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Abstract: Lip movements contain essential linguistic information. It is an important medium for
studying the content of the dialogue. At present, there are many studies on how to improve the
accuracy of lip language recognition models. However, there are few studies on the robustness and
generalization performance of the model under various disturbances. Specific experiments show
that the current state-of-the-art lip recognition model significantly drops in accuracy when disturbed
and is particularly sensitive to adversarial examples. This paper substantially alleviates this problem
by using Mixup training. Taking the model subjected to negative attacks generated by FGSM as an
example, the model in this paper achieves 85.0% and 40.2% accuracy on the English dataset LRW
and the Mandarin dataset LRW-1000, respectively. The correct recognition rates are improved by
9.8% and 8.3%, compared with the current advanced lip recognition models. The positive impact of
Mixup training on the robustness and generalization of lip recognition models is demonstrated. In
addition, the performance of the lip recognition classification model depends more on the training
parameters, which increase the computational cost. The InvNet-18 network in this paper reduces the
consumption of GPU resources and the training time while improving the model accuracy. Compared
with the standard ResNet-18 network used in mainstream lip recognition models, the InvNet-18
network in this paper has more than three times lower GPU consumption and 32% fewer parameters.
After detailed analysis and comparison in various aspects, it is demonstrated that the model in
this paper can effectively improve the model’s anti-interference ability and reduce training resource
consumption. At the same time, the accuracy is comparable with the current state-of-the-art results.

Keywords: lip recognition; visual speech recognition; data enhancement; inverse convolutional
neural network

1. Introduction

Lip recognition is also called visual speech recognition (VSR). It analyzes the dynamic
changes of the lips. The aim is to recognize the speech content in the video. This task
involves natural language processing, image classification, speech processing, and pat-
tern recognition. In recent years, there have been many applications of lip recognition in
real life such as in vivo detection [1], improved hearing aids [2], etc., with broad applica-
tion prospects.

The lip recognition model consists of two steps. The first is to extract the visual fea-
tures of the lips. The second is categorization. The extracted visual features should contain
sufficient representative information and robustness [3]. The traditional extraction method
is manual annotation. Such practices only ensure that the downstream task can be classified
and recognized without considering the effectiveness of the acquired features. Therefore,
the recognition accuracy is low. Although, there are corresponding methods [4,5] to solve
this problem. These methods rely on manual design, and the design process is complex.
Visual features obtained using manual annotation do not meet human expectations, and re-
searchers have begun to seek more effective visual elements. Deep learning techniques
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have been widely used in image detection in recent years. Deep learning techniques can
automatically extract features from datasets, eliminating the hassle of manual extraction.
Deep learning networks are flexible and can process large amounts of data. Recently, lip
recognition based on deep learning has gradually become a research hotspot. The basic
framework of deep-learning-based lip recognition is shown in Figure 1.

Figure 1. Deep-learning-based lip recognition framework.

Lip datasets are susceptible to adversarial examples. Achieving high-accuracy lip
recognition under the interference of adversarial examples is one of the objectives of this
paper. Meanwhile, most deep-learning-based lip recognition models have a problem: too
many model parameters due to the stacking of neural networks. These problems lead to a
lot of GPU resource and time costs; this paper also gives methods to reduce GPU resource
use and training time.

This paper summarizes the various types of deep-learning-based lip recognition
models in Section 2. Then, we propose the baseline model in this paper based on the
current advanced lip recognition models in Section 3. In Section 4, we offer an improved
model based on the baseline model. We design a model based on Mixup and InvNet-18.
Mixup has significantly enhanced the robustness and generalization of neural network
architectures [6,7]. However, no research has yet demonstrated that Mixup can be applied
to lip recognition models. This paper innovatively introduces Mixup training into a lip
recognition model disturbed by adversarial examples. In Section 4.1, we demonstrate
through detailed anti-interference experiments that current state-of-the-art lip recognition
models have poor robustness and generalization against adversarial examples. Mixup
training significantly improved anti-interference ability, robustness, and generalization
performance. In Section 4.2, it is experimentally demonstrated that the InvNet-18 network
in this paper can effectively reduce model parameters while maintaining accuracy, thus
saving GPU resources and reducing training time. The InvNet-18 is an efficient and low-
consumption deep neural network. In Section 5, on the datasets LRW [8] and LRW-1000 [9],
we compare the model in this paper with other lip recognition models. It is demonstrated
that the model’s accuracy in this paper is comparable with the current state-of-the-art
results in the case of interference resistance and low consumption.

2. Related Work

In this section, we derive the advantages and disadvantages of these models by
analyzing lip recognition models. This step is essential because it helps us improve the lip
recognition model.

Jinlin Ma et al. [10] classified lip recognition models into the following categories based
on the differences in visual feature extraction methods: two-dimensional convolutional
neural network (2D CNN), three-dimensional convolutional neural network (3D CNN),
and 3D + 2D CNN. The specific classification of lip recognition is shown in Figure 2.
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Figure 2. Visual feature extraction based on deep learning.

The flow chart of the 2D CNN-based lip recognition model is shown in Figure 3a.
First, we used CNN to extract the visual features of lips. The CNN model consists of six
convolution layers (convolution + non-linear activation + top pooling layer) and one whole
connection layer. The CNN is trained using a combination of lip images and phoneme
labels, and the output is used as visual features for lip recognition. The hidden Markov
Model and Gaussian Mixed Observation Model were used in the back-end. This method
solves the problem where the feature cannot be extracted automatically and the model
cannot process the variable length sequence. Garg et al. [11] further improved the lip
language model. They used VGGNet for variable length sequences. The image sequence
is stitched into a single image as the model’s input. The back-end uses Long Short-Term
Memory (LSTM) to extract time information. The model performs well but faces two
problems: how to obtain more visual features and how to reduce the computation of the
model. Due to the limitations of a single model, Noda et al. [12] increased audio input as
a model. They studied the correlation between speech and visual features in unlabeled
visual speech recognition. They used depth encoding to extract audio features. Then,
a multistream hidden Markov model was introduced to integrate the two-stream feature
information to obtain the feature information. The model adaptively switches two channels’
input features. However, the automatic weight selection is not implemented, which makes
it challenging to use in practical applications.

In contrast, Lee et al. [13] suggested that multiview images can increase visual feature
information. They used multiview images as the model’s input. The front-end module
uses stacked convolution layers to extract multiscale visual features, while the back-end
module uses LSTM. The 2D CNN can only process single-frame images and is weak for
continuous-frame images.

The flow chart of the 3D CNN-based lip recognition model is shown in Figure 3b.
LipNet [14] was the first lip recognition model to introduce 3D CNN technology. The model
takes a T-frame RGB image sequence as input. It is fed into a convolution network con-
sisting of three layers of three-dimensional convolution. Each convolution network has
a maximum pool layer behind it. The back-end network is further aggregated by a three-
tier Bi-Gated Recurrent Unit (Bi-GRU), which aggregates the extracted features. Finally,
the Connectionist Temporal Classification (CTC) is used for analysis loss, but CTC has its
drawbacks: it requires input sequences to be larger than output sequences. Fung et al.’s
front-end module [15] uses the same structure. However, differently, they used 83D con-
volution as a visual feature extractor. Although the model has good results, increased
network depth easily hinders the flow of gradient information. Xu et al. [16] proposed an
LCANet video encoder network for gradient information backflow. Send the input video
to the overlaid 3D CNN. Using the two-layer Highway Network added to the 3D CNN
solved the problem of gradient information return in the deep network. LCANet feeds the
encoding information into an attention mechanism network to capture data in context. This
attention mechanism weakens the constraint of the conditional independence hypothesis
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on CTC. The attention mechanism improves the modeling ability of lip language models
too. For large video datasets, deep 3D CNN improves classification accuracy. For example,
Weng et al. [17] used the I3D dual-stream module as the front-end module. They used gray
video frames and light streams as input to the front-end module. The model stitched the
features of the two branches together. The back-end module used LSTM. Experiments have
shown that light streams can obtain more visual elements when dealing with large-scale
datasets. I3D also improves model recognition accuracy. Pratham et al. [18] used the
SpotFast network as the visual feature extraction network to enhance recognition accuracy.
A transformer learning sequence was used in the back-end model. Memory Enhanced
networks (MEN) can effectively increase the capacity of the neural networks without
increasing the computational amount. Experiments show that the performance of deep
3D CNN is further improved over the I3D network. With the increase in network layers,
the 3D CNN model has two disadvantages: excessive parameters and high storage cost.
Our model reduces the parameters through the InvNet-18 network, improves efficiency,
and reduces the consumption of GPU resources. The main content and experiment are in
Section 4.

Figure 3. Visual feature extraction structure base CNN. (a) Base 2D CNN lip recognition models.
(b) Base 3D CNN lip recognition models. (c) Base 3D + 2D CNN lip recognition models.

The most advanced approach is the lip recognition model based on the combination
of 3D CNN and 2D CNN. The flow chart of the 3D + 2D CNN-based lip recognition
model is shown in Figure 3c. There are two ways to combine 2D CNN with 3D CNN: the
first method corrects the first layer of 2D CNN convolution to 3D CNN. A layer of 3D
CNN captures the model’s space-time information between successive frames. Then, the
model connects to Depth 2D CNN to extract lip features. The second method is where the
model uses a shallow 3D CNN to preprocess the video frame. Then, the model connects
the standard deep 2D CNN. For the first method, Stafylakis [19] and Feng et al. [20]
modified the first layer of the ResNet model from a 2D CNN to a 3D CNN. This front-end
module is used to process sequential frame image sequences. For the second method,
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Afouras et al. [21] added a 3D CNN before the 2D CNN. Then, the model used standard
ResNet as feature extraction. The model’s speech content is separated from background
noise to enhance audiovisual speech. However, this method results in a large number of
parameter calculations. Xu et al. [22] introduced Pseudo-3D residual convolution (P3D) to
extract visual features. The front-end module replaces the ResNet network with the time
convolution (TCN). Short-time Fourier transform (STFT) sampling extracts the model’s
input audio. Then, the model enters the speech enhancement module. The module put
enhanced feature information input into the network. This model further improves the
accuracy of the identification task. However, the accuracy of the 3D + 2D CNN method is
poor when it is disturbed by adversarial examples. How to guarantee the accuracy while
improving model robustness and generalization deserves to be investigated. Our model
dramatically alleviates this problem using Mixup training, as detailed in Section 4.

Recently, some researchers proposed end-to-end lip, recognition models. This type of
model uses fully connected layers [23,24] or convolutional layers [25,26] to extract features
from the lip region. Then, features are input into the recursive neural network, attention
mechanism [27], or self-attention sequence [26]. Although all these models can achieve
good accuracy, they all suffer from the problem of too many parameters, which leads to
the large consumption of GPU resources and a long training time. This paper focuses on
solving these problems and gives specific methods.

The current state-of-the-art model was proposed by Martinez [28] et al. Since then,
many researchers have made improvements on Martinez’s basis to obtain higher model
accuracy [20,29]. However, these models focus too much on accuracy and neglect the study
of model resistance to interference. Moreover, these models often stack neural networks to
improve accuracy, which creates the problem of too many parameters and leads to high
GPU resource consumption and extended training time. In this paper, we focus for the first
time on the anti-interference ability of lip recognition and try to reduce the consumption of
the model.

Section 4 analyzes the robustness and generalization of current state-of-the-art lip
recognition models when subjected to adversarial attacks generated by FGSM. Experiments
show that the accuracy of the advanced lip recognition models significantly decreases
when subjected to adversarial attacks, and we invoke Mixup training to improve the
accuracy effectively. Meanwhile, in terms of reducing model parameters and resource
consumption, we propose the new InvNet-18 network, which reduces 32% of parameters
and consumes only 1/3 of GPU resources compared with the ResNet-18 network used by
the advanced model.

3. The Basic Pipeline

The lip recognition model is divided into front-end modules and back-end modules.
The front-end module extracts faces from video datasets. Then, the model extracts mouth
features from the face. Next, features enter CNN for space-time encoding. The front-end
module finally outputs the space-time feature vector of the lip image. The back-end module
uses a cyclic neural network for sequence coding. Furthermore, the model uses a classifier
classification [14].

This article uses an advanced model as the baseline, as shown in Figure 4. First is
the data processing part. The dataset uses LRW and LRW-1000 video datasets. They are
processed into picture frames, then cropped out of the picture of lips as the model’s input.
The data were processed into the B × T × H × W tensor. Each dimension corresponds to
batch, picture frame, height, and width (the input picture has a single channel denoting
grayscale). These tensors are input into the front-end module. The front-end module’s
first convolutional layer uses the 3D CNN. The 3D CNN’s convolutional kernel is 5 × 7 × 7
(time-domain, length, width). Then, a standard two-dimensional ResNet-18 is introduced
after the 3D CNN. All ResNet-18’s convolutional kernels are one-dimensional. ResNet-18
only extracts spatial features. To this point, the model will obtain the model T × 512 × 3 × 3
feature sequence. Then, the feature sequence enters spatial global average pooling (GAP,
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the feature dimension is 512, and there are T in total). Finally, the front-end module obtains
a 512 × T feature sequence vector. In the dataset, each category of words’ duration is short.
Therefore, the whole network does not use time-domain downsampling to avoid losing
sequence motion information.

Figure 4. Baseline model of this paper.

Afterward, the feature sequence vector enters the back-end module’s bi-gated recur-
rent unit (Bi-GRU). The back-end module is composed of Bi-GRU and a fully connected
layer. The back-end module uses the fully connected layer linearly transformed H, mapped
into a feature vector of dimension N. The output of the model Ŷ is obtained from the
Softmax activation function. The model uses the cross-entropy loss function to calculate
the loss, as shown in Equation (1).

Loss = − 1
N

n

∑
i=1

Yi log Ŷi (1)

4. Proposed Methodology

In this paper, an interference-resistant and low-consumption lip recognition model
is constructed. Mixup has been shown to improve the robustness and generalization of
models in the area of image recognition. However, in the area of lip recognition, no article
has detailed the effect of Mixup applied to lip recognition models. The first subsection
describes Mixup’s rationale for improving model robustness and generalization. Through
experiments, it has been demonstrated that Mixup can be used for lip recognition models
with good results. We propose the InvNet-18 network in the second subsection to build a
low-consumption lip recognition model. This novel network can significantly reduce the
model’s parameters by the new Involution operator. The resource consumption is reduced
by reducing the parameters. The optimized model graph is shown in Figure 5.

4.1. Mixup

Mixup is a widely used data enhancement technique introduced by Zhang et al. [6].
It has significantly improved the robustness and generalization of models [6,30]. To ad-
dress the lack of robustness and generalization of the lip recognition model to adversarial
examples, we used the Mixup method on the baseline model and achieved good results.
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Figure 5. The optimized lip language recognition model.

4.1.1. Definition of Mixup

In this section, we will briefly review the definition of Mixup.
In the paper by L. Zhang et al. [31], it is demonstrated in detail that Mixup training

is equivalent to optimizing a regularized version of the standard empirical loss Lstd
n (θ, S).

In general, for model classification cases, the output yi is embedded in the xi class—that is,
using m as the total number of the class and leaving yi ∈ {0, 1}m as the binary vector—all
items being equal to zero except those corresponding to the xi class. In particular, if we
take m = 1, it degrades to binary classification. For regression cases, yi can be any real
number/vector. The Mixup loss is defined as follows:

Lmix
n (θ, S) =

1
n2

n

∑
i,j=1

Eλ∼Dλ
l
(
θ, z̃ij(λ)

)
(2)

where Dλ is the distribution supported on [0, 1]. Throughout the paper, we consider the
most commonly used Dλ—Beta distribution Beta(α, β) for α, β > 0.

In this paper, we set the prediction function fθ(x) and the target y with a class of loss
functions as in Equation (3).

L = {l(θ, (x, y)) | l(θ, (x, y)) = h( fθ(x))− y fθ(x) for some function h} (3)

This function class L contains many commonly used losses, including loss functions
induced by generalized linear models (GLMs), such as cross-entropy and logistic regression
for neural networks and linear regression. Mixup training with λ ∼ Dλ = Beta(α, β)
introduces a regularized loss function, where the mixture of Beta distributions specifies the
weight of each regularization:

D̃λ =
α

α + β
Beta(α + 1, β) +

β

α + β
Beta(β + 1, α) (4)

The corresponding Mixup loss Lmix
n (θ, S), as defined in Equation (2) with λ ∼ Dλ =

Beta(α, β), can be rewritten as

Lmix
n (θ, S) = Lstd

n (θ, S) +
3

∑
i=1
Ri(θ, S) +Eλ∼D̃λ

[
(1− λ)2 ϕ(1− λ)

]
(5)
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where lima→0 ϕ(a) = 0 and

R1(θ, S) =
Eλ∼D̃λ

[1− λ]

n

n

∑
i=1

(
h′( fθ(xi))− yi

)
∇ fθ(xi)

>Erx∼DX [rx − xi] (6)

R2(θ, S) =
Eλ∼D̃λ

[
(1− λ)2]
2n

n

∑
i=1

h′′( fθ(xi))∇ fθ(xi)
>Erx∼DX

[
(rx − xi)(rx − xi)

>
]
∇ fθ(xi) (7)

R3(θ, S) =
Eλ∼D̃λ

[
(1− λ)2]
2n

n

∑
i=1

(
h′( fθ(xi))− yi

)
Erx∼DX

[
(rx − xi)∇2 fθ(xi)(rx − xi)

>
]

(8)

This result shows that Mixup is related to regularizing ∇ fθ(xi) and ∇2 fθ(xi), which
are the first and second directional derivatives with respect to xi. We further denote
Equation (2) as

L̃mix
n (θ, S) := Lstd

n (θ, S) +
3

∑
i=1
Ri(θ, S) (9)

Equation (9) is equivalent to a regularization version of the optimization standard em-
pirical loss Lstd

n (θ, S). This regularization has been shown to improve the robustness and gen-
eralization ability of the model greatly. The specific experiments are in the next subsection.

4.1.2. Robustness and Generalization

Despite the remarkable success of neural networks in many areas, such as lip recog-
nition [15] and natural language processing [32], it has been noted that neural networks
are susceptible to adversarial instances and that predictions are easily flipped by interfer-
ence [33]. In Goodfellow et al., the authors used the fast gradient sign method (FGSM)
to generate adversarial samples, resulting in images of pandas misclassified as gibbons.
Although various defense mechanisms have been proposed for negative attacks, they
typically sacrifice test accuracy for robustness [34], and many require significant additional
computation time. In contrast, Mixup training is somewhat resistant to adversarial exam-
ples while improving test accuracy, such as those generated by FGSM [30]. In addition,
the corresponding training time is moderate.

As an explanation, this paper compares the Mixup and baseline models for adversarial
attacks generated by FGSM. One is a mixed loss model, and the other is a traditional empir-
ical risk minimization (ERM) model. We create FGSM adversarial attack experiments by
randomly selecting 2000 test images from the LRW dataset and the LRW-1000 dataset. Since
these two datasets are video datasets, we randomly crop each video frame to 88 × 88 sizes.
Figure 6a depicts the results of both models. Experiments show that when the attack size
is more than five, the model trained by Mixup has higher accuracy than ERM, which is
mainly attributed to the excellent robustness of Mixup training.

Figure 6. Exemplary examples of the impact of Mixup on robustness and generalizability. (a) Ad-
versarial robustness of SVHN data under FGSM attack. (b) Generalization gap between test and
training loss.
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Generalization theory has been the focus of deep learning theory [35], and there has
been evidence that generalization is an essential measure of whether a deep learning
algorithm is good [6]. A model with good generalization will have better test performance.
From Figure 6b, With the continuous improvement of the experimental epoch, the test loss
and generalization gap of the Mixup method are significantly higher than those of the ERM
method. Mixup training yields better test performance than standard ERM methods for
Mixup. This result is mainly due to its suitable generalization properties.

After the above experiments, Mixup can significantly improve the robustness and
generalization of the lip recognition model when subjected to interference.

4.1.3. Mixup and Baseline Model

We further introduced Mixup into the baseline model. The objective is to examine the
effect of Mixup on the accuracy of the lip recognition model in the absence of adversarial
example interference. The experiment uses full LRW and LRW-1000 as datasets, with train-
ing and test sets divided at a ratio of 8:2. Since these two datasets are video datasets, we
randomly crop each video frame to 88 × 88. The experiments compared the accuracy of the
baseline model with Mixup. The experimental results are shown in Figure 7.

Figure 7. TestSet accuracy of Mixup and baseline model. (a) TestSet accuracy on LRW dataset.
(b) TestSet accuracy on LRW-1000 dataset.

As shown in the figure, the model using Mixup is more accurate than the baseline
model on both datasets, even when the model is not disturbed by adversarial examples.
Mixup helps us construct a lip recognition model that is resistant to interference.

4.2. InvNet-18

The involution operator was first proposed by Duo Li et al. [36] as a novel atomic
operation for deep neural networks. The involution operator could be leveraged as a
fundamental brick to build a new generation of neural networks for visual recognition.
This new operator has been shown to reduce the number of parameters and GPU resource
consumption of image classification models [36]. We build a new model called InvNet-18
based on ResNet-18 using the involution operator. Then, we demonstrate through detailed
experiments that the InvNet-18 model can significantly reduce the model’s parameters and
save GPU resources.

4.2.1. Design of Involution

The conventional convolutional kernels are designed according to spatial invariance
and channel specificity. The original convolution kernel shares parameters in space, which
leads to limited ability to model space at different spatial locations. It cannot effectively
capture long-distance space features. The output channel information of the conventional
convolution kernel is synthesized from input channel information. Parameters are not
shared, resulting in many parameters and computations. The convolution filters have
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information redundancy in different output channels. Using different convolution kernels,
each output channel is inefficient. Aiming at two disadvantages of traditional convolu-
tion, involution makes improvements. It shares parameters in other groups (the number of
groups operating in the convolution), which reduces parameters.

The involution kernels are designed to contain transformations with inverse features
in the space and channel domains, which can be represented by H ∈ RH×W×K×K×G.
Concretely, an involution kernel Hi,j,·,·,g ∈ RK×K , g = 1, 2, . . . , G, is specially tailored
for the pixel Xi,j ∈ RC (the subscript of C is omitted for notation brevity), located at
the corresponding coordinate (i, j) but shared over the channels. G counts the number of
groups sharing the same pairwise kernel. To derive the output feature map of the involution,
we perform Multiply–Add operations on the input with such involution kernels, defined as

Yi,j,k = ∑
(u,v)∈∆K

Hi,j,u+bK/2c,v+bK/2c,dkG/CeXi+u,j+v,k (10)

Unlike convolutional kernels, the shape of the involution kernel H depends on the
condition of the input feature map X. Since the model will define the generating involution
kernel on the original input tensor, the output kernel will easily be aligned with the input.
Define the generating function of the nucleus as φ and abstract the mapping of the function
for each position (i, j) as

Hi,j = φ
(

XΨi,j

)
(11)

where Ψi,j indexes the set of pixelsHi,j is conditioned on. The kernel generation function
φ : RC 7−→ RK×K×G with Ψi,j = {(i, j)} takes the following form:

H i,j = φ
(
Xi,j
)
= W1σ

(
W0Xi,j

)
(12)

We refer to Equation (10) with the materialized kernel generation function of Equa-
tion (12) as involution hereinafter. The pseudo-code shown in Algorithm 1 delineates the
computation flow of involution, which is visualized in Figure 8.

Algorithm 1 Pseudo code of involution in a PyTorch-like style.

Initialization:
o = nn.AvgPool2d(s, s) if s > 1 else nn.Identity()
reduce = nn.Conv2d(C, C//r, 1)
span = nn.Conv2d(C//r, K*K*G, 1)
unfold = nn.Unfold(k, dilation, padding, s)
Forward Pass:
x_unfolded = unfold(x), B, C*K*K. H*W
×_unfolded = x_unfolded.view(B, G, C//G, K*K, H, W)
Kernel Generation, Equation (12):
kernel = span(reduce(o(x))), B, K*K*G, H, W
kernel = kernel.view(B, G, K*K, H, W).unsqueeze(2)
Multiply-Add Operation, Equation (10):
out = mul(kernel, x_unfolded).sum(dim = 3), B, G, C/G, H, W
out = out.view(B, C, H, W)
return out
B: batch size, H: height, W: width
C: channel number, G: group number
K: kernel size, s: stride, r: reduction ratio
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Figure 8. Schematic illustration of involution. The involution kernel Hi,j ∈ RK×K×1 (G = 1 in this
example for ease of demonstration) is yielded from the function φ conditioned on a single pixel at
(i, j), followed by a channel-to-space rearrangement. The Multiply–Add operation of involution is
decomposed into two steps, with

⊗
indicating multiplication broadcast across C channels and

⊗
indicating summation aggregated within the KK spatial neighborhood.

For building the entire network with involution, we mirror the design of ResNet
by stacking residual blocks. We replace the pair fitting in the stem and trunk of ResNet
with 3 × 3 convolution at all bottleneck locations but retain all 1 × 1 convolutions for
channel projection and fusion. These carefully redesigned networks are called InvNet-
18. InvNet-18 consists of 7 ResBlock (as in Figure 9a) and 3 ResDown (as in Figure 9b).
The specific parameters are shown in Table 1. Due to the processing of a 5-dimensional
tensor, the storage space is ample and categories are few. So, the channels on all layers are
down an order of magnitude.

Figure 9. 3D ResNet-18 network structure. (a) ResBlock module. (b) ResDown module.



Electronics 2022, 11, 3066 12 of 16

Table 1. 3D ResNet-18 network structure. The name of input and output parameters: batch size,
channel, picture frame, height, and width.

Block Name Conv Channel Input Size Output Size

Conv_pre 1->64 [B,1,T,88,88] [B,64,T,44,44]
MaxPool 64->64 [B,64,T,44,44] [B,64,T,22,22]

ResBlock1 64->64 [B,64,T,22,22] [B,64,T,22,22]
ResBlock2 64->64 [B,64,T,22,22] [B,64,T,22,22]
ResDown1 64->128 [B,64,T,22,22] [B,64,T,22,22]
ResBlock3 128->128 [B,128,T,11,11] [B,128,T,11,11]
ResDown2 128->256 [B,128,T,11,11] [B,256,T,6,6]
ResBlock4 256->256 [B,256,T,6,6] [B,256,T,6,6]
ResDown3 256->512 [B,256,T,6,6] [B,512,T,3,3]
ResBlock5 512->512 [B,512,T,3,3] [B,512,T,3,3]

Average pool 512->512 [B,512,T,3,3] [B,512,T,1,1]

4.2.2. The Experimental Effect of Involution

To reflect the actual runtime, we measured the inferred times for different architectures
and compared the performance for a single image of shape 224 × 224. We report the run-
times on GPU/CPU in Table 2, where InvNet-18 runs faster in depth at the same accuracy.

Table 2. Runtime analysis for representative networks. The speed benchmark is on a single NVIDIA
RTX 3070 GPU and Intel® Xeon® CPU E5-2698 v4@2.20 GHz.

Architecture GPU Time (ms) CPU Time (ms) TOP-1 Acc. (%)

ResNet-50 [37] 11.4 895.4 76.8
ResNet-101 [37] 18.9 967.4 78.5

SAN19 [38] 33.2 N/A 77.4
Axial ResNet-S [39] 35.9 377.0 78.1

InvNet-18 11.2 156.0 77.6

In addition, we compared it with other mainstream lip recognition models. The exper-
imental results show that InvNet-18 achieves the highest recognition accuracy whilst with
the most parsimonious parameter storage and computational budget. The experimental
results are shown in Table 3.

Table 3. Comparison results of InvNet-18 and other models.

Front-End Back-End #Params (M) LRW (%) LRW-1000 (%)

VGGM N/A 11.6 61.1% 25.7%
ResNet-18 Bi-GRU 10.6 83.0% 38.2%
ResNet-34 Bi-LSTM 19.6 83.5% N/A
InvNet-18 Bi-GRU 7.2 84.5% 41.6%

Observed in the above experiments, InvNet-18 can reduce the parameters of the model
as well as the computational resources while maintaining accuracy. InvNet-18 helps us to
build a low-consumption lip recognition model.

4.3. The Final Model

In conclusion, the lip recognition model in this paper can be composed of several steps,
as shown in Figure 10.

1. The LRW and LRW-1000 video datasets were decomposed into picture frames and
the 88 × 88 size lip image was cropped from them.

2. The front-end module includes 3D Conv, InvNet-18, and GAP to obtain a 512-dimensional
time feature sequence and use Mixup training for data enhancement. Mixup enables lip
recognition models with high resistance to interference. The InvNet-18 network gives low
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consumption to lip recognition models. The combination of the two is suitable for
constructing an interference-resistant and low-consumption lip recognition model
with an accuracy comparable with the current state-of-the-art results.

3. The back-end module includes Bi-GRU and the full connection layer, resulting in loss
and classification results.

Figure 10. The process of lip language recognition in this paper.

5. Experimental Result
5.1. DataSet

The datasets were selected from the world’s largest English lip-reading dataset LRW
and the Chinese lip-reading dataset LRW-1000. LRW is a challenging dataset with a
500-word count. It consists of short segments (1.16 s) of BBC programs, its main news,
and talk programs. There are over 1000 speakers with significant variations in head pose
and illumination. LRW-1000 is also a very challenging dataset with 1000-word classes,
718,018 samples, and a total of about 57 h. The dataset collected data from CCTV TV
programs, including background noise, lighting conditions, resolution, posture, gender,
makeup, and other speaking environments.

5.2. Experimental Setting

All experiments in this paper are performed on a single NVIDIA RTX 3070 GPU and an
Intel® Xeon® CPU E5-2698 v4. This test evaluates the model’s performance in terms of the
accuracy of the test set. As long as the type of the maximum probability value is consistent
with the actual type of sample studied, it can be considered accurate. The Top-1 accuracy is
the ratio of the sample’s expected number to be correct to the total sample’s number.

Both datasets are divided into training and test sets at the ratio of 8:2. The data
preprocessing module is then utilized, clipping the dataset to 88 × 88; then, Mixup is
used for data enhancement. In the front-end module, the convolution core size of the
InvNet-18 module is (3, 3, 3), including five downsamplings and one GAP. The module’s
Batch Normalization [24] is used between each layer. Each GRU has 1024 cells in its hidden
layer in the back-end module. There are three layers of Bi-GRU. Moreover, the model’s loss
uses the cross-entropy function. The model uses the Adam optimizer. The learning rate is
initialized to 0.001 with a decay of 0.5 times per round.

The experiment is set for 80 epochs, and the model is validated at the end of each
epoch. If the validation error stabilizes in 3 consecutive periods, the learning rate decreases
to 0.5 times. The minimum learning rate is set to 1 × 10−6. All GRU layers and fully
connected layers use dropout to reduce overfitting. The accuracy variation of the training
and test sets for each epoch is shown in Figure 11.
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Figure 11. Accuracy of the model in this paper.

5.3. Experimental Results

The baseline model accuracies for both datasets were 83.0% and 38.2%, respectively,
as shown in Table 4. When disturbed by adversarial examples, the accuracy of the baseline
model drops by 7.8% and 6.3%, respectively. After the baseline model uses Mixup, the ac-
curacy when bothered by negative examples increases to 85.0% and 40.2%, respectively.
The accuracy is higher than the undisturbed lip recognition model in Table 4. This result
demonstrates the positive effect of Mixup training on the robustness and generalization of
the lip recognition model, which helps us construct an interference-resistant lip recognition
model. Tables 2 and 3 have confirmed that the InvNet-18 network can significantly reduce
the model’s parameters and improve the training compared with other models. This ef-
ficient network helps us to build low-consumption lip recognition models. When using
Mixup training and InvNet-18 network, the accuracy reaches 85.6% and 41.7%, respectively,
which is higher than other lip recognition models in Table 4.

With the above-detailed experiments and explanations, we have proved that Mixup
and InvNet-18 can significantly enhance the lip recognition model’s various indicators,
including the accuracy of the model. The Mixup and InvNet-18 networks can help us build
an interference-resistant and low-consumption lip language recognition model.

Table 4. Comparison with other models.

Models LRW (%) LRW-1000 (%)

VGGM 61.1% 25.7%
D3D 78.0% 34.7%

GLMIM [40] 84.4% 38.7%
Baseline model (normal example) 83.0% 38.2%

Multi-Grained ResNet-18 + Conv BiLSTM 83.3% 36.9%
ResNet-34 + BiLSTM 83.5% 38.2%

Two-Stream ResNet-18 + BiLSTM 84.1% N/A
STCNN + Bi-GRU + Self-Attention [41] 84.79% 40.58%
Baseline model (adversarial example) 75.2% 31.9%

Mixup + Baseline model (adversarial example) 85.0% 40.2%
Mixup + 3D Conv + InvNet-18 + Bi-GRU (normal example) 85.6% 41.7%

6. Conclusions

This paper proposes an interference-resistant and low-consumption lip recognition
method. No articles analyze the robustness and generalization of lip recognition when
subjected to interference. We specifically explore the importance of robustness and general-
ization to the model and effectively improve the robustness and generalization of the model
by using Mixup training. For the current problem of high consumption of lip recognition
models, the InvNet-18 network is proposed in this paper.
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1. In this paper, we analyze the anti-interference capability of current state-of-the-art
lip recognition models and find that they are not robust and generalized enough for
adversarial examples, leading to a significant decrease in accuracy for adversarial
examples. We experimentally demonstrate that Mixup training can also be applied to
lip recognition models to improve their anti-interference ability effectively.

2. Current lip recognition models generally improve the model’s accuracy by stacking
neural networks, which leads to many parameters and consumes many resources.
We propose the InvNet-18 network, which reduces 32% of parameters and consumes
only 1/3 of GPU resources compared with the ResNet-18 network used by the ad-
vanced model.

In summary, it is proved that Mixup and InvNet-18 can effectively improve the perfor-
mance of lip recognition. This paper’s lip language recognition model is an interference-
resistant and low-consumption method.
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