and un-normalized parameters are negligible as the normalization
process only standardizes the data without significantly affecting the inter-parameter corre-
lation. The Z-score keeps the inter-parameter correlations in its region after normalization.
The strong, medium, and weak correlations are retained. This determines the robustness
of the Z-score and its ability to normalize the data while keeping the data within the
correlation region.
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3.2. Regularization Evaluation

Table 1 shows the decision of feature elimination for LASSO and ElasticNet, where
the elimination is based on the value of the coefficient. If the value is 0, this means that the
corresponding feature should be dropped. The decision results of the table are either kept
or dropped.

Table 1. LASSO and ElasticNet feature selection decision.

Features
esA KF PL asA esD asD DS

Method

LASSO
(Present
Work)

Kept Kept Kept Kept Dropped Dropped Dropped

ElasticNet
Ref. [14] Kept Kept Kept Kept Dropped Dropped Dropped

The ElasticNet and LASSO performances are similar. Both have dropped the 0 regular-
ization coefficient parameters esD, asD, and DS. They kept esA, KF, PL, and asA because
their coefficients are 0.72, 0.37, 0.25, and 0.12, respectively. These results indicate that the
regularization of both LASSO and ElasticNet reduced the data dimensionality from 7 to 4.

Table 2 shows the time evaluation of both LASSO and ElasticNet. The instruction of
each one is 10 times and their time average is taken into consideration.

Table 2. LASSO and ElasticNet time evaluation.

Model Runtime (s)

LASSO (Present Work) 0.33

ElasticNet (Ref. [14]) 0.67

Clearly, the LASSO is more time-efficient and more suitable for this type of dataset as
it is a L1 regularization type. The ElasticNet takes more time as it combines both L1 and L2
types during regularization.

3.3. Dimension Reduction and Data Visualization

As mentioned before, the LASSO reduced the data dimension from 7 to 4 in less time
than the ElasticNet. The k-PCA reduces the data dimension even more. The type of kernel
is RBF. Figure 6 shows the PDF of the final preprocessed data, where the data have the
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principal components extracted from k-PCA. Figure 6a shows the PDF of the first principal
component, PC1, for all scenarios. The PC1 has an overlay of classes (scenarios). This
overlap would cause misclassification due to the overlapped groups. This data overlap can
be seen in the cases of RMA NLoS and UMA NLoS. Figure 6b shows the PDF of the second
principal component, PC2, which shows a novel differentiation of information that can be
used in distinguishing the four classes. In other words, PC2 displays a new dimension of
the data: for example, the UMa NLoS can be easily distinguished from RMa LoS. Both PC1
and PC2 components are used as ML predictors.
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3.4. ML Evaluation

The ROC curves of each algorithm show a binary classification. Each scenario is
compared with the other three scenarios so that it is considered as a binary value of 1 while
the other scenarios are represented as 0. Figure 7 shows the ROC curves output for each
scenario over the others for all algorithms.

The AUC is the indicator for the binary classification performance. In the case of
RMa LoS, all algorithms achieved an AUC score above 0.997. The KNN achieved the
highest AUC score in RMa NLoS classification with 0.994. In the case of UMa LoS, the KNN
achieved a score of 0.994, outperforming the SVM by 0.02, while the GMM outperformed
the k-Means by 0.02. The least AUC score in the case of UMa NLoS was 0.96. which
corresponds with the k-Means, while the GMM surpassed the AUC score of k-Means
by 0.266. The supervised learning seems to have a better AUC score than unsupervised
learning because the TPR and FPR were calculated on the testing set only. The unsupervised
learning models were used to cluster the combined dataset (training and validation set).
Then, the evaluation was performed by calculating the minimum mean square error of
each cluster and comparing it with the actual data output.

The time evaluation for each algorithm is displayed in Table 3. The time of the training
and testing were combined for the supervised learning algorithms KNN and SVM. The
clustering time is shown for the unsupervised learning k-Means and GMM.
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Table 3. Time evaluation of each algorithm.

Algorithms KNN SVM k-Means GMM

Accuracy 99% 99% 97% 98%

Fit & Predict Time (s) 0.181 0.155 0.26 0.087

Both supervised algorithms KNN and SVM require training using labels. The SVM
performed the training and testing in a total time of 0.155 s, which is faster than the KNN.
This indicates that the linear SVM could achieve 99% accuracy in less time, as the dataset
distribution was suitable for SVM. The GMM performed the clustering task in 0.087 s,
which was the lowest among all algorithms. The k-Means clustering time was the highest at
0.26 s. This information indicates that the GMM is more flexible and reliable in the scenario
clustering task. It can be generalized for other different scenarios besides RMa LoS, RMa
NLoS, UMa LoS, and UMa NLoS, as it does not require a label during training, which is a
good advantage over the other algorithms.

4. Conclusions

In this work, the time consumption of the data preprocessing for ML was enhanced.
Regularization using LASSO was integrated, instead of ElasticNet, to reduce the prepro-
cessing procedure and the computational time. Moreover, the computational time and
performance of different ML models based on regularization technique were evaluated.
The ML performance was evaluated using the ROC curves and AUC scores for each specific
class. The classes were RMa LoS, RMa NLoS, UMa LoS, and UMa NLoS. The ML algorithms
used are KNN, SVM, k-Means, and GMM.

The obtained results show that the adoption of LASSO is better than ElasticNet, as
it performs the same unwanted features removal in a shorter time. These unwanted
features are esD, asD, DS, as they achieved 0 regularization coefficient values. The LASSO
runtime was 0.33 s, while the ElasticNet runtime was 0.67 s. Then, the ML algorithms were
performed. The time results show that the KNN training time and testing time were 0.011 s
and 0.17, respectively. The model training time of the linear SVM is 0.14 s and the testing
time was 0.015. Therefore, the SVM was the fastest supervised learning algorithm used, as
its runtime was faster than KNN and it achieved a 0.994 AUC score. The k-Means showed
the slowest classification time with 0.26 s and the worst performance by an overall score
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of 0.983. The runtime of the fit and predict function of GMM was 0.087 s and achieved
an overall score of 0.989 AUC score in ROC curves. The runtime of the GMM clustering
may be considered as the fastest one among k-Means and the supervised algorithms. The
GMM was the most time-efficient algorithm among both supervised and unsupervised
learning algorithms.

For future work, the optimization of GMM for scenario classification task can be
considered. Long Short-Term Memory (LSTM) can be investigated in wireless channel
classification and prediction. The LSTMs were developed to deal with the vanishing
gradient problem that can be encountered when training traditional networks. Moreover,
the study of the Doppler effect is a good point to be considered in a future work.
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