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Abstract: Leukemia is a deadly disease caused by the overproduction of immature white blood cells
(WBS) in the bone marrow. If leukemia is detected at the initial stages, the chances of recovery are
better. Typically, morphological analysis for the identification of acute lymphoblastic leukemia (ALL)
is performed manually on blood cells by skilled medical personnel, which has several disadvantages,
including a lack of medical personnel, sluggish analysis, and prediction that is dependent on the
medical personnel’s expertise. Therefore, we proposed the Multi-Attention EfficientNetV2S and
EfficientNetB3 state-of-the-art deep learning architectures using transfer learning-based fine-tuning
approach to distinguish the normal and blast cells from microscopic blood smear images that both
are pretrained on large-scale ImageNet database. We simply modified the last block of both models
and added additional layers to both models. After including this Multi-Attention Mechanism, it
not only reduces the model’s complexities but also generalizes its network quite well. By using
the proposed technique, the accuracy has improved and the overall loss is also minimized. Our
Multi-Attention EfficientNetV2S and EfficientNetB3 models achieved 99.73% and 99.25% accuracy,
respectively. We have further compared the proposed model’s performance to other individual and
ensemble models. Upon comparison, the proposed model outclassed the existing literature and other
benchmark models, thus proving its efficiency.

Keywords: acute lymphoblastic leukemia (ALL); EfficientNetV2S; EfficientNetB3; transfer learning
(TL); image preprocessing; deep learning (DL)

1. Introduction

Both children and adolescents are affected by leukemia, which is a malignancy of
blood cells in the bone marrow [1]. Bone marrow is a soft fatty tissue found inside bone
cavities. Hematopoietic cells, fat cells, blood vessels, fibrous tissue, and fluid are all found
in the bone marrow. Blood cells were created by stem cells. The growth of blood stem
cells leads to the formation of myeloid or lymphoid stem cells. Lymphocytes are a type
of WBC produced by lymphoid stem cells. Myeloid stem cells, on the other hand, create
platelets, granulocytes, red blood cells, and monocytes. WBC also includes monocytes and
granulocytes. Leukemia is caused by the immature production of WBC by stem cells. A
single immature or blast cell can generate billions of other blast cells [2].

Leukemia is classified as acute or chronic depending on how quickly it progresses.
Based on the kind of blood cell involved, acute leukemia is split into acute lymphoblastic
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leukemia (ALL) and acute myeloid leukemia (AML). ALL is the most frequent form of
leukemia in children. In ALL, lymphocytes, a kind of white blood cell (WBC), do not
mature properly into normal cells and replicate uncontrollably in the bone marrow [3]. By
invading blood cells, cancerous cells can spread to other organs and cause harm to the
entire body [4].

According to [5], new cases of acute lymphoblastic leukemia in 2022 are estimated at
6660 of which 1660 can die from this disease in the United States, including both children
and adults. Early detection of ALL greatly improves treatment options and the likelihood
of the patient surviving. Different treatment options are available based on the patient’s
symptoms and risk level, including chemotherapy, radiation, anti-cancer drugs, or a combi-
nation of these [6]. Treatment options are determined by a number of criteria, including
the kind and severity of the condition, the patient’s age, and his or her overall health. In
addition, people in remission may benefit from stem cell transplantation. Chemotherapy
is the most common treatment for ALL, intending to prevent the disease from causing
damage to the central nervous system (CNS) [7]. Cell morphology, cytochemistry, cyto-
genetics, and molecular characteristics are all examined. The differentiation of healthy
and non-healthy cells from each other includes the shape, size, and texture of the cell
nucleus, cytoplasm size, and cytoplasm condition, number of nucleoli in the nucleus and
color spreading in the nucleus [8]. The signs and symptoms of ALL can range from minor
to severe life-threatening symptoms, such as fever, gum bleeding, exhaustion, dizziness,
and bone pain, which show the amount of bone marrow involvement. A bone marrow
aspiration and biopsy, a complete blood count (CBC), and a peripheral blood smear are
required to confirm an ALL diagnosis [9].

Nowadays Convolution Neural Networks are a very optimal choice for the diagnosis
and classification of normal and blast cells in medicinal imaging applications [10,11]. To
use CNNs architecture requires a significant amount of data and computer resources to
train. The dataset may be insufficient to train a CNN from scratch in many circumstances.
Transfer learning is a well-defined technique to use CNN models in this situation and
also minimize the computational cost [12]. Transfer learning is a method for using a
previously trained machine learning model on a new dataset, while assuming that the
original model’s discriminative abilities will still be helpful. Because most high-performing
models have previously gone through a comprehensive training procedure, adapting to a
new dataset will likely take less time. For the same reasons, fewer data will be required to
fine-tune the model on a target dataset, hence big data sets may not be required to attain
high performance. Furthermore, since the rebirth of deep learning, there have been several
publicly available pre-trained machine learning models for a range of applications that have
been rigorously evaluated and benchmarked [13]. Finding new methods to apply these
models to new challenges can thus be a cost-effective way to create high-performing models.

A. CONTRIBUTIONS

The main contributions of our study are as follows:

• We proposed the Multi-Attention EfficientNetB3 and EfficientNetV2S models to dis-
tinguish the ALL (unhealthy cells) and hem (healthy cells) in this article;

• We simply modified the last block of both models and added the Multi-Attention
Layers in both models. After including this Multi-Attention mechanism not only
reduces the model’s complexities but also generalizes its network quite well;

• We added a crop function to reduce the unwanted part of the image;
• To address the issue of unbalanced data, we also applied the augmentation technique

to expand the dataset;
• Our Multi-Attention EfficientNetV2S and EfficientNetB3 models achieved the 99.73%

and 99.25% accuracy, respectively, on the test dataset for ALL and hem cells;
• We also compared our model to other CNN models that were previously used for

the detection of normal cells and cancerous cells from blood smear images but our
Multi-Attention EfficientNetV2S and EfficientNetB3 models provided a higher classifi-
cation accuracy.
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B. ORGANIZATION

Our Section 2 includes the literature review of previously used techniques to clas-
sify the ALL from microscopic blood smear images. The Section 3 includes the data set
description, data preprocessing, augmentation techniques and also a brief discussion of
EfficientNetB3 and EfficientNetV2S pre-trained CNN models. The Section 4 of our research
paper includes the experiment results and discussion. Finally, in Section 5, we concluded
this this research article along with future work.

2. Related Work

Deep learning has gained the attention of the world through its application in differ-
ent sectors: braintumor detection [14], intrusion detection [15–18], and multi-object fuse
detection problems [19]. Kasani et al. [9] presented the ensemble approach to classifying
cancerous cells and normal cells based on transfer learning. They also applied the normal-
ization technique to change the pixel value between 0 and 1 to overcome the error during
training. They used different data augmented techniques to solve the problem of imbal-
anced data. The ensemble model that consisted of NASNetLarge and VGG16 achieved
96.58% overall accuracy. Zakir Ullah et al. [20] proposed the state-of-the-art VGG16 archi-
tecture to detection of healthy and blast cells from blood smear images. They used the
Efficient Channel Attention (ECA) module with VGG16 to learn the semantic features that
concentrates on the image’s instructive region. They used different image preprocessing
steps like data augmentation, image resizing and data normalization. VGG16 + ECA model
obtained an overall accuracy 91%.

Computers can directly interpret FFR values from coronary pictures obtained from
CT angiography thanks to a revolutionary deep neural network approach suggested by
the researchers [21], known as TreeVes-Net. Their proposed system recorded coronary
geometric information regarding blood fluid-related data with the help of a tree-structured
recurrent neural network (RNN). With tests on 13,000 artificial coronary trees and 180 actual
coronary trees from clinical patient data, they obtained 0.92 and 0.93 in the area under the
ROC curve AUC.

To create an LGE-equivalent image segment for diagnosis-related tissues, the au-
thor [22] presented Progressive Sequential Causal GANs. For this, PSGAN presented
three matchless characteristics, i.e., a progressive framework, a sequential casual learning
network and two specifically self-learning loss terms (synthesis and segmentation). The re-
searchers obtained an overall 97.17% segmented accuracy with a 0.96 correlation coefficient
for scar ratio.

A new method that named PMD, was suggested as a medicalmodality in a research
study [23] to initially permit the VBDI in each of the several intracoronary imaging modali-
ties. The PMD allows the use of a MIMT to solve a typical SIST learning issue, a plan for
enhancing vessel environment adaptation heterogeneity. The PMD is introduced by the use
of a specifically created structure-deformable neural network that broadens the information
base for system learning due to the lack of clinical data and the perception that areas of
vessels with varying sizes using a new bidirectional pyramidal network. Results of the wide
experiments can exemplify the efficacy of the PMD approach in intracoronary photographs.

Jing et al. [24] introduced the VIT-CNN ensemble approach that combines the Effi-
cientNetB0 and vision transfer model to deal with b-lymphoblast detection. They convert
the size of the image and also normalize the image to avoid overfitting. They used a differ-
ent enhancement data sampling (DEDS) technique to increase the images in the dataset.
VIT-CNN ensemble network attained 99.03% accuracy on the test set. Sahlol et al. [2]
presented a hybrid technique that combines a CNN-based VGGNet model with the Salp
Swarm algorithm (SASSA). In this hybrid approach, a pre-trained VGG-Net model was
used to extract features, while the SASSA was used to not only pick significant features but
also to eliminate noisy features and to improve the model’s accuracy. For classification of
normal and abnormal cells, SVM was used. SVM classifier achieved 96.11% accuracy on
the ALL-IDB2 dataset and achieved 87.9% accuracy on the ISBI-2019 dataset.
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For the segmentation purpose of the WBC nucleus, UNET and UNET++-based
techniques was introduced in recent years to get a better classification of normal and
blast cells [25,26]. Using microscopic pictures obtained from the ALL-IDB dataset,
Genovese et al. [27] introduced a traditional machine learning strategy on the CNN VGG-
16 model for ALL detection. The authors of [28,29] proposed the AlexNet model for
the detection of ALL from microscopic blood smear images based on transfer learning.
Techniques for enhancing data are also presented to address the issue of insufficient data.

Mustafa et al. [30] proposed a majority voting ensemble technique that combines the
four models (InceptionV3, ResNet-V2, Xception, DesNet121) to classify the normal and
blast cells from the ISBI-2019 dataset. After preprocessing and augmentation, the ensemble
model achieved 98.5% accuracy. Genovese et al. [31] introduced two HistoCNN and
HistoNet models that is based on CNN (VGG-16, ResNet-18) architectures. The HistoNet
model adopted the features of the HistoCNN model based on transfer learning and applied
it to the ALL-IDB dataset to classify the normal and blast cells. K-mean clustering, C-mean,
Marker Controlled Watershed and histogram-based thresholding techniques were used
for segmentation of the nucleus from WBC [32,33]. Authors proposed both individual
and ensemble models for detection of ALL cancer from microscopic blood smear images
but ensemble models attained a higher accuracy than individual models. ResNet101-9
ensemble model [34] achieved 85.11% accuracy and the weighted ensemble of network
model [35] achieved 88.3% accuracy.

3. Methods and Materials

A. DATASET PREPROCESSING AND AUGMENTATION

The size of the images in the dataset is 450 × 450 pixels. We used the crop function
to minimize the unwanted part of the image. After cropping and resizing, the size of the
image was reduced to 300 × 300 resolution. We have not applied the normalized technique
to the image database because the EfficientNet model expects a pixels range of 0 to 255 so
no scaling is required. The dataset is imbalanced because cancer images have doubled to
healthy images that can cause problems during training. The class of small quantity of
images learn fewer features than the class of large quantity of images that not a good choice
to create the best model.

Data augmentation is a very popular technique that is not only used to increase
the data images but also to produce variations in the dataset, such as rotation, contrast
enhancement, the mirror of the image using horizontal and vertical flips, zooming the
image and much more. We used different augmentation techniques to solve the problem
of imbalanced data. We rotated the image counter-clockwise by 30 and 20 degrees and
adjusted brightness randomly [0.2 to 1.2]. We also applied horizontal and vertical flips to
increase our dataset. Figure 1 shows the augmented techniques that apply on the dataset.
After augmentation, our dataset was balanced and each class contained 20,000 images.

B. EFFICIENTNET CNN MODEL

Mingxing Tan et al. [36] introduced EfficientNet in their paper “EfficientNet: Rethink-
ing Model Scaling for Convolutional Neural Networks” in 2019. The purpose of this paper
was to look at how to scale neural network architectures to improve accuracy. The depth,
width, and resolution of convolutional neural networks can all be adjusted to increase or
decrease their size. The number of concealed layers is referred to as depth, and it can be
changed to meet the problem.

The EfficientNet is based on a revolutionary CNN model scaling method. It makes use
of an easy compound coefficient that works well. EfficientNet equally scales each dimension
with a set of scaling factors, unlike traditional techniques that scale network characteristics,
such as width, depth, and resolution. In practice, scaling individual dimensions improves
model performance, but balancing all network dimensions concerning available resources
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improves overall model performance greatly. The given equations were devised by the
authors to evenly scale up the depth, width, and resolution of the coefficient.

depth:d = αϕ (1)

width:w = βϕ (2)

resolution:r = γϕ (3)

s.t.α · β2 · γ2 ≈ 2 (4)

α ≥ 1, β ≥ 1, γ ≥ 1 (5)Electronics 2022, 11, 3168 5 of 17 

 

 
Figure 1. After data Augmentation generation of Normal and Cancer cells. 

The EfficientNet is based on a revolutionary CNN model scaling method. It makes 
use of an easy compound coefficient that works well. EfficientNet equally scales each 
dimension with a set of scaling factors, unlike traditional techniques that scale network 
characteristics, such as width, depth, and resolution. In practice, scaling individual di-
mensions improves model performance, but balancing all network dimensions concern-
ing available resources improves overall model performance greatly. The given equa-
tions were devised by the authors to evenly scale up the depth, width, and resolution of 
the coefficient. 

depth : d = αφ (1)

width : w = βφ (2)

resolution : r = γφ (3)

s.t.α · β2 · γ2 ≈ 2 (4)

α ≥ 1, β ≥ 1, γ ≥ 1 (5)

The coefficient φ is a user-specified coefficient that regulates how various novel re-
sources are accessible for model scaling, and α, β, and γ are constants that can be dis-
covered by a brief grid search and define how these additional resources should be as-
signed to the network depth, width, and resolution, accordingly. 

The EfficientNet model family’s basic building piece is mobile inverted bottleneck 
convolution (MBConv). MB Conv is built on MobileNet [37] model concepts. EfficientNet 
provides same accuracy on ImageNet database with small in size than other models. In 
this research, we used the EfficientNet-B3 CNN model. This EfficientNet variant was 
chosen because it offers a good combination of processing resources and precision. Fur-
thermore, instead of employing the ReLU activation function, this network employs the 
Swish activation function, as shown in Figure 2, which has a shape that is similar to the 
ReLU and Leaky ReLU functions, and so shares some of their performance benefits. Its 
activation function is smoother than that of the other two. 

Figure 1. After data Augmentation generation of Normal and Cancer cells.

The coefficient ϕ is a user-specified coefficient that regulates how various novel re-
sources are accessible for model scaling, and α, β, and γ are constants that can be discovered
by a brief grid search and define how these additional resources should be assigned to the
network depth, width, and resolution, accordingly.

The EfficientNet model family’s basic building piece is mobile inverted bottleneck
convolution (MBConv). MB Conv is built on MobileNet [37] model concepts. EfficientNet
provides same accuracy on ImageNet database with small in size than other models. In this
research, we used the EfficientNet-B3 CNN model. This EfficientNet variant was chosen
because it offers a good combination of processing resources and precision. Furthermore,
instead of employing the ReLU activation function, this network employs the Swish acti-
vation function, as shown in Figure 2, which has a shape that is similar to the ReLU and
Leaky ReLU functions, and so shares some of their performance benefits. Its activation
function is smoother than that of the other two.

The equation of the Swish function is shown in Equation (6):

fswishx =
x

1 + e−βx (6)
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where β ≥ 0 is a parameter that can be learned when the CNN model is being trained.
As can be seen in Figure 2, fswish becomes the linear activation function if β is equal to 0,
and as, β goes to ∞, fswish resembles the ReLU function but is smoother. Figure 3 shows
the complete procedure of our Multi-Attention Mechanism. However, Figure 4 depicts a
complete structure of the EfiicientNetB3 Model.Electronics 2022, 11, 3168 6 of 17 
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C. EFFICIENTNET V2S

Mingxin Tan and Quoc V. Le [38] introduced EfficientNetV2, a high-class model
that is a significant increase over EfficientNet in terms of training speed and a modest
improvement in terms of accuracy over EfficientNet.

EfficientNetV2 employs progressive learning, which implies that although the image
sizes are initially tiny when the training begins, they gradually rise in size. This approach
is based on the observationthatas mage size is increases, EfficientNets’ training rates
slow down. Progressive learning, on the other hand, is not a novel notion; it has been
utilized before. The issue is that, in its prior usage, the same regularization technique was
applied to images of various sizes. According to the authors of EfficientNetV2, this reduces
network capacity and performance. To address this issue, they dynamically increase the
regularization along with the image sizes.

EfficientNets use a convolution layer known as the “depth-wise convolution layer,”
which has fewer parameters and FLOPS but cannot fully exploit modern accelerators
(GPU/CPU). To address this issue, recent research titled “MobileDets: Searching for Object
Detection Architectures for Mobile Accelerators” proposes a new layer called“Fused-MB
Conv layer” to overcome the problem. In this case, EfficientNetV2 employs this new layer.
However, because the fused layers have a larger number of parameters, they cannot simply
replace all of the old MB Conv layers with the fused. To dynamically determine the best
mix of fused and conventional MB Conv layers, they deploy training-aware NAS. The
results of NAS reveal that early on, replacing portions of the MB Conv layers with fused
layers improves performance with smaller models. It also shows that it is advantageous to
have a lower expansion ratio for the MB Conv layers (across the network). Finally, smaller
kernel sizes with more layers are preferable.
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A complete structure of MBConv and Fused-MBConv is given in Figure 5. Efficient-
Net [36] grows up all phases uniformly by employing a straightforward compound scaling
approach. According to the authors of EfficientNetV2, this is unnecessary because not all
of these stages require scaling to increase performance. That’s why, in subsequent phases,
they accept non-uniform scaling method to gradually add more layers. Since EfficientNets
have a propensity to aggressively scale up image sizes, they also incorporate a scaling rule
to set a maximum image size limit. Despite being 6.8 times smaller, EfficientNetV2 trains
up to 11 times more quickly than EfficientNetV1.
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Multi-Attention Mechanism

The machine learning field uses the attention technique to pay attention to various
components of an input vector to identify long-term dependencies. We introduced a
Multi-Attention Module that is inspired by Convolutional Block Attention Module (CBAM)
and another weighted Attention Average Module. Both attention module works parallel
and merges at the end. We simply modified the last block of both models and added the
attention layers in both models. Including this Multi-Attention Mechanism not only reduces
the model’s complexities and also generalizes its network quite well. After merging the
Multi-Attention Layers, we passed the output into another layer that called fully-connected
layer (256 elements)withelu as the activation function. The final layer of our model has
included 2 outputs with softmax as an activation function.

In 2018, the authors [39] introduced a CBAM that is based on a dual attention mecha-
nism. By combining channel-wise attention with spatial attention, it learns the informative
features. The modules are arranged sequentially, starting with the channel-wise module
and moving on to the spatial module.
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Channel attention works on the image to produce meaningful information that utilizes
the inter-channel relationship of features. Channel attention is computed after a little
modification as:

Mc F = δ
(

W0

(
Fc

avg

)
+ W0(Fc

max)
)

(7)

Mc F is the final output of our channel attention module. δ is denoted as sigmoid
function, where W0 is the weight of the multi-layer perception (MLP) with one hidden
layer. Both Fc

avg and Fc
max are denoted as average pooling and max pooling features.

The spatial attention module works differently from the channel attention and con-
centrates on the image’s instructive region. The spatial attention is computed after a little
modification as:

Ms F = δ
(

f 3×3
([

Fc
avg; Fc

max

]))
(8)

f 3×3 is the convolutional operation with 3 × 3 filter size, δ is denoted as sigmoid
function and both Fc

avg and Fc
max are denoted as average pooling and max pooling features.

We also modified the end part of its spatial module by integrating the Global Weighted
Average Pooling (GWAP) method, which is computed as:

GWAP(x,y,d) =
∑ x ∑ y Attention(x,y,d)Feature(x,y,d)

∑ x ∑ y Attention(x,y,d)
(9)

where (x, y) is denoted as weights at the spatial location in the spatial attention and d
represented the height, width, and number of channels. For feature aggregating, the
average score of weights (x, y) is calculated.

Additionally, the second attention layer named weighted Attention Average was
presented by Felbo et al. [40] in their paper. The Weighted Attention Average module is
computed as:

et = htwa (10)

at =
exp(et)

∑T
i=1 exp(et)

(11)

v =
T

∑
i=1

aihi (12)

where ht denoted as the image at timestamp t and wa denoted as a weight matrix for
the attention layer, The representations are multiplied by the weight matrix to create the
attention important scores for each time step, at, and then the results are normalized to
create a probability distribution over the images. Last but not least, using the attention
importance scores as weights, a weighted summation of all the time steps yields the
representation vector for the image.

D. DATASET DESCRIPTION

In this research paper, we used the C-NMC_2019 dataset prepared by ISBI and pre-
sented in the health imaging challenge [9,20,24,41]. This dataset consists of 10,661 cell
images with which 7272 cancer images obtained from 47 acute lymphoblastic leukemia
patients and 3389 normal images obtained from 26 healthy persons. ALL and healthy cells
had nucleus-to-cytoplasm ratios of approximately 1/5 and 2/5, respectively. As shown in
the bottom row of Figure 6, healthy cells on a blood smear seem homogenous and uniform,
round-to-ovoid-shaped, tiny in size, and with a normal nuclear shape. The form and size
of all cells are different. ALL cells are elongated and unusual in shape, with a considerable
quantity of chromatin (a mass of genetic material). The size of ALL lymphoblasts varies,
and the nuclei’s form is quite uneven, as seen in the top row of Figure 4, these cells were
segmented from microscopic photos, and each cell image was collected as an actual image.
To a considerable extent, some staining noise and lighting faults that occurred during the
collection procedure have been rectified.
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4. Results and Discussion

A. PERFORMANCE EVALUATION METRICS

We evaluated our model’s performance with different parameters, which include
accuracy, precision, F1-Score, Sensitivity, and Specificity. The formulas of these parameters
are [42]:

Accuracy =
Detected ALL Cells + Detected Healthy Cells

Total Instance
(13)

Precision =
Detected ALL Cells

Detected ALL Cells + Wrongly Detected ALL Cells
(14)

Sensitivity/ Recall(R) =
Detected ALL Cells

Total ALL Cells Instance
(15)

Specificity =
Detected Healthy Cells

Total Healthy Cells Instance
(16)

F1 − Score = 2 × (P × R)
(P + R)

(17)

B. EXPERIMENTAL SETUP AND HYPERPARAMETERS

The machine learning engineer can modify many parameters that govern how the
network will train or even its design while aiming to attain optimal accuracy and perfor-
mance of a neural network model. These characteristics are known as hyperparameters,
and they play a critical role in the overall performance of any Convolutional Neural Net-
work. Although there are some guidelines for determining the ideal value for various
hyperparameters, hyperparameter tuning is largely an exploratory procedure. Figure 7
depicts a complete structure of the EfficientNetV2S model.

• The learning rate hyperparameter determines how much change will be made to the
network’s weights after each backpropagation pass. We set a learning rate of 0.001
for both models. The learning rate is reduced to a 0.5 factor if the monitor value does
not improve;

• Epochs are set to 20 for both efficietNetB3 and efficientNetV2S;
• The batch size is set to 16 for both models;
• The patience parameter is set to 1 and the stop patience parameter is set to 3;
• Both models are saved with the highest accuracy in the validation set;
• Adamax optimizer is used for training purposes with extension of Adam that try to

combine the best part of the RMSProp and momentum optimizer. In some scenarios,
the Adamax optimizer provides the better optimization than the Adam optimizer;
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• Categorical cross-entropy is used to calculate the loss during training that is well-suited
for the categorical problem;

• We added an additional batch norm [43] layer before fully connected layers;
• The TensorFlow [44] framework and Python 3.7 were used to implement the experiments;
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C. DISCUSSION

The ISBI-2019 data set is divided by an 8:1:1 ratio in the train, valid, and test datasets
respectively. The basic purpose of using a validation dataset is to estimate the performance
of training data and tune the hyperparameters to optimize the model. For results, the test
data set has used for overall accuracy, which was not a part of our training procedure.
The Multi-Attention EfficientNetB3 model attained 99.25% accuracy on the test set and the
Multi-Attention EfficientNetV2S model achieved 99.73% accuracy.

EfficientNetV2S model achieved 0.70% more accuracy than EfficientNetB3, which can
also be seen in Table 1.The EfficientNetV2S model training had been terminated at epoch 16
after 3 adjustments of learning rate with no improvement that can also be seen in Figure 8.
The EfficientNetB3 model had been training terminated after completing the 15 epochs,
which can also be seen in Figure 9. According to Figures 8 and 9, training and validation
loss curves gradually decrease and try to combine with an optimal point. In Figures 8 and 9
training and validation curves show clearly no overfitting in our models.

Table 1. Results of our proposed models (best values in bold).

Model Accuracy % Precision % Sensitivity % Specificity % F1-Score

EfficientNetV2S 99.73 99.85 99.60 99.85 99.72
EfficientNetB3 99.25 99.00 99.50 99.00 99.25
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A confusion matrix can also be the best choice to measure the performance of the model.
All of the diagonal elements indicate outcomes that have been accurately categorized. On
the off diagonals of the confusion matrix, misclassified outcomes are depicted. Therefore,
the confusion matrix of the best classifier will only contain diagonal elements and have
zero values for all other elements. Following the categorization procedure, a confusion
matrix produces actual and expected values. According to Figure 10, our Multi-Attention
EfficientNetV2S model misclassified only 11 images from 4000 images, which include 8 ALL
images and 3 normal images. Multi-Attention EfficientNetB3 model misclassified 30 images
from 4000 images, which include 10 ALL and 20 normal images. Our Multi-Attention
EfficientNetV2S model has 19 images less misclassified than EfficientNetB3 shows a better
ability to classify the correct predictions.

Figure 11 shows the comparison graph of both models with different parameters.
Our Multi-Attention EfficientNetV2S model achieved a 99.85% precision score that is
0.85% more than Multi-Attention EfficientNetB3 model. Similarly, F1-Score, Sensitivity and
Specificity of the Multi-Attention EfficientNetV2S and Multi-Attention EfficientNetB3 are
99.72%, 99.60%, 99.85%, and 99.25%, 99.50%,99.00%, respectively, in the comparison graph.
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We also compared our models result to other previously individual and ensemble
model results, that were used for detection of acute lymphoblastic leukemia from micro-
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scopic blood smear images. If we compare our Multi-Attention EfficientNetB3 of with
its family member EffcientNetB0, our model has almost a 4% better accuracy with the
same dataset. Similarly, compared to individual models our Multi-Attention EfficientNetB3
achieved a 0.35% higher accuracy than the vision transfer model. Compared to ensemble
models, our multi-Attention efficientNetB3 model achieved 2.67%, 0.75%, 0.22% higher
accuracy, which can also be seen in Table 2.

Table 2. Comparison of accuracy of other individual and ensemble models with ISBI-2019 Dataset.

Ref Year Methods Accuracy

[20] 2021 VGG16 + ECA module 91%

[24] 2021 EfficientNetB0 95.18%

[24] 2021 Vision Transformer 98.90%

[9] 2020 NasNetLarge + VGG19 96.58%

[30] 2022 Ensemble model based on majority voting technique 98.50%

[24] 2021 VIT-CNN Ensemble Model
(EfficientNetB0 + Vision Transformer) 99.03%

Proposed 2022
Multi-Attention EfficientNetB3 99.25%

Multi-Attention EfficientNetV2S 99.73%

EfficientNetV2S also belong to the EfficientNetB3 family but it is an upgraded ver-
sion. If we compare the Multi-Attention EfficientV2S model with its family members then
EfficientNetV2S achieved 0.48%, and 4.55% higher accuracy than Multi-Attention Efficient-
NetB3 and EfficientNetB0, respectively, which proves the model’s ability for detection
of leukemia. Similarly, compared to individual models Multi-Attention EfficientNetV2S
achieved 0.83% higher accuracy than vision transfer models, which can also be seen in
Table 2. Similarly, compared to ensemble models Multi-Attention EfficientNetV2S achieved
a 3.15%, 1.23%, and 0.70% higher accuracy, which can also be seen in Table 2.

EfficientNetV2S and EfficientNetB3 with Multi-Attention module compare to another
model [20] VGG16 + Efficient Channel Attention (ECA), even then our models have per-
formed better and achieved almost a 9 to 10% higher accuracy with the same dataset, which
also can be seen in Table 2.

5. Grad-Cam Analysis

We used images from the testing set in the Grad-CAM analysis for the qualitative
analysis. Grad-CAM is a well-known proposed visualization technique that makes use of
gradients to determine the significance of specific spatial positions within convolutional
layers. Gradients are calculated as they are Grad-CAM results for Healthy and Blast classes
clearly display attendance regions. We attempt to examine how well this network utilizes
features by looking at the locations that both networks have deemed crucial for class
prediction. In this study, we compare the visualization outcomes of the multi-Attention
networks (EfficientNetV2S + multi-Attention) and (EfficientNetB3 + multi-Attention) with
their respective baselines (EfficientNetB3) and (EfficientNetV2S). Figure 12 illustrates the
visualization result.

In Figure 12, we can clearly see the multi-Attention network gave batter result to
identify the target object than baseline networks. This proves that our multi-Attention-
integrated network learned well to identify the target object in the image dataset. If we
compare C and F images in Figure 12, then EfficientNetV2S with Multi-Attention Layers
focus more precisely on the target than EfficientNetB3 with Multi-Attention Layers and
shows a better ability to target the image.
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6. Conclusions and Future Work

In our research paper, we presented a study in which we use pre-trained models and
a transfer learning-based fine-tuning strategy to forecast acute lymphoblastic Leukemia
to overcome the death rate at an early stage in the medical field. For this, we used the
ISBI-2019 dataset, which included both healthy and unhealthy cells. We have also included
augmentation techniques to overcome the problem of imbalanced data that deals with the
minimization of the error rate during training procedures and is necessary for the improve-
ment of the model accuracy. Both Multi-Attention EfficientNetV2S and EfficientNetB3
achieved the 99.73% and 99.25% classification accuracies, respectively. We compared our
model’s accuracy to other deep learning and ensemble models to prove its efficiency. Upon
comparison, it has been concluded that our proposed two models provide better outcomes
than existing literature, thus proving their efficiency.
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