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Abstract: This paper develops an analytical method for modeling the inductor currents and capacitor
voltages (ICCV) of a generic DC-DC converter system. The purpose of the designed methodology
is to propose a new generalized modeling technique for DC-DC converter systems that accurately
models the transient behavior of those systems. The modeled converter is assumed to operate
over some number of circuit stages. Each circuit stage can be separately modeled as a linear time-
invariant (LTI) system that is solved through the uni-lateral Laplace transform. Furthermore, the
initial conditions (ICs) of these LTI systems are related through different algebraic expressions and
discrete-time difference equations that originate from the continuity of the ICCV with respect to
time. These discrete-time difference equations are then solved with the uni-lateral Z-transform to
determine the ICs of the ICCV at each switching period. The generalized theoretical analysis is
applied to the study of the transient behavior of the buck-boost converter across various different
circuit parameters. This analysis justified with laboratory experimentation of the buck-boost converter,
and the transient behavior of the buck-boost converter is compared for each experimental parameter
set. The experimental results and the theoretical analysis provide very similar results across the
different converter parameters.

Keywords: analytical methods; DC-DC converters; power electronics; piece-wise linear differential
equations

1. Nomenclature and Definitions

Let R be the set of all real numbers, C be the set of all complex numbers, N0 be the
set of all non-negative integers, and the set R+

0 be defined as the set of all non-negative
real numbers. Furthermore, let F denote either R or C and t ∈ R denote conventional time.
A ∈ Fr×m defines a matrix A with r rows and m columns, such that each element inside
this matrix is an element of F; 0r×m is defined as the additive identity element in Fr×m.
Finally, Let T be the matrix transposition operator. The following notations are defined:

If A ∈ Fr×r, eAt is defined as

eAt = I +
∞

∑
Q=1

(At)Q

Q!
.

I is the multiplicative identity matrix in Fr×r. This infinite series converges for finite A and
t [1].

Consider the column vector ~x(β) =
(
xb(β)

)
=
[
x1(β) · · · xr(β)

]T ∈ Rr×1 that is a
function of continuous time β ∈ R+

0 and the column vector~y(α) =
(
yb(α)

)
∈ Rr×1 that is
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a function of discrete time α ∈ N0 for b = 1, 2 . . . , r. The uni-lateral Laplace transform of
~x(β) that maps from β to s ∈ C is defined as:

L
{
~x(β)

}
=
[
L
{

x1(β)
}

, · · · ,L
{

xr(β)
}]T such that

~x(β) = L−1{L{~x(β)
}}

,
~x(β) ∈ Rr×1,L

{
~x(β)

}
∈ Cr×1.

Similarly, the uni-lateral Z-transform of~y(α) that maps from α to z ∈ C is defined as:

Z
{
~y(α)

}
=
[
Z
{

y1(α)
}

, · · · ,Z
{

yr(α)
}]T such that

~y(α) = Z−1{Z{~y(α)}},
~y(α) ∈ Rr×1,Z

{
~y(α)

}
∈ Cr×1.

2. Introduction

Research literature has generated a large influx of new DC-DC converter systems to
the market over the past decades. Circuit techniques have also been presented to modify
existing DC-DC converters in a more favorable way depending on the application [2]. The
literature often focuses on the steady-state (SS) response of the converter. The transient
behavior of these converters is often neglected, as the studied converter is assumed to
operate in SS for the majority of time [3]. Although this is often a valid assumption for
some applications, the SS behavior does not present details on the behavior of the converter
in the first few milliseconds of operation. Furthermore, the study of the transient behavior
will present the effect of the converter inductances and capacitances on the performance
specifications of the converter [4]. As such, this article aims to develop a generalized
analytical solution for generic DC-DC converter systems that is capable of accurately
modeling the transient response of the converter.

There have been several analytical techniques developed for the modeling of DC-
DC converters. One of the earliest analytical techniques developed for DC-DC converter
modeling is the the state-space averaging method [5]. First, it is necessary to find the
linear state model and the linear switching circuit model of the converter. The next step
is the identification of all the state variables. All the models are unified into a single
averaged model through a weighted sum [6]. Finally, one may then perform small-signal
AC and DC analysis through the linearization and perturbation of the averaged model [7].
Previous works have used state-space averaging to find various information regarding the
converter, such as stability and step response [8]. Due to its simplicity and reliability, the
state-space averaging technique is still one of the most popular modeling techniques across
the literature [9]. State-space averaging is very accurate and has a reasonable simulation
time. However, there are several disadvantages of state-space averaging. Firstly, the
ripple effects of the inductor currents and capacitor voltages (ICCV) are neglected, as the
switching frequency is not taken into account. As such, one can not exploit this technique
if high-frequency analysis is required. Furthermore, the model can become very complex if
the modeled converter is operating in a discontinuous conduction mode (DCM) or if the
modeled converter has a high order [8]. A recent advance in power electronics state-space
modeling is presented in [10]. The authors combine Fourier series and classical state-space
modeling to model DC-DC with multiple driving pulse-width modulated (PWM) signals
without increasing the number of state variables. However, the article neglects the transient
behavior of the converter and only focuses on the average SS signal analysis.

Another analytical DC-DC converter circuit modeling technique is the circuit aver-
aging technique [11]. The circuit averaging technique exploits circuit topology. First, the
small signal model of the converter is obtained by the averaging of the switch voltages
and currents per one switching period. Similar to the state-space averaging method, the
linearization and perturbation of the models are applied so the converter transfer functions
can be obtained [12]. This modeling technique has been used to find the stability and
output impedance of various converters [13]. Unlike the state-space averaging method,
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this technique often takes into account parasitic elements and ICCV ripple effects. Further-
more, it is relatively accurate and does not have a long simulation time. Unfortunately,
the results developed by this model tend be approximate, as there is a high variation of
system parameters oscillating around the DC operating point. This technique can quickly
become very chaotic for very high order DC-DC converters. Finally, the technique ignores
the high-frequency components of the converter [14].

A new soft-switched inverter circuity and a control mechanism centered around signal
flow graph theory is proposed in [15]. Unlike all the other techniques mentioned, the signal
flow graph utilizes graphical methods for power electronics’ converter analysis. Initially,
the voltage and current of each electrical element in the proposed inverter in [15] is assigned
a network node in the signal flow graph. Each node is interconnected with the other nodes
through the electrical equations governing the elements and the connections amongst the
elements. As such, the signal flow graph is generated and Mason’s gain equation is applied.
The proposed system in [15] is highly efficient due to the fact that the system operates
under constant power at the output, and all the switches in the converter have zero-voltage
switching capability. This signal flow graph methodology is a very general non-linear
analysis methodology that generally has simple mathematics. Furthermore, one can find
and assess the response and stability of most DC-DC converters very easily through this
method [16]. However, the signal flow graph can become very complex for higher order
converters, where there may exist multiple loops inside the graph due to complex circuit
topology [17,18].

Refs. [19–21] propose a new modeling technique that accurately models the transient
behavior of the classical buck, boost, and buck-boost DC-DC converters. Due to the
presence of analog electrical elements such as capacitors and inductors, power electronics
systems share some common properties with continuous-time systems. However, due
to the inherent switching nature of power electronics’ topologies, one can also find that
power electronics systems also share some properties with discrete-time systems [22]. As
such, refs. [19–21] utilize a combination of both the continuous-time uni-lateral Laplace
transform and the uni-lateral discrete-time Z-Transform to model the transient effects of the
converter. First, the equations for the ICCV in each circuit stage are determined through
the Laplace Transform. Next, the Z-transform and the law of ICCV continuity are used to
find the ICCV values at the beginning of each circuit stages. This methodology allows for
very detailed analysis of the transient operation of the converter. Furthermore, the method
can be utilized to analyze the behavior of the converter at high frequencies. One can use
this technique to investigate how inductances, capacitances, load resistances, and PWM
duty cycle affect the transient response of a DC-DC converter.

The authors have taken an interest into generalizing the DC-DC converter analytical
modeling technique presented in [19–21]. The objective of this paper is to generalize the
analytical technique presented in [19–21] to investigate the transient behavior of any DC-DC
converter rather than just for the classical buck, boost, and buck-boost DC-DC converters.
The DC-DC converter is taken to be as a piece-wise linear system. The Laplace Transform
can then be exploited to solve for each linear system in terms of the initial conditions of
the ICCV. The initial conditions can be solved by exploiting equations to apply the law of
continuity of the ICCV through the Z-transform. The analytical technique applied here can
be used to solve for converters operating in either continuous conduction mode (CCM)
or DCM. The theoretical analysis of the proposed analytical technique is presented in
this paper alongside the relevant hardware-in-loop (HIL) testing in order to validate the
presented theory.

Organizing the rest of this work is conducted in the following manner. Section 3
describes the necessary background and general equations from which the proposed
modeling technique originates. The solution of these general equations is presented in
Section 4. Section 5 specializes the earlier analysis to the buck-boost converter such that
the proposed modeling technique can be clarified further to the reader. Section 6 tests the
theory presented through hardware-in-loop (HIL) testing of the buck-boost converter. The
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effects of inductances, capacitances, load resistances, and PWM duty cycle on the transient
behavior of the buck-boost converter are highlighted.

3. Problem Description

Let the modeled DC-DC converter have k capacitors, p inductors and m diodes. The
input voltage vin(t) is described as the mathematical summation of a DC voltage VDC
and an AC voltage ripple vac(t). Furthermore, there are n circuit stage topologies de-
scribing the connections of the electrical circuit components in the converter. For no-
tational simplicity, let r = k + p. The state column vector ~x(t) is defined as ~x(t) =[

vC1 , · · · , vCk , iL1 , · · · , iLp

]T
, where iLq is the current flowing through the qth inductor

and vCw is the voltage across the wth capacitor.
At times t < 0, it is assumed that there exists no ICCV. The input column vec-

tor ~v(t) is defined as ~v(t) = ~vDC +~vAC(t), where ~vDC =
[
VDC, Vd1 , Vd2 , · · · , Vdm

]T and

~vAC(t) =
[
vac(t), 0, · · · , · · · , 0

]T , where Vdz is the forward voltage drop across the zth

diode in the circuit. The switching period of the converter is Ts. The ith circuit stage

periodically occurs over the half-open interval
[(

Di−1 + a
)
Ts,

(
Di + a

)
Ts

)
for all a ∈ N0,

and i = 1, 2, . . . , n; such that D0 = 0 and Dn = 1. It is assumed that 0 ≤ Di−1 < Di ≤ 1.
These assumptions and definitions are accurate for the overwhelming majority of the
DC-DC converters.

If each circuit stage topology consists of electrical elements that can each be analytically
linearized, which is the case for the majority of DC-DC converters, the ICCV present in the
DC-DC converter can be modeled over all time t as

d~x(t)
dt

=
n

∑
i=1

((
Ai~x(t) + Bi~v(t)

)
ui(t)

)
. (1)

The matrices Ai ∈ Rr×r and Bi ∈ Rr×(m+1) describe the circuit topology from the
conventional Kirchhoff’s current and voltage laws whenever the converter is operating in
the ith circuit stage. The definition of function ui(t) is

ui(t) =
∞

∑
α=1

(
u
(

t− (Di−1 + α)Ts

)
−u
(

t− (Di + α)Ts

))
. (2)

u(t) is defined as the conventional unit step function that is equal to 1 for all t ≥ 0 and
equal to 0 for all t < 0. As such, ui(t) can be considered as a pulse train that is equal
to 1 for all t, where the circuit is operating in the ith circuit stage and 0 otherwise. A
graphical representation of ui(t) is presented in Figure 1. Finally, although~x(t) is presented
in this paper to model the main inductances and capacitances, one may also include stray
inductances and capacitances inside~x(t).

Figure 1. Graphical representation of periodic pulse ui(t).
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4. Theoretical Analysis
4.1. Deriving the Analytical Solution

Due to the heavily discontinuous nature of (1) caused by the switching devices found
in the DC-DC converter circuitry, one cannot use the conventional techniques that are
usually used to solve continuous time ordinary linear differential equations. As such,
consider the variable substitution

t = (α + β)Ts where α = f loor(t) and β =
t

Ts
− α. (3)

At any time t ∈ R+
0 , α represents the total integer number of switching periods that

have passed since initial time t = 0. β represents the percentage of completion of the
current switching period. Through (3), one can show α ∈ N0 and β ∈ [0, 1) for all t ∈ R+

0 .
From (2) and Figure 1, one can observe that the value of ui(t) is completely indepen-

dent of the number of switching periods completed α and only dependent on the percentage
of completion of the current switching period β. As such one may re-express ui(t) as

ui(t) = ui(β) =

{
1 Di−1 ≤ β < Di
0 otherwise

. (4)

Vectors~x(t) and~v(t) can now be described as functions of α and β such that~x(t) =
~x(α, β) and~v(t) =~v(α, β). Furthermore, for any constant positive integer α = α0, one can
use (3) to show

∆t
∆β

= Ts such that lim
∆β→0

∆t
∆β

=
dt
dβ

= Ts for α = α0. (5)

One can now substitute (5) into (1) such that n vector differential equations may be
written to model the DC-DC circuitry over the α0−th switching period

d~x(α0, β)

dβ
= Ts

(
Ai~x(α0, β) + Bi~v(α0, β)

)
for Di−1 ≤ β < Di where i = 1, 2, · · · , n.

(6)

Ai and Bi are constant over the interval β ∈ [Di−1, Di), as it was mentioned earlier
that each of those matrices is constant over each circuit stage. Each equation listed in
the family of n Equation (6) is a one-dimensional differential equation with independent
continuous time variable β. α = α0 does not vary, as it was assumed to be constant by
definition. The uni-lateral Laplace transform that maps from β to the variable s ∈ C can be
used to provide a solution for the i−th equation presented in the family of Equation (6).
Let Ei =

(
sI− TsAi

)−1. After a straight forward computation, the solution for the i−th
equation presented in (6) can be demonstrated to be [23]

~x(α0, β) =~xSS−i(α0, β) +~xIC−i(α0, β) for Di−1 ≤ β < Di, (7)

~xSS−i(α0, β) = Ts L−1
{

e−Di−1sEi
(
Bi L{~v(t + Di−1)}

)}
= Ts

β∫
Di−1

e(TsAi(β−Di−1−τ)) Bi~v(α0, τ)dτ,
(8)

~xIC−i(α0, β) = L−1
{

e−Di−1sEi~x(α0, Di−1)
}

= eTsAi(β−Di−1)~x(α0, Di−1),
(9)

where, ~xSS−i(α0, β) models the steady-state response to (6) and ~xIC−i(α0, β) models the
transient response to (6). L{~v(t)} can be further simplified as,

L{~v(t)} = 1
s
~vDC + L{~vAC(t)}. (10)
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Since all the elements inside the vector~x(α0, β) represent either a capacitor voltage
or an inductor current; therefore,~x(t) is continuous for all time t despite any spontaneous
change in the circuit topology generated from switch action. As such, at time t = α0 + Di,
when the circuit topology is changed from the i−th circuit stage of the α0-th switching
period to the (i + 1)−th circuit stage of the α0−th switching period, the vector~x(t) must
maintain continuity with respect to time. This can be presented in the (α, β) domain as

lim
(α,β)→(α0,D−i )

~x(α, β) = lim
(α,β)→(α0,D+

i )
~x(α, β) (11)

∀i = 1, 2, . . . , n− 1.

Applying (11) yields

~x(α0, Di) =~xSS−i(α0, D−i ) + eTsAi(Di−Di−1)~x(α0, Di−1). (12)

(12) can be used repeatedly to derive a mathematical function between the initial conditions
of the i−th circuit stage of the α0−th switching period (~x(α0, Dn−1)) in terms of the 1-st
circuit stage of the α0−th switching period (~x(α0, 0)). As such,~x(α0, Di) can be expressed
as~x(α0, Di) = fi(~x(α0, 0)). Furthermore, the continuity of the vector~x(t) or~x(α, β) with
respect to time must also be exhibited as soon as the circuit is changed from the n−th circuit
stage of the α-th switching cycle to the 1-st circuit stage of the (α + 1)−th switching cycle.
This can be presented as

lim
(α,β)→(α,1−)

~x(α, β) = lim
(α,β)→(α+1,0+)

~x(α, β). (13)

By placing Equations (8), (9) and (12) into (13), the following is obtained:

~x(α + 1, 0) = ~gSS(α) +~gIC(α) such that
~gSS(α) =~xSS−n(α, 1−)

~gIC(α) = eTsAn(1−) fn−1(~x(α, 0)).
(14)

One can note that (14) is effectively a linear discrete time difference equation, as
it varies over the non-negative integer α only. As such, one may use the uni-lateral Z-
transform that maps from α0 ∈ N0 to z ∈ C. The solution to (13) is easily shown to
be [24]

~x(α, 0) = Z−1
{

1
z

(
Z
{
~gSS(α) +~gIC(α)

}
+~x(0, 0)

)}
. (15)

Observe that ~x(0, 0) = ~x(t)
∣∣∣∣
t=0

. The average of ~x(α, β) over one switching period,

~xavg(α, β) can be obtained through

~xavg(α, β) =
∫ 1

0
~x(α, β)dβ. (16)

By taking the Z-transform of both sides in (16), one can obtain the transfer function of
each component inside vector~x(α, β) with respect to the input voltage vin(α, β). Further-
more, to obtain the average steady-state value of~x(α, β), which is denoted as~xavg−SS, the
following equation can be applied:

~xavg−SS = lim
α→∞

(
∫ 1

0
~x(α, β)dβ). (17)

With the assumption that the initial condition of~x(t) at t = 0 is given, and the ability to
inter-relate the initial conditions of each circuit stage over the same switching period from
(12), and the ability to interrelate the the initial conditions of two consecutive switching
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periods; one can analytically model ~x(t) for all time. This allows for one to obtain the
transient ICCV response with precise accuracy. This analysis was conducted solely through
piecewise-linear methods. The mathematical methods applied throughout this modeling
technique are summarized in the flowchart presented in Figure 2.

Identifiy the  circuit
stages of the DC-DC

converter

Determine the
circuit equations of

the th
circuit stage in the

time domain 

Determine the
circuit equations of

the st circuit
stage in the time

domain

Determine the
circuit equations of

the th circuit
stage in the time

domain 

Determine the
circuit equations of

the th circuit
stage in the time

domain

Transform
equations from time

 domain to the 
domain

Transform
equations from time

 domain to the 
domain

Transform
equations from time

 domain to the 
domain

Transform
equations from time

 domain to the 
domain

Solve the 
domain equations
with the Laplace

transform in terms
of ICCV ICs

Solve the 
domain equations
with the Laplace

transform in terms
of ICCV ICs

Solve the 
domain equations
with the Laplace

transform in terms
of ICCV ICs

Solve the 
domain equations
with the Laplace

transform in terms
of ICCV ICs

Use the law of ICCV

 time continuity to solve for the  equations
that model the relation between the ICs of the 

th circuit stage in terms of the ICs of the 
th circuit stage 

Use the  equations to solve for the ICs of
the first stage in the   switching period in

terms of the ICs of the first stage in the 
 switching period

Solve the  domain equations through the Z-
Transform

The  domain solutions determine the ICs of each switching
period and the - domain solutions model the DC-DC converter

system throughout the switching period. The DC-DC converter has
been successfully modeled 

Figure 2. Brief summary of the proposed modeling method for DC-DC converter systems.
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4.2. Comparison of Proposed Method with Other Modeling Techniques

The proposed modeling technique focuses very heavily on the transient effects of
DC-DC converter systems and on the parasitic electrical elements. Table 1 compares
the advantages and disadvantages to the proposed method to the most popular power
electronics modeling techniques presented in the literature. In general, this technique is
very advantageous for power electronics control systems applications, where the transient
behavior of the converter is absolutely crucial. Through this technique, we can easily
identify various transient parameters such as peak overshoot, settling time, etc. This will be
shown in Section 6. However, a main disadvantage of this technique is that the equations
can become very chaotic depending on the variety of parasitic elements being modeled.

Table 1. Summary of advantages and disadvantages of different power electronics DC-DC converter
systems across the literature.

Advantages Disadvantages

State-Space
Averaging

• The averaged equations are derived directly from the
circuit topology.

• The analysis presented is well-defined and mathemat-
ically rigorous.

• Reasonable accuracy is provided with quick simula-
tion time.

• It is still a very popular modeling technique amongst
the literature.

• The high frequency components are often neglected
and as such it cannot be used for high-frequency anal-
ysis.

• The ripple effects of the ICCV are ignored, as the
switching frequency is neglected.

• The modeling equations become very complex if the
converter is operating in DCM or if the modeled con-
verter has a complex circuit topology.

Circuit
Averaging

• ICCV ripple and parasitic effects are often taken into
account.

• The analysis is even simpler than that of state-space
averaging.

• It is still a common modeling technique despite being
one of the earliest modeling techniques for power
electronics systems.

• The high frequency components are often neglected
and as such it cannot be used for high-frequency anal-
ysis.

• The modeling equations become very complex if the
converter is operating in DCM or if the modeled con-
verter has a complex circuit topology.

• The final model has some loss of accuracy due to
the variation of system parameters around the DC
operating point.

Signal
Flow Graph

• It is a fast and quick analysis technique that does not
need advanced mathematics.

• The characteristics polynomial of the circuit is derived
very quickly. This can be used to calculate the re-
sponse and stability of the DC-DC converter.

• It is a general method that can easily be applied across
different DC-DC converters.

• In complex circuit topologies, multiple loops may ex-
ist. This makes the determination of stability and
network compensation design difficult.

Proposed
Method

• The transient dynamics of the converter are modeled
with very high accuracy.

• The technique is easily generalized and can be applied
to a large variety of DC-DC converters.

• This technique can be applied for high frequency anal-
ysis.

• The ICCV ripple effects are clearly modeled to en-
hance accuracy.

• The modeling equations can become long and compli-
cated.
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5. Example: Transient Analysis of the Buck-Boost Converter

The buck-boost converter, presented in Figure 3, is one of the most iconic DC-DC
converters due to its ability to either step-up or step-down an input voltage. Furthermore,
its simple circuit topology makes it very applicable for a large number of industries and
allows for relatively simple mathematical analysis regarding its operation. As such, it is
chosen as the example that clarifies the theory presented in this paper.

Figure 3. Buck-boost converter circuitry.

The buck-boost converter has two operational modes in CCM (n = 2). The operational
modes are presented in Figure 4. Only the inductor L with equivalent series resistance
rL is treated as a non-ideal electrical element due to the fact that the non-ideality of the
inductors is usually a large portion of all the non-idealities found in DC-DC converters.
The rest of the components are treated as ideal to simplify the mathematical analysis
presented in this paper and to highlight inductor effects on the transient behavior of the
buck-boost converter. Regarding the buck-boost circuit topology, the state column vector is
~x(t) =

[
iL(t), vC(t)

]T and the input column vector is~v(t) =
[
vin(t), 0

]T . Throughout
this example, it will be assumed that~x(t = 0) = 02×1 such that there is no initial current
or voltage flowing across any of the circuit components. The switch in the buck-boost
converter is operated a duty cycle D. The matrices A1, A2, B1, and B2, which describe the
buck-boost topology, are

A1 =

[
−rLL−1 0

0 −(RC)−1

]
, B1 =

[
L−1 0

0 0

]
, (18)

A2 =

[
−rLL−1 L−1

−C−1 (RC)−1

]
, B2 =

[
0 −L−1

0 0

]
. (19)

The input voltage source ripple is neglected such that vin(t) is equal to DC voltage Vi.
As demonstrated previously, attempting to solve (1) requires solving the group of

systems of differential Equation (6). For β ∈ [0, D) and a constant α (α = α0), the current
flowing through inductor L and the output voltage across capacitor C are

iL(α0, β) =
Vi
rL

+
(
iL(α0, 0)− Vi

rL

)
e
−βTrL

L (20)

vC(α0, β) = −vo(α0, 0)e
−βTs

RC (21)

Over the interval β ∈ [D, 1) and α = α0, iL(α0, β) and vC(α0, β) are

iL(α0, β) = e−k1(β−D)

(
iL(α0, D) cos

(
k2(β− D)

)
+(

k3iL(α0, D)− k4vC(α0, D)
)

sin
(

k2(β− D)
))

,
(22)
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vC(α0, β) = −e−k1(β−D)

(
vC(α0, D) cos

(
k2(β− D)

)
+(

k5iL(α0, D)− k3vC(α0, D)
)

sin
(

k2(β− D)
))

,
(23)

where

k1 = ( (L+rLRC)Ts
2RLC ) (24a)

k2 =

√
T2

s rL+R(T2
s −LCk2

1)
LC (24b)

k3 = (L−rLRC)Ts
2RLCk2

(24c)

k4 = Ts
k2L (24d)

k5 = Ts
k2C (24e)

Equations (20)–(23) are the buck-boost topology localized versions of (7); the four
equations came from solving (6), (18) and (19). Now, using (11), (20) and (22) to determine
iL(α0, D) in terms of iL(α0, 0) yields

iL(α0, D) =
(
iL(α0, 0)− Vi

rL

)
e
−DTsrL

L +
Vi
rL

. (25)

Similarly, using (11), (21) and (23) to determine vC(α0, D) in terms of vC(α0, 0) yields

vC(α0, D) = −vo(α0, 0)e
−DTs

RC . (26)

Now, (14) is applied to determine the relationship between ~x(α, 0) and ~x(α + 1, 0).
As such,

iL(α + 1, 0) = e−k1(1−D)

(
iL(α, D) cos

(
k2(1− D)

))
+(

k3iL(α, D)− k4vC(α, D)
)

sin
(

k2(1− D)
))

,
(27)

vC(α + 1, 0) = −e−k1(1−D)

(
vC(α, D) cos

(
k2(1− D)

))
+(

k5iL(α, D)− k3vC(α, D)
)

sin
(

k2(1− D)
)) . (28)

(27) and (28) constitute a system of linear discrete-time difference equations. The Z-
transform is used to solve this system to show

iL(α, 0) = Z−1{ r−1
L z
(
(h4 + h5

)
z + h6 + h7

)
(z− 1)

(
z2 + (h0 + h1)z + h2 + h3

)} (29)

vC(α, 0) = Z−1{ −r−1
L h8z

(z− 1)
(
z2 + (h0 + h1)z + h2 + h3

)} (30)

where,
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h0 = −ek1(D−1)
(

e
−DTs

RC + e
−DTsrL

L
)

cos
(

k2(D− 1)
)

(31a)

h1 = k3zek1(D−1)
(

e
−DTsrL

L − e
−DTs

RC
)

sin
(

k2(D− 1)
)

(31b)

h2 = e
−DTsrL

L e
−DTs

RC e2k1(D−1) cos2
(

k2(D− 1)
)

(31c)

h3 = e
−DTsrL

L e
−DTs

RC e2k1(D−1)K sin2
(

k2(D− 1)
)

(31d)

h4 = −Viek1(D−1)(1− e
−DTsrL

L ) cos
(

k2(D− 1)
)

(31e)

h5 = Vik3ek1(D−1)(1− e
−DTsrL

L ) sin
(

k2(D− 1)
)

(31f)

h6 = Vie
−DTs

RC e2k1(D−1)(1− e
−DTsrL

L ) cos2
(

k2(D− 1)
)

(31g)

h7 = Vie
−DTs

RC e2k1(D−1)(1− e
−DTsrL

L )K sin2
(

k2(D− 1)
)

(31h)

h8 = Vik5ek1(D−1)(1− e
−DTsrL

L ) sin
(

k2(D− 1)
)

(31i)

where K = (k4k5 − k2
3). To simplify further analysis, the following constants are defined

g0 = h0 + h1 (32a)

g1 = h2 + h3 (32b)

g2 = −r−1
L (32c)

g3 = h4 + h5 (32d)

g4 = h6 + h7 (32e)

g5 = −r−1
L h8 (32f)

The analytical expression of the inverse z-transforms in (29) and (30) exists and has
been computed by the authors. For all positive integers α, the values of iL and vC at the
beginning of every switching cycle is

iL(α, 0) =
a0 + a1(−1)αg

α
2
1 cos

(
α arccos(

g0

2
√

g1
)
)

g0(g0 + g1 + 1)
(33)

vC(α, 0) =
g0g5 + 2g5(−1)αg

α
2
1 cos

(
α arccos(

g0

2
√

g1
)
)

g0(g0 + g1 + 1)
(34)

where
a0 = g0g2(g3 + g4) (35a)

a1 = −2g2(g0g3 − g4 + g1g3) (35b)

As such, through (33), (20), (22), (34), (21) and (23) one is able to determine the
transient behavior iL(t) and vC(t) through the substitutions α = f loor(t) and β = tT−1

s −
α as shown in (3). These equations allow us to explore the effects of inductances and
capacitances on the transient behavior of DC-DC converter systems in a manner that is
mathematically rigorous.
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(a) Buck-boost circuit topology during the ON state.

(b) Buck-boost circuit topology during the OFF state.

Figure 4. Buck-boost converter circuit stages, (a) On state; (b) OFF state.

6. Experimental Justification of the Theory

The theory presented in this paper is experimentally justified through the observation
of a buck-boost converter tested by power electronics hardware-in-loop (HIL) FPGA experi-
mentation. Four different parameter sets of the buck-boost circuit are chosen to demonstrate
the effects of the passive elements and their non-idealities on the transient response of the
ICCV of the buck-boost converter. The results observed through a digital oscilloscope are
compared to the theoretical results that would have been obtained through the graphing of
the analytical equations presented in this paper. In all the four parameter sets, the values
of Ts, D, , Vi are Ts =

1
5000 s, D = 0.75, Vi = 24 V. In the first parameter set, parameter set

S1, the values of the circuit components used are R = 60 Ω, L = 5× 10−3 H, rL = 0.8 Ω,
C = 220× 10−6 F. In parameter set S2, the values of R, L, rL are unchanged from parameter
set S1 but the capacitance C is C = 120× 10−6 F. In parameter set S3, only the values of
L and rL are changed from S1 to L = 9× 10−3 H, and rL = 1.2 Ω. In the final parameter
set S4, only the value of the load resistance R is changed from S1 to R = 100 Ω.

To yield the graph of the theoretical inductor current and capacitor voltage at the
beginning of each switching period for each parameter set, (29) and (30) are applied for
each parameter set. The theoretical initial conditions at each switching period are presented
in Figures 5–8. These initial conditions allow for the graphical expression of iL and vC over
continuous time through (20)–(23). These graphs are shown in Figures 9–12. Next, the
results are obtained experimentally from HIL to compare the theoretical model presented
in this paper with the experimental evidence. The experimental evidence from the HIL is
shown in Figures 13–16. As one can observe, the experimental ICCV seems to be identical
to the theoretical ICCV for each parameter set. As one increases the output capacitance
in the buck-boost converter, the time-duration it takes to reach steady-state increases, as
shown from Figures 9, 10, 13 and 14. Furthermore, this increase in capacitance decreases
the maximum current flowing through the inductor and increases the maximum voltage
across the capacitor. An increase in the inductance seems to also increase the time-duration
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it takes to reach steady-state increases, as shown from Figures 9, 11, 13 and 15; the increase
in rL has a strong effect on the steady-state ICCV, as they decreased in S3 compared to S1.
Finally, an increase in the resistance R seems to have a similar effect to that of an increase in
capacitance or inductance regarding the time-duration it takes to reach steady-state.

Figure 5. Graph of ICCV at the beginning of the α-th switching period from S1 parameters through
Equations (33) and (34).

Figure 6. Graph of the ICCV at the beginning the α-th switching period from S2 parameters through
analytical Equations (33) and (34).

Figure 7. Graph of the ICCV at the beginning of the α-th switching period from S3. parameters
through analytical Equations (33) and (34).



Electronics 2022, 11, 3121 14 of 19

Figure 8. Graph of the ICCV at the beginning of the α-th switching period from S4 parameters
through analytical Equations (33) and (34).

Figure 9. Graph of the S1 parameter set ICCV in continuous time through (20)–(23) and knowledge
of the ICCV at the beginning of each switching period.

Figure 10. Graph of the S2 parameter set ICCV in continuous time through (20)–(23) and knowledge
of the ICCV at the beginning of each switching period.
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Figure 11. Graph of the S3 parameter set ICCV in continuous time through (20)–(23) and knowledge
of the ICCV at the beginning of each switching period.

Figure 12. Analytical expression of capacitor voltage and inductor current over continous time from S4.

Figure 13. Experimental results of capacitor voltage and inductor current over continous time from S1.
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Figure 14. Experimental results of capacitor voltage and inductor current over continous time from S2.

Figure 15. Experimental results of capacitor voltage and inductor current over continous time
from S3.
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Figure 16. Experimental results of capacitor voltage and inductor current over continous time
from S4.

The results from the four parameter sets are investigated further to highlight several
common transient parameters such as peak overshoot P.O and settling time Tss. In general,
the peak of overshoot P.O of a transient step response of a DC-DC converter is defined as

P.O =
xmax − xss

xss
× 100%,

where xmaxis the maximum value of the transient response and xss is the steady-state
response of the transient response. Settling time is defined here as the time it takes the
transient response to reach steady-state. Table 2 provides the peak overshoot and settling
time for each of the four parameter sets. Parameter set S1 is taken to be the reference pa-
rameter set. As the capacitance of the buck-boost converter decreases from C = 220× 10−6

to C = 120× 10−6, i.e., parameter set S2 , there exists a decrease in both the settling times
of iL and vC. The peak overshoot of iL exhibits a 41.7% decrease and the peak overshoot
of vC exhibits a 3.29% increase. As the inductance increases from parameter set S1 from
L = 5× 10−3 H to L = 9× 10−3 H and rL changes from rL = 0.8 Ω to rL = 1.2 Ω, i.e.,
parameter set S3, the settling times of both iLand vC decrease. The peak overshoot of
iLdecreases by 57.5% and the peak overshoot of vC decreases by 5.29%. As the load resis-
tance increases from R = 60 Ω to R = 100 Ω, i.e., parameter set S4, the settling time of
both iL and vC increase. The peak overshoot of iL exhibits a 138.3% increase and the peak
overshoot of vC exhibits a 3.91% increase.

Table 2. Comparison of peak overshoot and settling time across the four different parameter sets.

Parameter Set P.O of iL [%] Tss of iL [s] P.O of vC [%] Tss of vC [s]

S1 162.1 0.056 21.38 0.055

S2 120.4 0.038 24.67 0.036

S3 104.6 0.052 16.09 0.049

S4 300.4 0.072 25.29 0.060
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7. Conclusions

This paper proposes a new analytical modeling technique designed for power elec-
tronic DC-DC converter systems. The proposed technique allows for very accurate mod-
eling of the transient behavior of DC-DC converters. Furthermore, unlike state-space
averaging, which is the most commonly used method across the literature for DC-DC
converter modeling, the proposed method can be applied to analyze the high-frequency
components of DC-DC converters. The proposed analytical technique is a generalization of
the analysis and modeling presented in [19–21]. First, the theory behind the methodology
is presented thoroughly. In the circuit topology of a DC-DC converter, there exists a finite
number of distinct circuit stages. Each of these circuit stages are linear. However, due to
the switching elements in the circuit, the overall circuit topology is non-linear; rather, it is
piecewise linear. Each circuit stage is treated as a continuous-time linear system. As such,
each system can be solved through the uni-lateral Laplace transform in terms of the initial
conditions of the inductor currents and capacitor voltages (ICCV). The initial conditions of
each circuit stage at specific switching periods are related through discrete-time equations
that originate the continuity of the ICCV with respect to time. These discrete equations
are then solved through the Z-transform to determine the ICCV at the beginning of each
circuit stage at each switching period. Next, the presented theory is applied to a non-ideal
buck-boost converter circuitry for the purpose of clarification to the reader. Finally, the
theory presented regarding the buck-boost converter is validated through hardware-in-loop
(HIL) testing. The effects of the inductances, capacitances, and the PWM duty cycle on the
ICCV are investigated. In the future, the authors plan on applying the proposed technique
to higher order converters such as the SEPIC or the Ćuk converter.
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