
Citation: Lian, W.; Li, Y.; Wang, J.;

You, J. A Cuckoo Filter-Based Name

Resolution and Routing Method in

Information-Centric Networking.

Electronics 2022, 11, 3243. https://

doi.org/10.3390/electronics11193243

Academic Editor: Martin Reisslein

Received: 31 August 2022

Accepted: 7 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Cuckoo Filter-Based Name Resolution and Routing Method
in Information-Centric Networking
Wenhan Lian 1,2 , Yang Li 1,2, Jinlin Wang 1,2,3 and Jiali You 1,2,3,*

1 National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of
Sciences, Beijing 100190, China

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China

3 Peng Cheng Laboratory, Shenzhen 518055, China
* Correspondence: youjl@dsp.ac.cn

Abstract: Information-centric networking (ICN) is a new network architecture that routes content
based on names to improve transmission performance. Therefore, the efficiency of name resolution
and routing becomes a critical issue in ICN. The bloom filter-based routing scheme has gained
significant attention for its ability to improve the memory efficiency of routing nodes in the network,
but it cannot handle the movement or deletion of content and has a high false positive rate, which
increases bandwidth consumption. In this paper, we propose a cuckoo filter-based name resolution
and routing method where resolution requests are forwarded through a hierarchical network structure
to the node closest to the content copy as much as possible to minimize latency. This method achieves
reliable content removal and allows summaries of content to be exchanged between nodes for
resolution error correction and information synchronization based on a modified cuckoo filter. The
simulation results show that our method can effectively reduce the number of false positives, and it
can reduce the additional overhead caused by processing false positives for a large-scale network by
50% compared with the bloom filter-based scheme.

Keywords: name-based routing; name resolution; cuckoo filter; information-centric networking

1. Introduction

Information-centric networking (ICN) is a future content-centric network architecture
designed to address the shortcomings of the host-centric Internet architecture. ICN regards
information as the center of communication, which is in line with the primary need of
web users to access content. Several projects have been conducted in recent years for the
research and development of ICN [1–6]. In order to improve transmission efficiency and
content security, these projects use hierarchical or flat naming methods to name content and
decouple content names from their locations at the network layer. Each content object has a
unique name, and communication is based on the content name rather than the location
and address of the content source so that users can still retrieve content even if the location
of the content changes.

Considering the context of mobile Internet development, the number of content
objects will continue to grow. The sheer volume of network content generates a huge
name space, and these collections of names not only incur huge storage costs, but the
amount of computation required to search for names to perform routing functions would
increase significantly. At the same time, routing devices in the network only have limited
storage resources and computing power, so name-based forwarding in ICN is bound to
face scalability challenges.

To cope with this problem, there are currently two main types of name resolution
and routing techniques: name-based routing and the name resolution service [7]. The
former [8,9], represented by NDN [1] and CCN [4], uses a flooding protocol at the network

Electronics 2022, 11, 3243. https://doi.org/10.3390/electronics11193243 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193243
https://doi.org/10.3390/electronics11193243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1250-704X
https://doi.org/10.3390/electronics11193243
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193243?type=check_update&version=3

Electronics 2022, 11, 3243 2 of 20

layer for forwarding based on the name in the request, which can reduce the size of the
forwarding table due to the aggregation advantage of hierarchical names. In this type of
scheme, name resolution and content routing are coupled, the content request is routed
to the provider, and the requested content is then forwarded to the requester along the
reversed path of the content request route. Name routing between nodes via flooding
generates a large number of messages and results in high traffic costs. The latter [10,11],
represented by MobilityFirst [2] and PURSUIT [5], sets up several resolution nodes in the
network to store the relationship between names and network locations, maps the content
names to the corresponding resolution node through a hash scheme, and forwards the
requests to the content sources using the addresses provided by the resolution service. In
this type of solution, the name resolution process is decoupled from the content routing
process. The name resolution service system, using a distributed hash table (DHT), solves
the problem of scalability and supports flat-name ICN, but this system is implemented
entirely based on the overlay network, and it often lacks the location information of the
underlying physical network, which leads to long resolution paths and long time delays.

As an effective tool to improve scalability, the bloom filter (BF) [12] has received a
lot of attention, and there has been a lot of research [13–16] integrating this concept of
a probabilistic data structure into routing schemes. For name-based routing [17], every
routing node sets multiple BFs which can quickly exclude links that do not meet the
forwarding requirements, thus greatly reducing the bandwidth consumption caused by
flooding. In the bloom filter-based routing (BFR) approach [18], the required bandwidth
and storage overhead for propagating and storing BFs grows linearly with the number of
available content object names [19]. Recently, pull-based BFR [20] was proposed as a new
interest-forwarding strategy for the typical scenario with a very large number of content
objects. It only advertises the names of the requested content [21], and thus the routers
do not need to store the entire content universe. The solution proposed by Lee et al. [22]
is also applicable to this scenario, as they designed a dual-load bloom filter, which is
basically a quarternary BF. These improvements reduce the storage pressure on the router,
but there is no essential change in name routing. As for the name resolution service, the
content names are stored in the BF, which can accelerate the retrieval process and improve
the storage efficiency [7]. For flat ID-based ICN [14], the reasonable coding method of a
BF can even realize name aggregation of the same prefix and finally allow it to achieve
NDN-style forwarding.

However, the bloom filter has inherent drawbacks. It does not support deletion, which
also causes the BF-based name routing schemes to experience difficulties in handling the
deletion and movement of content, which happens almost all the time in mobile Internet
application scenarios. In addition, the BF suffers from false positives. Once the name
reaches the wrong destination in the routing process, subsequent content delivery cannot
be guaranteed.

In this paper, we combine the filter and DHT to design a cuckoo filter-based name
resolution and routing scheme to support flat-name ICN and ensure good scalability. We
have improved on the traditional DHT-based name resolution system architecture. Outside
the DHT overlay network, intra-domain name resolution and routing is performed by
infrastructure routers running IP routing protocols, resulting in a hierarchical structure.
These infrastructures are stable and physically located closer to the content source, and
they can achieve fast request forwarding by existing intra-domain routing protocols such
as OSPF, thus ensuring efficient intra-domain resolution. In addition, we study the impact
of false positive matches on the correctness of packet forwarding. In fact, even though the
cuckoo filter has a lower false positive rate, false forwards are inevitable when the network
is large. We can effectively avoid erroneous forwarding by designing the cooperation
mechanism of the nodes in our resolution system, and the high-frequency access content
will not even be affected due to false positives.

Electronics 2022, 11, 3243 3 of 20

The contributions of this paper are as follows:

• We compare the differences in the false positive rates between commonly used proba-
bilistic data structures, including the bloom filter, the cuckoo filter and some variants.
We propose a simplified adaptive cuckoo filter (SACF) which maintains efficient query
performance with some error correction capability and performs well in multiple
queries on popular content. We also apply it for the first time to name resolution and
routing in ICN.

• We design a new name resolution and routing scheme based on the SACF. This
hierarchical resolution scheme accommodates both flat names and hierarchical names,
and it integrates name resolution into the routing and forwarding process. Requests
will be forwarded to the resolution node closest to the content copy as much as possible
to reduce resolution latency.

• We design a content movement support mechanism for our scheme to make content
removal reliable, as well as an error correction feedback mechanism to address false
positives caused by the filter, thus achieving a better balance between the efficiency
and overhead of name routing.

The remainder of this article is organized as follows. In Section 2, we introduce and
describe the probabilistic structures in ICN routing: the bloom filter and the cuckoo filter.
In Section 3, we describe a novel cuckoo filter-based name resolution and routing method.
In Section 4, we evaluate the effectiveness of our proposed method. Finally, the conclusion
is presented in Section 5.

2. Related Work

In this section, we will briefly introduce the structure and characteristics of the tradi-
tional bloom filter and describe the benefits obtained by the current ICN routing scheme
incorporating the bloom filter and, of course, the limitations imposed by the bloom filter.
In addition, we introduce the cuckoo filter, a novel probabilistic data structure, and its
variants and give the reasons why it is more suitable for the ICN routing scheme than the
bloom filter.

2.1. Bloom Filter-Based Routing Approach

The bloom filter (BF) [12] is a space-saving probabilistic data structure, and it is used
to determine whether a given element is a member of a set. A positive answer means
that the item has a high probability of being in the set, and a negative answer means that
it absolutely does not exist. The BF is essentially an array of fixed-length bits that takes
up little memory, and all bits are initialized to zero. During the insertion of an element
x, the BF uses a set of k hash functions Hash1(x), Hash2(x), . . . , Hashk(x) to calculate the
corresponding k positions and set them to one. Similarly, to look up if an element has been
inserted into the BF, those positions are read, and a positive result is returned only if all of
them are one. A bloom filter with several elements already inserted is shown in Figure 1.

Figure 1. Illustration of a bloom filter checking an element x.

However, the design of the BF dictates that it will have a relatively low probability of
false positives; that is, when checking for an element that has not been inserted into the

Electronics 2022, 11, 3243 4 of 20

BF, the filter may give a positive value. This happens when the k positions being checked
have been set to one when inserting other elements. The probability of a false positive for
a single query in a BF can be approximated by FPRBF, which is actually the probability
that all k positions queried have been set to one. Suppose a BF has a size of m bits, and the
probability of any one position being set to one after n elements have been inserted is p1:

p1 = 1 − (1 − 1
m
)nk (1)

Therefore, the false positive rate for the BF is calculated as in Equation (2). In general,
the parameter m is set to a large number by default:

FPRBF = (1 − (1 − 1
m
)nk)k ≈ (1 − e−

nk
m)k (2)

To obtain the ideal false positive rate, the optimal number of hash functions is set
according to Equation (3):

k =
m
n

ln2 (3)

Not only does the BF suffer from false positive errors, but it also fails to support the
deletion of elements. Deletion may cause false negative problems, as a particular position
may already be set to one by more than one element. In order to support deletion, there
are some improved variants of the BF, but this greatly increases the memory requirements.
For example, the counting bloom filter (CBF) [23] uses a four-bit counter, meaning that
the memory used is increased by four times. The ternary bloom filter (TBF) [24] uses
three values at each position. Except for zero and one, x indicates a collision, but this filter
can only support partial deletion, which also requires more space than the BF. The time
complexity of the BF in retrieval is O(1), and the amount of memory usage is reduced by
approximately 75% by using the BF according to an existing study [25].

In P2P networks, the BF is beneficial in improving file sharing performance [26].
Chen et al. [27] used a bloom filter in an overlay based on DHT global inverted indexes, and
the BF reduced the unnecessary network load when performing multi-keyword searches in
P2P networks. Ariyoshi et al. [28] proposed a distributed algorithm to process conjunctive
queries in P2P DHTs. When a requester issues a conjunctive query, each peer having that
file conducts a search operation in its bloom filter. A bloom filter-based dual-layer scheme
is an inter-domain routing scheme [29]. It is based on a two-layer BF that looks up the IP in
the network gateway to implement internal and external routing layers.

With a large and growing amount of routing table entries but limited memory per
node, the BF has become an important tool for solving routing problems in ICN. In the
existing BF-based routing scheme [9,18], the node maintains a BF for each source or link
to store the published content. The node matches the name carried in the request with all
BFs it maintains to decide the next forwarding. There are also some deficiencies in these
methods because of the BF. First, the inability of BF to support deletion directly results in
these routing solutions not being able to deal with moved or deleted content. The authors
of [18] exchanged the entire bloom filter between nodes for information synchronization,
which imposed an unacceptable communication overhead, and the authors of [9] used
an improved SBF to support deletion at the expense of the actual storage space efficiency.
Futhermore, Katsaros et al. [30] analyzed the high false positive rate (FPR) of the BF-based
routing scheme in ICN, especially in hierarchical network architectures, where the false
positives accumulate as the number of hops increases and eventually affects the correctness
of forwarding.

2.2. Cuckoo Filter

As an alternative to the BF, the cuckoo filter (CF) [31] is functionally very similar to the
BF and has gained a lot of attention in recent years. Structurally, a CF is a two-dimensional
matrix consisting of an array of m buckets, with each bucket including c slots for storing

Electronics 2022, 11, 3243 5 of 20

fingerprints. It can also be interpreted as a table with m rows and c columns, but this table
stores the fingerprints. Specifically, the fingerprint is actually an abstract representation of
the original element. Assuming that an element is x, its fingerprint f px can be obtained
by performing a hash operation on it; that is, f px = h f (x). The length of the fingerprint f
depends on the size of the slot, where the larger the slot, the longer the fingerprint, and
the more accurate the representation of the original element x. Because the fingerprint
f px takes a much smaller number of bits than x itself, the CF is also a space-efficient
structure. Figure 2 shows an example of a CF with m buckets, each with four slots.

Figure 2. Illustration of a cuckoo filter checking an element x.

During insertion, each element usually has two optional candidate buckets, which
are also obtained by performing a hash operation on that element. The positions of the
candidate buckets are calculated as shown in Equation (4). The advantage of this design
is that the location of another candidate bucket of an element can be obtained by XOR
calculation between the current bucket and the fingerprint, solving the relocation problem
encountered when storing the fingerprint. If the two candidate buckets corresponding to
the element x are all full, then a random fingerprint is kicked out at this point, and f px is
stored in preference. The kicked victim can then calculate the location of its other bucket
and complete the insertion. This process may take a lot of time if it produces many victims,
and this is where the CF is inferior to the BF:{

h1(x) = hash(x)

h2(x) = h1(x)⊕ hash(f px)
(4)

The query process is much more efficient. It only needs to compare the fingerprint of
the element to be checked with the maximum 2c fingerprints of the two optional buckets to
complete the judgment. It should be noted that a false positive will occur when querying
for an uninserted element that may happen to have the same fingerprint as in the CF.
Assuming that the current load rate of CF is a, a query compares at most 2ac fingerprints at
this time, and the probability that two fingerprints with a length f are completely identical
is 1

2 f . Therefore, the false positive rate of the CF can be calculated by Equation (5). It is
important to note that the simplification holds when 2ac � 2 f :

FPRCF = 1 − (1 − 1
2 f)

2ac ≈ 2ac
2 f

(5)

Compared with a BF, the greatest advantage of a CF is the support of the delete
operation. A CF achieves deletion by removing the fingerprint of an element x. Obviously,
this will not have any impact on the searching of other elements. In addition, compared

Electronics 2022, 11, 3243 6 of 20

with the BF, the false positive rate of the cuckoo filter is even lower, and there are many
variants to further reduce the false positive rate. For example, the configurable bucket
cuckoo filter (CBCF) [32] reduces hash collisions by increasing the average length of the
fingerprints, and the adaptive cuckoo filter (ACF) [33] takes advantage of the one-to-one
correspondence between fingerprints and elements to reduce the false positives in practice
by modifying the incorrectly matched fingerprints in the query. Finally, Table 1 briefly
compares some of the probabilistic data structures mentioned in this section. For reference,
the FPR values are based on the experimental results of this paper.

Table 1. Comparison of several filters.

Filter Deletion Support FPR for Optimal Settings Extra Cost

BF No Good (0.021) No
CBF Yes Same as BF Counters
TBF Partial Same as BF Counters
CF Yes Close to BF (0.029) No

ACF Yes Better for repeat queries (0.005) Flags and a main table for elements

3. Proposed Method

In this part, we propose the cuckoo filter-based name resolution and routing method.
First, we analyze the impact of bloom filter false positives on the bloom filter-based name
resolution and routing scheme in Section 3.1. Then, the structure of our resolution system
and the routing process for name requests are described in Section 3.2. In Section 3.3,
we propose the SACF and introduce it into ICN name routing for the first time. Finally,
we design two mechanisms for our system to address the negative effects of the filters in
Section 3.4.

3.1. Problem Statement

The false positives of the bloom filter will have an impact on the forwarding of a router
and thus affect the correctness of name routing in the network. In the following, we will
explain how packets deviate from the correct forwarding path step by step.

Suppose a routing node has R different egress interfaces, and a bloom filter is set for
each interface. The node has the name information required for the current request; that is,
it can ensure that there is at least one true positive match for the request at the current node.
In contrast to exact match forwarding, the results in BF-based forwarding may contain
both true positive matches and false positive matches. If there is a false positive match, the
router itself cannot know from which port the packet is correctly forwarded, and it may
forward to the wrong hop if it randomly selects a positive match. We assume that there are
i true positive matches, the remaining (R − i) BFs will probably have false positives, and
the FPR for each BF is ε. When there is a first filter claiming to have found the name, the
probability that it is actually a false positive is noted as P, as calculated in Equation (6). In
addition, this will result in a forwarding error. P will increase as R increases, and when
the node maintains a lot of BFs, P will not be ignored, and the packet will most likely be
forwarded incorrectly. Once the packet reaches the next routing node, if the correct match is
not available (i.e., i = 0), then the success of the name being looked up here must be a false
positive. This can be calculated according to Equation (6), P = 1. At this point, the packet
has been incorrectly forwarded for two hops, and it is almost impossible for it to return
to the correct forwarding path, as subsequent routers will not even be able to determine
where the error started:

P =
ε(R − i)

ε(R − i) + i
= 1 − i

ε(R − i) + i
(6)

This incorrect delivery eventually leads to a delay in content acquisition. Usually, the
node receiving the incorrectly delivered request is unable to find a subsequent forwarding
address and will drop the request. The requester must rely on a timeout for retransmission,

Electronics 2022, 11, 3243 7 of 20

but using the same name may still lead to an erroneous result, as the same false positives
still occur on the BFs. Considering the high cost of incorrect deliveries, BF-based routing
schemes are usually optimized in the following ways:

• Keep the false positive rate low at the filter level;
• Avoid relying only on filters for continuous multi-hop forwarding decisions;
• Design a reasonable multiple match resolution (MMR) strategy.

MMR strategies [14] can fundamentally prevent erroneous forwarding. In existing
MMR strategies, the all-matched strategy has too much communication overhead, and
the retransmission strategy requires an alternative addressing method. Ultimately, these
strategies are designed for BF-based routing schemes, but they are limited by the bloom
filter. Therefore, our approach selected the cuckoo filter to design a new error correction
feedback strategy.

3.2. System Model

The existing Internet is organized by multiple autonomous systems (ASes), where the
different ASes communicate through inter-domain routing, with the border routers of each
AS interconnecting and collaborating on the forwarding of packets. Routing within the
autonomous system is known as intra-domain routing, where the packets are forwarded
only between different network devices in an AS. In contrast, our resolution system is
also divided into an inter-domain resolution and intra-domain resolution. We also used
these border routers as resolution nodes, because we believe that the IP-based Internet
infrastructure will not be abandoned, and they have high stability in a dynamic network
environment. To further reflect the topology of the underlying physical network, an AS can
be divided into several control domains, each of which has an SDN controller responsible
for directing the forwarding of requests. Thus, our scheme takes the controller as the basic
intra-domain resolution node, with an advanced node within the AS for resolution between
the control domains. A resolution system with a hierarchical network structure is shown in
Figure 3.

Figure 3. System model.

To allow IP services to coexist with ICN services, we defined a name resolution layer
on top of the IP layer. Each resolution node runs both the IP routing protocols and the name
resolution protocols, but different layers of nodes have their unique resolution functions.
As the most basic resolution node, The Type I Node stores the mapping between the names

Electronics 2022, 11, 3243 8 of 20

and addresses of content in the control domain. It will complete the name to address
resolution process and direct the request to be forwarded to the closest available copy of
the content. The Type II Node stores the correspondence between the name and the control
domain in an AS, and it forwards the request to the Type I Node of the control domain,
where the content is located if the requested content exists in the AS. The function of the
Type III Node is to find the AS where the content is located. Therefore, all the border
routers are required to form a DHT overlay network using the information provided by
BGP, which can not only realize the inter-domain name resolution and routing functions
but also ensure the scalability of the resolution system.

A content producer or requester can connect to a Type I Node as a user. Different from
the IP services, the user must carry both the IP address and the content name when sending
the ICN content request. The content name is a persistent and unique identifier for the
name resolution layer. It is not allowed to be changed by the intermediate routing nodes
during transmission. Moreover, our scheme supports both flat names and hierarchical
names. The IP address is only used temporarily to identify location information, and the
IP field in the packet will constantly be modified during routing and forwarding. The
resolution node will take the content name for the resolution and direct the request to a
better location according to this result. The destination address field will be modified to
the address of the most recently available content, noted as DestAddr, or the address of
the next resolution node that is more likely to know the location of the requested content.
Algorithm 1 illustrates the name resolution and routing process.

Algorithm 1 Name resolution and routing.

1: while True do
2: if Type I Node then
3: if Get the DestAddr then
4: Forward(Packet, DestAddr)
5: return
6: else
7: Forward(Packet, Type II Node)
8: end if
9: end if

10: if Type II Node then
11: if Get the Type I Node then
12: Forward(Packet, Type I Node)
13: else
14: Forward(Packet, Type III Node)
15: end if
16: end if
17: if Type III Node then
18: Get the next Type II Node via DHT
19: Forward(Packet, Type II Node)
20: end if
21: end while

In our resolution system, the intra-domain resolution is populated to reduce unnec-
essary DHT routing. It takes advantage of the underlying physical network topology
and IP routing protocols to forward requests to the nearest content source. Therefore, it is
more efficient than conventional hierarchical DHTs, and this simple network structure also
simplifies network management.

Electronics 2022, 11, 3243 9 of 20

3.3. Simplified Adaptive Cuckoo Filter for a Resolution System

It is essential to introduce cuckoo filters to our resolution system for the following
three reasons.

First, each Type I Node stores the mapping relationship between the content names and
addresses in the control domain. As the user’s access point and the most basic resolution
node, these names will be queried at high frequencies, but they are very small compared
with the huge name set. In other words, the Type I Node will receive a large number of
requests that it cannot successfully find by itself. The CF is efficient in terms of lookup and
gives a guaranteed correct negative answer, which is just suitable for this query scenario.

Second, the mapping relationship between the names and Type I Nodes is maintained
on the Type II Node, which takes up a large number of storage resources. Setting up a CF
for each Type I Node to store names can significantly improve space efficiency, which is the
main reason for introducing filters in ICN name resolution and routing. However, to avoid
relying on filters for multiple hops in a row during routing, we only used CFs on these two
types of nodes.

Third, with the help of CF, a new MMR strategy can be designed to reduce the cost
while obtaining the convenience brought by the filter. This strategy is described in detail in
the next subsection.

The adaptive cuckoo filter (ACF) [33] has been shown to be effective in reducing the
number of false positives in practice. It will recalculate the fingerprint that caused the error
using an additional hash each time a false positive is found, thus reducing the possibility
of subsequent errors for the same query. In the network, the probability of popular content
being requested is much higher than the average, with 20% of requests often taking up 80%
of the traffic. Therefore, this optimization of the ACF is very friendly to the resolution of
popular names.

A large number of alternative hash functions is used in the ACF for computing
fingerprints. The principle is that all fingerprints in a bucket are computed by the same
hash function, and it uses extra bits as identifiers to identify the type of fingerprint in each
storage bucket. The extra space taken up by the flag bits means that the storage capacity of
ACF smaller. And Both reading and writing of flag bits will degrade the performance of the
ACF. In addition, the ACF requires multiple cuckoo hash tables, and a main table to store
the complete set of original elements. We kept the main table but changed the elements
stored in it and simplified the ACF. We call it the SACF. Figure 4 shows our SACF and its
corresponding main table.

Figure 4. Correspondence between SACF fingerprints and main table elements.

Electronics 2022, 11, 3243 10 of 20

The SACF is structurally identical to a normal CF. In order not to take up extra space
by adding an identifier in the storage bucket, the SACF stores only two different types
of fingerprints, with restrictions on where they can be located. Taking an element x as an
example, its fingerprint may be either f p1(x) or f p2(x), both of a length f . In fact, we only
need to compute a fingerprint f pLx of a length 2 f , and the two short fingerprints can be
obtained by separating the long fingerprint from the middle one. The relationship between
the three fingerprints is shown in Equation (7), and this long fingerprint is also used to
determine the positions of the candidate buckets as in Equation (8). However, the short
fingerprints stored in the bucket will not be used directly during relocation, as it requires
fetching the element from the main table and calculating the long fingerprint:

f pLx = f p1(x)2 f + f p2(x) (7){
h1(x) = hash(x)

h2(x) = h1(x)⊕ hash(f pLx)
(8)

In addition, we made constraints on the storage positions of two types of fingerprints.
The four slots in the bucket were recorded as s1–s4 for convenience, where f p1(x) can only
be stored in s1 and s3, and s2 and s4 are used to store f p2(x). During the query, f pLx is split
into two short fingerprints f p1(x) and f p2(x), the same type of fingerprint is compared
with the stored fingerprints, and a positive results is given when the match is successful.
Algorithm 2 describes the SACF query process, which will also include the correction of
false positives if error correction is enabled. This simplified design does not worsen the
false positive rate, although intuitively, the two fingerprints are more likely to collide. The
false positive rate of the SACF is recorded as FPRSACF, and it includes collisions with
two kinds of fingerprints that are independent of each other. When the loading rate is a,
there is ac for each of the two fingerprints in the two candidate buckets, where c = 4 in our
implementation. FPRSACF is ultimately expressed as Equation (9):

FPRSACF = (1 − (1 − 1
2 f)

4a) + (1 − (1 − 1
2 f)

4a) ≈ 8a
2 f

(9)

The two short fingerprints can be understood as different hash functions, which gives
the SACF the ability to correct false positives by replacing the fingerprint representation. We
assumed that x matched the fingerprint of element y and considered that f p1(x) = f p1(y)
without losing generality. A false positive is confirmed when the filter gives a positive
result but the element x is not found in the main table. At this point, in the main table,
the element y swaps places with its neighboring element z so that their fingerprints in
the SACF are also recalculated. The fingerprints in the bucket where the false positive
occurs in the SACF will change from f p1(y) and f p2(z) to f p1(z) and f p2(y), respectively,
thus completing the replacement of the fingerprint type. After the error correction, the
probability of a false positive εc is shown as Equation (10) when the same element x is
queried consecutively, and a false positive will occur again only when f p1(x) = f p1(z)
or f p2(x) = f p2(y) is satisfied. In practice, query requests are not completely ordered or
random, and some popular content requests account for a large percentage. Error correction
can reduce the false positives of these requests and will bring significant benefits. A more
detailed proof can be found in [33]. To replace the short fingerprint, the ACF needs the
main table that stores the complete elements and requires that the position of the element
and the position of its fingerprint always coincide. For the SACF, in the main table, we
store the correspondence between the content name and the address as an element:

εc = 1 − (1 − 1
2 f)

2 =
1

2 f−1 − 1
22 f

(10)

In fact, the SACF and the main table are the two structures we need to maintain on
the Type I Node. When processing a name resolution request, the node first uses the SACF

Electronics 2022, 11, 3243 11 of 20

to quickly locate the name in the main table and then performs another match to find the
address where the name is located. If either of the two lookups fails, the request will be
forwarded to the Type II Node. On a Type II Node, to save space, only a number of SACFs
is stored instead of the main tables for intra-domain resolution. It is important to note that
the SACF in a Type I Node stores the same names as the corresponding SACF in the Type II
Node, and more strictly, they are identical filters.

Algorithm 2 Lookup for an item x.

1: ret = negative
2: Compute f pLx Access buckets h1(x) and h2(x)
3: for j = 1 to 4 do
4: m = (j − 1)%2 + 1
5: n = 3 − m
6: Compare f p in slot j with f pm(x)
7: if Match then
8: ret = positive
9: if Error correction enabled then

10: if x is not in main table then
11: Get item y in slot j from main table
12: if m == 1 then
13: Get item z in slot k = j + 1 from main table
14: end if
15: if m == 2 then
16: Get item z in slot k = j − 1 from main table
17: end if
18: Swap y and z in main table
19: Store f pm(z) to slot j in filter
20: Store f pn(y) to slot k in filter
21: end if
22: end if
23: end if
24: end for
25: return ret

3.4. SACF-Based Name Resolution and Routing

With the introduction of filters, our resolution system will also suffer from false
positives. Therefore, we designed a new MMR strategy to ensure correct name routing. In
addition, we added a support mechanism for content movement and deletion.

3.4.1. Error Correction Feedback Mechanism

In the whole system, the SACF is placed on only two levels of nodes for intra-domain
resolution, and only the Type II Node maintains multiple filters. Such a design helps to
limit where multiple matches occur. On a Type I Node, false positives do not even have
an impact, as the main table will finalize the exact match of the name, thus fundamentally
guaranteeing the correctness of the resolution result. Based on these characteristics, we
designed an error correction feedback mechanism as the MMR strategy in our system.

During the name routing process, the error correction feedback mechanism comes
into play when a request deviates from the correct path due to incorrect forwarding by
the resolution node, and it helps to redirect the request back to the correct path through a
process including the following stages:

• Sensing error forwarding: Although we already know that the error forwarding is due
to multiple matches in the Type II Node, it does not know that an SACF has a false
positive when it selects the next resolution node for forwarding. When the request is
forwarded to a Type I Node, the SACF will also have a false positive because it stores
the same fingerprint as the SACF with the false positive in the Type II Node. However,

Electronics 2022, 11, 3243 12 of 20

the main table will return a lookup failure. At this point, the Type I Node perceives
that this is a request forwarded incorrectly.

• Error correction and feedback: The Type I Node first corrects its SACF. It replaces the
fingerprint that was incorrectly matched with another type of fingerprint, and the
modified bucket of the SACF is repackaged with the request and sent back to the Type
II Node.

• Synchronize and re-query: The Type II Node receives the repacking request, replaces
the corresponding bucket in the SACF where the false positive occurred with the
bucket carried in the repacking request and then continues with this name resolution
and forwarding in the remaining SACFs.

Figure 5 shows the forwarding path of requests in case of false positives. This mech-
anism solves the pain point of the filter-based routing scheme through the one-to-one
correspondence between elements and fingerprints in the SACF at the cost of a small
communication overhead.

Figure 5. Error correction feedback mechanism.

3.4.2. Content Movement Support Mechanism

Although the SACF is a structure that naturally supports deletion, fingerprint collision
may occur in deletion as in searching, resulting in false negatives eventually introduced by
erroneous deletion, which is unacceptable. During deletion, the SACF removes a random
fingerprint from one of the two candidate buckets. We would also prefer not to see this
randomness because we hope that the SACF on a Type I Node and the SACF on the Type II
Node representing this Type I Node are always identical, which is a prerequisite for error
correction and feedback mechanisms to work. Thus, we designed the content movement
support mechanism.

The deletion request is initiated by the user, which first performs a lookup on the Type
I Node it accesses. To avoid erroneous deletion, we did not remove the fingerprint of the
element after the SACF query returned a positive result, as we could not be sure whether this
was just a hash collision. After the main table deletes the complete mapping relationship,
the fingerprint of the SACF is removed according to the location relationship. In order to
make the same SACF on the Type II Node also delete this fingerprint without introducing
randomness, the modified bucket is synchronized to the corresponding SACF in the Type
II Node, which is equivalent to another deletion. Due to the advantage that the SACF can
be split into multiple buckets, adding a modified bucket after the deletion request will only
occupy dozens of extra bits. In the last step, the mapping relationship between this content
name and the Type II Node is deleted in the DHT network of the Type III Nodes, and the

Electronics 2022, 11, 3243 13 of 20

content deletion ends. The main table deletes the original record as a start, which ensures
that the deletion is reliable.

4. Performance Evaluation

In this section, we first test the performance of the SACF, including its false positive
rate and query efficiency. Then, we use the NS3 network simulation platform to verify
the effectiveness of the proposed mechanisms and compare the differences in terms of
additional bandwidth and forwarding latency between the SACF-based scheme and the
BF-based scheme.

4.1. Performance of the SACF

In this part, in order to test the performance of the SACF, we also implemented the
other three filters—the BF, the CF and the ACF—for comparison. We initialized the four
filters with the optimal configuration of the false positive rate by allocating the same size of
storage space and limiting their maximum storage capacities to a similar size. Specifically,
for the SACF, CF and ACF, we set the fingerprint length to f = 8, and accordingly, the
optimal number of hash functions used for the BF was k = 6. For the ACF, we allowed it to
provide up to four hash representations for each fingerprint. Therefore, the ACF required
two extra bits to represent the type of fingerprint in each slot.

Although all filters are very efficient in terms of lookup, there are still some differences.
After constructing several filters, we used the same set of candidate elements for insertion
until the filters were filled to predetermined load rates. The load factor was defined as the
ratio of the number of elements currently inserted into the filter to its capacity. Then, we
tested the exact time required to perform queries under different loads. First, we chose
a randomly generated dataset for testing. This dataset contained 100 million elements
that were not stored in the filter, so we used it to test the time required for 100 million
negative queries. The results obtained after several random tests are shown in Figure 6. As
the efficiency of the filter in positive queries is equally important in our system, we used
elements previously inserted into the filter with the same number of 100 million tests, and
the results are shown in Figure 7.

Figure 6. Times of 100 million negative queries at different load factors.

Electronics 2022, 11, 3243 14 of 20

Figure 7. Times of 100 million positive queries at different load factors.

In a negative query, the BF required the least query time, since it only needed to find
a “zero” among several bits representing the element being checked to return the result
immediately, while it took longer to find the first “zero” bit as the number of bits set to “one”
in the BF increased with the load, so its query time also increased. The CF, on the other
hand, had a nearly horizontal query time curve because each negative query required a
traversal to access a total of eight slots in two candidate buckets, which were not correlated
with how many fingerprints were actually stored in the buckets. Thus, the CF’s query time
was not affected by the load. Similarly, the SACF and ACF also needed to traverse all slots
of the two candidate buckets to complete a negative query. The SACF needs to calculate
two types of fingerprints and use the same type of fingerprints in the slot for matching,
which made the query take a little longer than the CF. The ACF needs to read the flag bits
in the bucket at each query and then uses the corresponding hash function to calculate the
fingerprint based on the flag bits. This process is more complicated than that of the SACF,
so it consumes more time.

In a positive search, the query times of the four filters were almost unaffected by the
load factor. Specifically, the BF always needs to calculate all k hash values to obtain the
required query positions and verify whether these positions are “one”. Therefore, this
process consumed more time. Compared with the negative queries, the performance of the
three CFs was much better. They only needed to find a fingerprint matching the element
to be checked in the two candidate buckets and then return a success. However, their test
times were also independent of the load condition, because empty slots cannot be skipped
during the search. In the specific implementation, we used a fingerprint of “zero” in a
slot to indicate that it was an empty slot. Although we did not enable the error correction
function, the SACF still took some more time than the CF because it needed to calculate
more hashes. Due to the flag bits, the ACF took over 20% more time to complete a search
compared with the CF.

The false positive rate (FPR) represents the reliability of the filter. We used the
WIDE2020 network dataset (http://mawi.wide.ad.jp/mawi, accessed on 01/01/2020)
as the dataset to test the FPR of the lookup at different loads. This dataset contains many
packets captured from a real-world network. We selected 10 million packets. The source IP
and destination IP in a packet are regarded as a whole as one name. All names were divided

http://mawi.wide.ad.jp/mawi

Electronics 2022, 11, 3243 15 of 20

into two groups with no intersection. One group was used for insertion until the filters
were filled to a predetermined load factor, and the other group was used for searching. In
order to simulate the real situation in the network, the names being looked up were kept in
the same order as they were in the original dataset. The statistical FPR results are shown in
Figure 8.

Figure 8. FPRs of filters at different load factors, where f = 8.

The FPRs for four filters decreased as the load decreased. The three curves for the
filters varied almost linearly. The CF had the highest number of false positives in all cases.
The BF’s curve had a greater range of variation in the FPR. The BF was the optimal filter
when the load factor was below 60% because the vacant bits of the BF contributed more in
the true negative lookup. In practice, filters do not usually run at low loads because no one
wants to leave a large amount of the available capacity empty. When the load exceeded 90%,
the performance of the BF was closer to that of the CF, which made it less advantageous.
Thanks to the error correction function, the SACF and ACF are well suited for use at high
loads. As discussed before, once the type of fingerprint representation has changed, the
probability that the same query is false again will be significantly reduced. As for the ACF,
it had more selectable hash functions when correcting errors, so its performance was better
than that of the SACF. Considering the space efficiency and query time of the SACF, its
performance in terms of the FPR was excellent enough.

4.2. Performance of the SACF-Based Scheme

We implemented the SACF-based name resolution and routing scheme on the NS3
simulator. The test network included five ASes and several control domains in each AS.
In the test network topology, a Type III Node, a Type II Node and R Type I Nodes were
placed in each AS. All Type I Nodes were directly connected to the Type II Node, and a
user was attached to each Type I Node. Since the Type II Node was directly connected to a
Type III Node, we abstracted the function of the Type III Node for the Type II Node during
implementation; that is, the Type II Node and Type III Node in each AS were actually
the same node. At this point, the nodes between different ASes could not complete their
communication. According to our system model, we used these five Type III Nodes to
construct a small DHT network for inter-domain communication, where any two of them
were only one hop away from each other. For the link configuration of NS3, the bandwidth

Electronics 2022, 11, 3243 16 of 20

of all point-to-point direct links was set to 500 Mbps, and the communication delay was set
to 1 ms. In these experiments, we only sent ICN name routing requests, so there was no
impact of any other traffic and no network packet loss occurred.

In the SACF-based scheme, all SACFs were initialized with the same parameters, the
capacity was set to 32768, and the fingerprint length was set to 8 bits. We still used the
processed WIDE2020 dataset. We chose 30,000 different names as the insertion set. The
names in the insertion set were registered to a randomly selected Type I Node, and the
other Type I Nodes were registered with other names that did not belong to the insertion
set. Finally, the load rate for all SACFs was over 90%. Then, each user sent 1000 resolution
requests, and the names in the requests were obtained from the insert set with a certain
probability. This probability is the frequency with which each data in the insertion set
appears in the original dataset. Names with high frequencies in the dataset were more
likely to be selected as names in the requests, which could simulate the impact of content
popularity in the real network. As a comparison, we implemented the BF-based scheme [18]
and used the same settings.

First, we adjusted the size of R to change the size of the network topology and
tested the additional overhead. The additional bandwidth overhead was compared to the
bandwidth consumption of the accurate name lookup. In the accurate name lookup, each
request is correctly forwarded between resolution nodes until it reaches the target user. We
used the product of the theoretical minimum number of forwards for a request num(f wopt)
and the size of the request packet size(pkt) to represent the overhead of an accurate name
lookup. In the SACF-based scheme, the actual number of forwards was higher, and
the size of the error correction messages was larger than size(pkt). The definition of the
additional overhead is shown in Equation (11), where num(f w) and num(f wc) represent
the number of request packets forwarded and the number of error correction messages
forwarded, respectively, and size(pkt) and size(pktc) represent the size of these two types
of messages, respectively:

Additional overhead = ∑
pkttotal

num(f w)× size(pkt) + num(f wc)× size(pktc)

num(f wopt)× size(pkt)
− 1 (11)

The proportion of additional overhead is shown in Figure 9. In the BF-based scheme,
the additional overhead grew almost linearly as the network size increased. The BF-based
scheme will forward messages to all nodes that give a positive result, which is actually
a flooding approach. It is obvious that with the increase in the number of Type I Nodes,
the scope of flooding will expand accordingly. The SACF-based scheme only requires
forwarding to a truly correct node, although false positives also introduce additional
message forwarding. The error correction feedback mechanisms can go some way to
reducing the possibility of subsequent false positives, since false positives can be corrected
after they are detected. This is very suitable for large-scale networks because its additional
overhead fluctuates very little. At very small network sizes, the SACF-based scheme is
more costly than the BF-based scheme. On the one hand, there are few false positives in
small-scale networks. The SACF-based scheme solves the false positives by forwarding the
request and recycling error correction messages, while the BF-based scheme only needs
to copy a request for forwarding. This processing method makes the SACF-based scheme
consume more bandwidth. On the other hand, the SACF-based scheme is not very effective
despite its error correction. When the network size is small, there are few duplicate names
in the requests, and there is no significant difference between the number of occurrences of
popular names and cold names at this time. With the expansion of the network, another
change is that the network contains more requests. The resolution process of frequently
requested hot content will benefit from the previous error correction process.

Figure 10 compares the average latency of each resolution request in the two solutions.
The BF-based scheme achieved excellent latency at the cost of a high overhead. As the
number of nodes increased, although the BF-based scheme retrieved more filters, its latency

Electronics 2022, 11, 3243 17 of 20

was almost independent of the network size because the filter lookup had only O(1) for
its complexity. In fact, this curve was almost the shortest path delay of the request from
the sender to the receiver, because one of the replicated requests and the original request
must have reached its destination by the optimal route. The latency in the SACF-based
scheme was also not affected by the size of the network, which was actually for a different
reason. As the network scaled up and the number of requests increased, the error correction
mechanism controlled the number of false positives, so the vast majority of the requests
was also not affected by false positives during forwarding. However, the average latency of
the SACF-based scheme was still about 20% more than that of the BF-based scheme, which
was the cost of the error correction feedback mechanism.

Figure 11 shows the communication overhead between nodes due to content deletion.
This part only involved the information synchronization between a Type I Node and a Type
II Node. For a Type I Node, we deleted a certain percentage of its stored content per unit of
time. The BF-based scheme always synchronized the entire filter to the Type II Node, and as
a baseline, its overhead was always kept at 100%, while the SACF-based scheme only sent
the changed storage buckets to the Type II Node, which significantly reduced the overhead.
When the content deletion rate was 1%, 5% and 25%, the overhead was 3.9%, 17.9% and
64.6%, respectively. Even in the case of random deletion, the ratio of the overhead to the
deletion rate did not exceed four because a bucket could hold up to four names. Of course,
the large-scale content deletion in this experiment is rare in practice. However, even if
10% of the content on a node is deleted per second, our scheme will reduce bandwidth
consumption by 67% compared with the BF-based scheme.

Figure 9. Additional forwarding overhead under varied network sizes.

Electronics 2022, 11, 3243 18 of 20

Figure 10. Forwarding latency under varied network sizes.

Figure 11. Synchronization overhead under varied deletion ratios.

5. Conclusions

This paper proposes a CF-based routing method to improve the efficiency of name
resolution and routing in ICN and solve the problems of false positives and content mobility
support in BF-based routing. Our method designs a hierarchical network architecture.
Based on a traditional DHT scheme, we used network infrastructures to sense the physical
topology and enable proximity forwarding of requests, which ensured scalability while

Electronics 2022, 11, 3243 19 of 20

reducing the forwarding latency. To further accelerate forwarding and improve the memory
efficiency of the resolution nodes, we proposed SACF, a CF variant that enables optimization
of the false positive rate. In addition, we designed the error correction mechanism and
content movement support mechanism between nodes to solve the impact of SACF false
positives and effectively reduce the overhead in name routing.

Author Contributions: Conceptualization, W.L., J.Y. and Y.L.; methodology, W.L. and J.Y.; software,
W.L.; writing—original draft preparation, W.L.; writing—review and editing, Y.L. and J.Y.; supervi-
sion, J.Y. and J.W.; project administration, J.Y. and Y.L.; funding acquisition, J.Y. and J.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by (1) the National Key R&D Program of China: Polymorphic Intel-
ligent Network Environment (PINE) for Testing and Demonstrations (Project No. 2020YFB1806402)
and (2) the Strategic Leadership Project of the Chinese Academy of Sciences: SEANET Technology
Standardization Research System Development (Project No. XDC02070100).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our gratitude to Yanxia Li and Zhaolin Ma for their
support of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B. Named data

networking. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 66–73. [CrossRef]
2. Venkataramani, A.; Kurose, J.F.; Raychaudhuri, D.; Nagaraja, K.; Mao, M.; Banerjee, S. Mobilityfirst: A mobility-centric and

trustworthy internet architecture. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 74–80. [CrossRef]
3. Wang, J.; Chen, G.; You, J.; Sun, P. Seanet: Architecture and technologies of an on-site, elastic, autonomous network. J. Netw. New

Media 2020, 6, 1–8.
4. Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking named content. In Proceedings

of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 1–4 December 2009;
pp. 1–12.

5. Fotiou, N.; Nikander, P.; Trossen, D.; Polyzos, G.C. Developing information networking further: From PSIRP to PUR-
SUIT. In Proceedings of the International Conference on Broadband Communications, Networks and Systems, Malaga, Spain,
4–6 November 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–13.

6. Koponen, T.; Chawla, M.; Chun, B.G.; Ermolinskiy, A.; Kim, K.H.; Shenker, S.; Stoica, I. A data-oriented (and beyond) network
architecture. In Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, Kyoto, Japan, 27–31 August 2007; pp. 181–192.

7. Liu, H.; Azhandeh, K.; De Foy, X.; Gazda, R. A comparative study of name resolution and routing mechanisms in information-
centric networks. Digit. Commun. Netw. 2019, 5, 69–75. [CrossRef]

8. Hoque, A.M.; Amin, S.O.; Alyyan, A.; Zhang, B.; Zhang, L.; Wang, L. NLSR: Named-data link state routing protocol. In Proceed-
ings of the 3rd ACM SIGCOMM Workshop on Information-Centric Networking, Hong Kong, China, 12 August 2013; pp. 15–20.

9. Tortelli, M.; Grieco, L.A.; Boggia, G.; Pentikousisy, K. Cobra: Lean intra-domain routing in ndn. In Proceedings of the 2014 IEEE
11th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2014; pp. 839–844.

10. D’Ambrosio, M.; Dannewitz, C.; Karl, H.; Vercellone, V. MDHT: A hierarchical name resolution service for information-centric
networks. In Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, Toronto, ON, Canada,
15–19 August 2011; pp. 7–12.

11. Liu, H.; De Foy, X.; Zhang, D. A multi-level DHT routing framework with aggregation. In Proceedings of the Second Edition of
the ICN Workshop on Information-Centric Networking, Helsinki, Finland, 17 August 2012; pp. 43–48.

12. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 1970, 13, 422–426. [CrossRef]
13. Yu, M.; Fabrikant, A.; Rexford, J. BUFFALO: Bloom filter forwarding architecture for large organizations. In Proceedings of the 5th

International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 1–4 December 2009; pp. 313–324.
14. Rodrigues, A.; Steenkiste, P.; Aguiar, A. Analysis and improvement of name-based packet forwarding over flat id network

architectures. In Proceedings of the 5th ACM Conference on Information-Centric Networking, Boston, MA, USA, 21–23 September
2018; pp. 148–158.

http://doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1145/2656877.2656888
http://dx.doi.org/10.1016/j.dcan.2018.03.005
http://dx.doi.org/10.1145/362686.362692

Electronics 2022, 11, 3243 20 of 20

15. Papalini, M.; Carzaniga, A.; Khazaei, K.; Wolf, A.L. Scalable routing for tag-based information-centric networking. In Proceedings
of the 1st ACM Conference on Information-Centric Networking, Paris France, 24–26 September 2014; pp. 17–26.

16. Papalini, M.; Khazaei, K.; Carzaniga, A.; Rogora, D. High throughput forwarding for ICN with descriptors and locators. In
Proceedings of the 2016 Symposium on Architectures for Networking and Communications Systems, Santa Clara, CA, USA,
17–18 March 2016; pp. 43–54.

17. Marandi, A.; Braun, T.; Salamatian, K.; Thomos, N. A comparative analysis of bloom filter-based routing protocols for information-
centric networks. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil,
25–28 June 2018; pp. 00255–00261.

18. Marandi, A.; Braun, T.; Salamatian, K.; Thomos, N. BFR: A bloom filter-based routing approach for information-centric networks.
In Proceedings of the 2017 IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden, 12–16 June
2017; pp. 1–9.

19. Marandi, A.; Hofer, V.; Gasparyan, M.; Braun, T.; Thomos, N. Bloom filter-based routing for dominating set-based service-centric
networks. In Proceedings of the NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium, Budapest,
Hungary, 20–24 April 2020; pp. 1–9.

20. Marandi, A.; Braun, T.; Salamatian, K.; Thomos, N. Pull-based bloom filter-based routing for information-centric networks. In
Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
11–14 January 2019; pp. 1–6.

21. Marandi, A.; Braun, T.; Salamatian, K.; Thomos, N. Network coding-based content retrieval based on bloom filter-based content
discovery for ICN. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; pp. 1–7.

22. Lee, J.; Byun, H.; Lim, H. Dual-load Bloom filter: Application for name lookup. Comput. Commun. 2020, 151, 1–9. [CrossRef]
23. Broder, A.; Mitzenmacher, M. Network applications of bloom filters: A survey. Internet Math. 2004, 1, 485–509. [CrossRef]
24. Lim, H.; Lee, J.; Byun, H.; Yim, C. Ternary bloom filter replacing counting bloom filter. IEEE Commun. Lett. 2016, 21, 278–281.

[CrossRef]
25. Komatsu, K.; Asaka, T. Routing information management for content oriented networks using Bloom Filters. In Proceedings of

the 2013 15th Asia-Pacific Network Operations and Management Symposium (APNOMS), Hiroshima, Japan, 25–27 September
2013; pp. 1–5.

26. Patgiri, R.; Nayak, S.; Borgohain, S.K. Hunting the pertinency of bloom filter in computer networking and beyond: A survey. J.
Comput. Netw. Commun. 2019, 2019, 1–10. [CrossRef] [PubMed]

27. Chen, H.; Jin, H.; Chen, L.; Liu, Y.; Ni, L.M. Optimizing bloom filter settings in peer-to-peer multikeyword searching. IEEE Trans.
Knowl. Data Eng. 2011, 24, 692–706. [CrossRef]

28. Ariyoshi, T.; Fujita, S. Efficient processing of conjunctive queries in p2p dhts using bloom filter. In Proceedings of the International
Symposium on Parallel and Distributed Processing with Applications, Taipei, China, 6–9 September 2010; pp. 458–464.

29. Gao, W.; Nguyen, J.; Wu, Y.; Hatcher, W.G.; Yu, W. Routing in Large-scale Dynamic Networks: A Bloom Filter-based Dual-layer
Scheme. ACM Trans. Internet Technol. (TOIT) 2020, 20, 1–24. [CrossRef]

30. Katsaros, K.V.; Chai, W.K.; Pavlou, G. Bloom filter based inter-domain name resolution: A feasibility study. In Proceedings of the
2nd ACM Conference on Information-Centric Networking, San Francisco, CA, USA, 30 September–2 October 2015; pp. 39–48.

31. Fan, B.; Andersen, D.G.; Kaminsky, M.; Mitzenmacher, M.D. Cuckoo filter: Practically better than bloom. In Proceedings
of the 10th ACM International on Conference on emerging Networking Experiments and Technologies, Sydney, Australia,
2–5 December 2014; pp. 75–88.

32. Reviriego, P.; Martínez, J.; Larrabeiti, D.; Pontarelli, S. Cuckoo filters and Bloom filters: Comparison and application to packet
classification. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2690–2701. [CrossRef]

33. Mitzenmacher, M.; Pontarelli, S.; Reviriego, P. Adaptive Cuckoo Filters. ACM J. Exp. Algorithm. 2020, 25, 1–20. [CrossRef]

http://dx.doi.org/10.1016/j.comcom.2019.12.029
http://dx.doi.org/10.1080/15427951.2004.10129096
http://dx.doi.org/10.1109/LCOMM.2016.2624286
http://dx.doi.org/10.1155/2019/2712417
http://www.ncbi.nlm.nih.gov/pubmed/30419123
http://dx.doi.org/10.1109/TKDE.2011.14
http://dx.doi.org/10.1145/3407192
http://dx.doi.org/10.1109/TNSM.2020.3024680
http://dx.doi.org/10.1145/3339504

	Introduction
	Related Work
	Bloom Filter-Based Routing Approach
	Cuckoo Filter

	Proposed Method
	Problem Statement
	System Model
	Simplified Adaptive Cuckoo Filter for a Resolution System
	SACF-Based Name Resolution and Routing
	Error Correction Feedback Mechanism
	Content Movement Support Mechanism

	Performance Evaluation
	Performance of the SACF
	Performance of the SACF-Based Scheme

	Conclusions
	References

