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Abstract: Visual-frame prediction is a pixel-dense prediction task that infers future frames from past
frames. A lack of appearance details, low prediction accuracy and a high computational overhead
are still major problems associated with current models or methods. In this paper, we propose a
novel neural network model inspired by the well-known predictive coding theory to deal with these
problems. Predictive coding provides an interesting and reliable computational framework. We
combined this approach with other theories, such as the theory that the cerebral cortex oscillates
at different frequencies at different levels, to design an efficient and reliable predictive network
model for visual-frame prediction. Specifically, the model is composed of a series of recurrent and
convolutional units forming the top-down and bottom-up streams, respectively. The update frequency
of neural units on each of the layers decreases with the increase in the network level, which means
that neurons of a higher level can capture information in longer time dimensions. According to the
experimental results, this model showed better compactness and comparable predictive performance
with those of existing works, implying lower computational cost and higher prediction accuracy.

Keywords: predictive coding; video prediction; neural network

1. Introduction

The idea that brains are essentially prediction machines is one of the unified theories
in cognitive science. It holds that brain functions, such as perception, motor control
and memory, are all formed and modulated by prediction. Particularly, it also forms a
sensorimotor framework (predictive coding) for understanding how a human takes an
action based on predictions. It proposes that most functions in the brain follow a predictive
framework,which is expressed by our brain’s internal model. Therefore, the brain can
continuously predict and form our perceptions, on the basis of which we can also execute
motor actions. Such an internal predictive model, shaped by the neurons’ representations,
is also always learning and updating itself in order to predict the changing environment
better. This idea, if it is properly implemented by learning architectures, could also be
useful in practical applications such as video-frame prediction.

The so-called video-frame prediction task involves predicting the future of a visual
frame based on the given contextual frames. From the perspective of applications, being
able to predict the future is of great significance. Adaptive systems that can predict how
future scenes may unfold based on an internal model that can learn from context will offer
numerous possibilities.For example, a predictive ability would enable robots to foresee
the future and even to understand humans’ intentions by analyzing their movements,
actions, etc., to perform correct actions ahead of time (Figure 1). Self-driving cars can
anticipate forthcoming situations and make judgments beforehand [1]. Moreover, there
are a number of applications for this ability, such as anticipating activities and events [2],
long-term planning, the prediction of pedestrian trajectories in traffic [3], precipitation
forecasting [4] and so on. With the predictive ability, applications can become more efficient,
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they can foresee a changing future and react accordingly in advance, making their behavior
smoother and more energy-efficient. In different domains, the methods used may have
some subtle differences (for instance, in the field of autonomous driving, the scene may be
more complex, and a larger and deeper neural network, or other effective preprocessing or
post-processing methods may be required), but the overall framework of the model should
be unchanged.
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Figure 1. A robot prediction system. Presented with contextual image sequences, the robot can
predict future frames by means of a predictive model and perform corresponding actions beforehand
based on these predictions.

Although several models and methods of visual-frame prediction have been proposed
based on the success of deep learning, the accuracy of the predicted frames is still far from
the requirements of the above applications.This problem is more severe when performing
long-term predictions or predicting visual sequences with large changes between frames.
Moreover, in view of the large computational overheads of existing models, developing a
model that can perform calculations in a more efficient way to promote the implementation
of the algorithm is another promising direction of research.

Therefore, in this work, we proposed to combine the theoretical framework of predic-
tive coding and deep learning methods in order to design a more efficient network model
for the task of visual-frame prediction. This cognitive-inspired framework is a hierarchical
processing model, which mimics the hierarchical processing structure of the cerebral cortex.
One of the main advantages of such a predictive coding model is that the internal model
is updated through the combination of bottom-up and top-down information streams,
instead of merely relying on outside information. This provides a possible framework for
simulating and predicting its environment, which is also the approach that early works
tried to implement in their computational models [5,6].

The main contributions of this work are as follows: (1) We propose and construct a
novel artificial neural network model. This model is a hierarchical network, which we
call the pyramidal predictive network (PPNet). It was modified on the basis of a generic
framework proposed via “predictive coding”. As the name suggests, the updating rateof
neurons decreases with an increase in the network level, which mimics the phenomenon of
lower oscillations in the higher area of the visual cortex, and means that the model encodes
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information at various temporal and spatial scales. (2) The loss function is improved
to match the video prediction task. Inspired by the attention mechanism (for example,
when the prediction differs greatly from the reality, the brain will react more strongly), we
introduced the method of an adaptive weight in the loss function, that is, the greater the
prediction error, the greater the weight provided.According to the results, the proposed
method was used to obtain a better prediction with a lower computational cost and with a
more compact and more time-dependent architecture. Below, we introduce our methods
and their theoretical basis in detail.

The rest of this article is organized as follows. First, Section 2 reviews the related
work about “Predictive Brains” and existing visual-frame prediction models briefly. Next,
Section 3 introduces the network structure and methods in detail. Section 4 shows the
experimental results obtained in quantitative and qualitative evaluations of our methods
compared with the baseline. Section 5 presents a brief discussion on the proposed method.
Finally, in Section 6 we present our conclusion and our thoughts about future directions
of study.

2. Related Work

In order to better integrate predictive coding theory into neural networks, it was
necessary to undertake a detailed review of both aspects. In this section, the conceptual
models of predictive coding and its related learning frameworks, as well as the state-of-
the-art methods for visual-frame prediction from the perspective of machine learning, are
reviewed.

Predictive coding, which is a computational model of cognition, asserts that our
perception mostly comes from the brain’s own internal inference model, combining sensory
information with expectations. Those expectations can come from the current context, from
an internal model in the memory or as an ongoing prediction over time. As a theoretical
ancestor, Helmholtz first proposed the concept of unconscious inference occurring in the
predictive brain [7]. For example, an identical image can be perceived in different ways.
Since the image formed on the retina does not change, perception must be the result of an
unconscious process that deduces the cause of sensory information from the top down.Later,
in the 1940s, through empirical psychological studies, Bruner demonstrated that perception
is a result of the interaction between sensory stimuli (from the bottom up as a recognition
model) and conceptual knowledge (from the top down as a generative model) [8]. Bar
proposed a cognitive framework in which the learned representation could be used in
generating predictions, rather than passively “waiting" to be activated by sensory input [9].
From the neuroscience perspective, Blom et al. also argued that predictions drive neural
representations of visual events ahead of the arrival of incoming sensory information [10],
which suggests that neural representations are driven by predictions generated by the brain,
rather than the actual inputs.

Depicting the predictive framework using a more rigorous expression, the term “pre-
dictive coding” has been imported from the field of signal processing. This is an algorithmic-
based cognitive model, aiming at providing an explanation of human cognition using the
predictive framework. It has been applied in building computational models to explain
different perceptual and neurobiological phenomena of the visual cortex [11]. Specifically,
it describes a simple hierarchical computational framework: neurons at a higher level
propagate predictions downwards, whereas neurons at a lower level propagate predic-
tion errors upwards [12], as shown in Figure 2. The entire model is updated through
a combination of bottom-up and top-down information flows, so it does not rely solely
on external information. Furthermore, the propagation of prediction errors constitutes
effective feedback, allowing the model to perform self-supervised learning. The above
characteristics make the predictive coding framework available and valuable to apply to
the field of signal processing. For example, Whittington et al. proposed that a network
developed in the predictive coding framework can efficiently perform supervised learning
with simple local Hebbian plasticity. The activity of the prediction error node is similar
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to the error term in the backpropagation algorithm, so the weight change required by the
backpropagation algorithm can be approximated by means of a simple Hebbian plasticity
of connections in the prediction encoding network [13].

error prediction
.

wvisual ) predictive
cortex prediction model I
errar R OB S
Predictive
Estimator

visual predictive error prediction

cortex et model

..... { "

J Predictive |
Estimator

visual predictive

cortex model error prediction

000

.

STINLY : i

Input

(@) (b)

Figure 2. (a): A general framework of predictive coding. The visual cortex receives sensory inputs
from the outside world or signal errors from the lower level to produce a local representation, which
is then compared with the prediction made by the predictive model. (b): Hierarchical network model
for predictive coding proposed by Rao and Ballard (Adapted from Ref. [14]. 1999 Springer Nature).

In the field of visual-frame prediction, substantial work has been conducted on the
basis of predictive coding. One of most successful applications is the PredNet model,
proposed by Lotter et al. [15]. It is a ConvLSTM-based model which stacks several ConvL-
STMs vertically to generate the top-down propagation of predictions. On the other hand,
a bottom-up propagation process delivers the error values.This model achieved state-of-
the-art performance in a few tasks, such as video-frame prediction. Elsayed et al. [16]
implemented a novel ConvLSTM-based network called the Reduced-Gate ConvLSTM,
which showed better performance. However, although these works strictly followed the
predictive coding style, the details were not adequately taken into account. The predic-
tive coding computational framework only roughly explains how the brain works, but
some details, such as transmission delays, are ignored. The transmission delay has been
discussed in the work of Hogendoorn et al. [17] in detail. They pointed out that only when
the concept of transmission delay is added can a predictive coding model be regarded as
a temporal prediction model. In addition, other neuroscientific phenomena, such as the
different frequencies of oscillations in different levels of the cortex, are equally important.
Therefore, we designed a video prediction method with a comprehensive consideration of
the different biological evidence mentioned above.

In addition to the above methods, more predictive models have been proposed, build-
ing on the recent success of deep learning. The early state-of-the-art machine learning
techniques are usually based on encoder-decoder training. Using an end-to-end training
method, consecutive frames are used as inputs and outputs to train visual offsets or their
coherent semantic meanings. On the basis of the encoder-decoder network and LSTM,
Villegas et al. proposed a novel method which decomposes the motion and content [18],
and which encodes the local dynamics and the spatial layout separately, so as to simplify
the task of prediction. However, the motion referred to is simply obtained by subtract-
ing x;_1 from x;. It describes changes at the pixel level only. Jin et al. [19] also explored
inter-frame variations, in an approach which is similar to that of MCNet. Their innovation
was the use of GDL (gradient difference loss) regularization as a loss function to sharpen
their predictions. In addition, Shi et al. also implemented the use of an CNN-LSTM-based
model for precipitation nowcasting [20]. Unlike the previous two works, they embedded
convolutional neural networks directly into the LSTM, which led to better performance in
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capturing spatial-temporal correlations, and this approach has also been adopted into our
network architecture.

Moreover, training in an adversarial fashion is another popular method, since the use
of GAN (generative adversarial network) shows excellent performance in image generation
for predictions. For example, Aigner et al. [21] proposed the FutureGAN method based
on the concept of PGGAN (progressive growing of GANSs) in 2018. They extended this
concept to the task of visual-frame prediction using a 3D convolutional encoder-decoder
model to capture the spatial-temporal information. However, 3D convolution undoubtedly
consumes more computational resources than other methods. Before PredNet, Lotter et al.
also proposed a GAN-based model named a predictive generative network (PGN), which
was trained in [22] with a weighted MSE and adversarial loss approach for visual-frame
prediction.

In summary, there are two main problems with the previous studies in this area of
research. (1) There is still room for improvement in terms of network structure and training
strategies. For instance, the encoder-RNN-decoder network only performs predictions
in the high-level semantic space, meaning that most of the low-level details are ignored.
(2) The computational cost is too high, with these methods consuming a lot of resources
(especially during training). The question of how to reduce the computational overhead
through reasonable pruning is also important. We have previously introduced the char-
acteristics of predictive coding and the related theories, which provide an efficient and
reliable theoretical computing framework. Therefore, in order to reduce the consumption of
resources and achieve sustainable artificial intelligence, we suggest combining this efficient
cognitive framework and advanced data-driven machine learning methods to design an
efficient predictive network model, which can not only improve predictive accuracy, but
also reduce computational costs. Next, we will introduce our model in detail.

3. Network Model and Methods

In this section, we introduce the cognition-inspired model, which is specialized for
visual-frame frame predictions. As its name (PPNet) suggests, its pyramid-like architecture
is beneficial to predicting visual frames, as the neurons on the lower levels encode and
predict the actual frames and the neurons on top encode the scenarios, which usually only
change within a few visual frames (Figure 3). We explain this idea in the next subsection.
Then, the detailed architecture, as well as the algorithm, are introduced in the subsequent
subsections.

3.1. Efficiency in the Pyramid Architecture

In this work, we mainly referred to the design concept of PredNet [15] when building
the network structure. As early as 2016, Lotter et al. proposed such a typical predictive
coding model, which strictly follows the dual-way flow at every time-step and which has
achieved outstanding performance. Nevertheless, the processing of information can be
improved in at least two aspects.

First, according to predictive processing framework, at least two kinds of neurons
are required: an internal representation neuron for generating predictions and an error
calculation neuron for computing prediction errors. In the PredNet model, bottom-up
inputs at each level only served as targets of error calculation neurons for the performance of
comparisons with top-down predictions to generate prediction errors, and the information
that was propagated upward was related only to the prediction error itself. However, we
argue that it is necessary to use the past and present sensory information (represented here
as video frames) as the inputs of the representation neurons to generate predictions with
higher accuracy. The formed memory can be formulated in a Bayesian framework, which
is necessary to use in order to generate predictions. Through the use of such a Bayesian
model in the learning process, we can maximize the marginal likelihood or the entropy [23].
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Figure 3. Part of the PPNet. Green boxes denote the local sensory inputs of each layer, whereas

orange boxes denote local predictions, and red boxes represent prediction errors.

Second, as a cognitively inspired model, we suggest that such predictions and sensory
inputs can be respectively implemented in at least two information streams in a hierarchical
manner. This not only is inspired by the human nervous system, but it is also a way to
integrate inputs from different network layers to obtain more spatiotemporal information—
an approach which has also been widely used in deep learning architectures such as ResNet,
DenseNet and so on.

Based on the above assumptions, we have proposed and designed a predictive model
in which the updating ratesof neurons on different levels can differ. Alternatively, this
can be also interpreted as a delay in information transmission. In general, it takes time
for information to be transmitted from a lower level to a higher level, so there is a delay
in transmissions between different layers. However, neurons at the bottom layer do not
passively wait for information transmitted from the top layer before making a prediction.
The changes in biological synapses are determined only by the activity of presynaptic
and postsynaptic neurons [13]. Therefore, in PPNet, once the prediction unit (ConvLSTM)
receives a sensory input (green), it will immediately combine this with the prediction from
a higher level (if any) to make predictions. As we mentioned in Section 2, the delay in
information transmission has been discussed in detail in the work of Hogendoorn et al. [17].
They argue that traditional predictive coding models such as the one first proposed by Rao
and Ballard [14] do not predict the future, but hierarchically predict what is happening.
When the concept of a transmission delay is added, the task of the predictive coding model
changes from hierarchical prediction to temporal prediction.

As a result, PPNet could be regarded as an equivalent to the large-scale brain network
(LSBN) in which the higher cognitive function is conducted in a higher level of the deep
learning network. According to the neuroscientific evidence, such a cognitive function
which is processed in the PFC (prefrontal cortex) can be also used to predict the situated
scenarios in our visual-frame prediction application for an agent.Therefore, our model is
built considering the balance between biological evidence and efficiency in computing.
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3.2. Network Architecture

In this section, we introduce our network model in detail. The architecture of our
model is shown in Figure 3. For the sake of understandability, it is necessary to state the
meanings of the symbols in the figure before conducting a detailed comparison and analysis.

e Al depicted in green, represents the sensory input at level I and time step ;

e P} depicted in orange, represents the prediction at level I and time step ¢. Its predic-
tion object is the sensory input at level I and time step # (A} 11);and

e EL depicted in red, represents the prediction error at level I and time step . It is
calculated based on the previous prediction P}_; and the current sensory input AL

Inspired by PredNet, PPNet also uses ConvLSTM componentsas its basic components,
as they provide prediction flows with long-term dependency. Similarly, each layer of the
network can be roughly divided into three parts:

* A predictive unit, which is made up of the recurrent convolutional network (ConvL-
STM). It receives a sensory input Al and a prediction Ptl *1 from higher level (if any),
to generate a local prediction P! of next time step.

* A generative unit, which consists of a convolutional layer and a pooling layer. This
unit is responsible for turning the local input AL, as well as the prediction error E! +1/
into the input Aiii of the next level.

e An error representation layer, which is split into separate rectified positive (AL — P})

and negative (P! — Al) error populations.
In order to process the prediction only when it is necessary, we show that the dual-
direction propagationcan be carried out in a more efficient way. For a better understanding

and comparison, a diagram (Figure 4) is provided below regarding the ways in which
information propagates, comparing our model and the PredNet model.

®

level

> >

time fime

Figure 4. The transmission of information in our model PPNet (left) and PredNet (right). The circle
denotes an integration of the three parts mentioned above, and the green circle indicates where
the computation begins. The red arrows indicate the direction in which only the prediction errors
(PredNet) or the combination of prediction errors and sensory inputs (PPNet) propagate, whereas the
blue arrows indicate the propagation of predictions from higher levels.

First, the computation process of our model begins at the lowest layer after receiving
the first sensory input. This is consistent with the design concept mentioned in Section 3.1,
which is different from that of PredNet, which first starts at the top level by generating a
prediction without any prior information. Second, in our model, the bottom-up input of a
higher-level unit comes from the combination of information from the lower-level units of
two time-steps. Specifically, the current input Al is fed into internal representation neuron
(ConvLSTM) to generate a local prediction P! at the time step ¢, which is then compared
with the next time step input Al 11 to generate the prediction error E! +1- In other words,
Ai 41 is not only a bottom-up sensory input for an internal representation neuron at time
step t + 1, it is also the target of the previous step ¢, which is different from PredNet (in
which Al 11 serves merely as a target at time-step ¢ 4 1).
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Note that with both the prediction (Ptl ) and the target (Ai +1) PPNet can generate a
prediction error for upward propagation. That is, at least two continuous sensory inputs
Al and Al 41 are required to generate a prediction error for upward propagation, with
the former serving as an input to produce the prediction, whereas the latter serves as a
target. As a result, the computations of neurons at different levels are not updated in
a synchronized way at different levels, and the update frequency of neurons decreases
as the network level increases, which is consistent with the biological evidence: deep
neurons oscillate at a lower frequency [24]. For this reason, the bottom-up input of the top
level contains information for multiple time-steps at the bottom-level, which means that
PPNet has a stronger temporal correlation in its structure, rather than relying solely on the
temporal correlation of LSTM. In addition, it allows PPNet to reduce the computational
load by not having to update higher-level neurons.

3.3. Training Loss and Adaptive Weight

The training loss in our model is defined as the concatenation of positive and negative
errors (Equation (1)), where Y denotes a prediction and Y is a target. ReLU denotes the
“rectified linear activation function”, which is defined in Equation (2). concat refers to con-
catenating two multidimensional matrices together (for example, concatenating two matrices
of dimension (b, ¢, h, w) into a matrix of (b, 2c, h, w)). Equation (1) indicates the error
population in the neurons, incorporating both positive errors and negative errors [14].
Furthermore, to sharpen the predictions, we introduce an adaptive weight into the loss
function, inspired by the attention mechanism.

E¢ = concat[ReLU(Y — Y), ReLU(Y — Y)] 1)
0, x<0
f) = { = @

At the beginning of the visual sequences, the error is usually quite large since it drives
the top-down prediction to minimize the error. That is, the greater the prediction error, the
stronger the brain response. We argue that the brain’s response can be seen as a weighting
of the prediction error. Based on this idea, we propose to add more weights to increase
the contributions of prediction errors with higher values (for example, at the beginnings
of sequences). When one has a lower value, itscontribution is reduced. A set of experi-
ments performed by Kutas & Hillyard [25] showed that, when a prediction was seriously
inconsistent with the environment, the brain reacted more strongly. Higher accuracy means
less uncertainty, which is reflected in a higher gain in the relevant error units to complete
the update.In other words, the error units become more adaptive, driving learning and
plasticity, if they are given an increasing weight. Therefore, we have introduced a method
of adaptive weights into our model, with a higher value of the prediction error resulting in
a higher weight.

Wi = pE; 3)
T-1
Law =Y MWE; 4)
1

The adaptive weight for every time-step is calculated by directly multiplying the
error itself by a coefficient (shown in Equation (3)). E; denotes the prediction error at time
step t, whereas p is a changeable hyper-parameter. Thus, the training loss is defined as in
Equation (4), where T denotes the length of input sequences and A; denotes the weighting
factors by time. However, the error with a value less than 1/p will become smaller after
being weighted. Figure 5 shows the relationship between p and the loss. When the error
is greater than the threshold (e.g., the intersection of the red circle), it will be enlarged.
However, it will be reduced if it is less than the threshold. From an attention mechanism
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perspective, we pay more attention to errors that are larger than the threshold and pay less
attention to errors that are smaller than the threshold. Therefore, the choice of threshold
is extremely important. We further explore the influence of the hyper-parameter p in the
following experiments.

5 4

loss

Figure 5. The relationship between the hyper-parameter p and the loss, where p = 0 indicates that
no weight is added, and the original error is directly used as the loss value. The red circle marks
the threshold between p = 0 and p = 2, indicating that when p = 2, more attention is paid to errors
larger than the current threshold, whereas less attention is paid to errors smaller than the threshold.

3.4. Algorithm
In this section, we introduce the algorithm to implement the above model based on

the architecture and computation process mentioned in Section 3.2. To better serve the
following description, we reiterate the definition of each parameter as follows.

e EL: The prediction error;

e H!: The combination of hidden state k. and cell state ck;
e Al: The input, as well as the target, of each layer;

*  x;: The image at frame ¢ in the input sequence;

e P} The prediction; and

*  T: The length of the input sequence.

1 Xt, lfl =0
Ay = 1-1 2l-1 : ®)
MaxPool(ReLU(Conv(E, ", A;"7))), if1>0

HgH = ConvLSTM(AL, Hl, upsample(Ptlill)) (6)
M1 e = Hip ()

P, = ReLU(Conov(h,)) (8)

E£+1 = [RELU(PtI-H - Ai+1);ReLu(Ai+1 - Ptl+1)] )

The complete algorithms are listed in Equations (5) to (9). The model is trained to
minimized the training loss, defined as in Equation (5), and our implementation is described
in Algorithm 1. The information flows through two streams: (1) a top-down propagation,
in which the hidden states H} of ConvLSTM are updated and the local prediction P} is
generated, and (2) a bottom-up stream in which the prediction error E! 41 is calculated and
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propagated up to a higher level, along with the local input Al. Due to the pyramid design,
the computation in our network updates the lowest layer (i.e., layer 0) at the first time-step.
However, for the convenience of programming, we refer to the programming method of
PredNet and thus perform the calculation of the top-down information flow first (lines 2-11
in Algorithm 1), and then calculate the prediction error and update the sensory input of
the higher level (lines 12-19 in Algorithm 1). In contrast, if there is no sensory input A} at
time-step t and level I, the calculation of this predictive unit is skipped without generating
any predictions and the hidden state of ConvL.STM H! stays the same.

Algorithm 1 Calculation of the Pyramidal Predictive Network

Input: A) < x1,x7, ..., Xn
H)+0
Output: prediction of next frame x,, 1
1 fort=1toT—1do

2 for/ =Lto0do

3 if Ai is None then

4 P! = None

5 Hf = HLl

6 else

7 if PtlJrl is None then

8 | H!=ConoLSTM(AL H!_,)

9 else

10 L H! = ConvLSTM(AL, H! |, upsample(P/+1))
1 | Pl = ReLU(Conv(h}))
12 ift < T —1then
13 forl=0toL—1do

14 if Ptl is None or Ai+1 is None then

15 Ei 1 =Ef

16 Aiﬂ = Nomne

17 else

w El,, = [ReLU(P!,, ~ AL,); ReLU(AL,, — Pl, )
19 ALt = MaxPool (ReLU(Conv(EL, ;, Al)))

4. Experiments

In this section, several experiments are presented to illustrate the performance of
the PPNet, using datasets related to autonomous driving. We first introduce the features
and pre-processing methods of the three datasets—KTH, Caltech Pedestrian and KITTI—
which are commonly used in visual-frame prediction tasks. Then the training details
and evaluations comparing PPNet and other state-of-the-art models are presented in the
subsequent subsections.

4.1. Datasets and Pre-Processing

All the aforementioned datasets had to be processed into sequences before they could
be used for training. In this section, we introduce the features of these datasets, as well as
the pre-processing methods used.

e  KTH: The KTH dataset is a relatively old dataset, made in 2004 for the recognition
of human actions. However, it is still very popular in the research of visual-frame
prediction because of its simple scenarios end events.

e  KITTI: The KITTI dataset is one of the most widely-used datasets for autonomous
driving. It includes various processed data, but we directly downloaded its raw
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images for training. Approx. 35 K frames were used for training and 4.5 K were used
for testing. The frames were center-cropped and resized to 128 x 160 pixels in the
same way as PredNet. Compared to the other two datasets, the interframe variations
in this dataset were greater.

¢  Caltech Pedestrian: This dataset was originally designed for pedestrian detection,
and is also suitable for the work of visual-frame prediction. The frames were directly
resized to 128 x 160 pixels, which is the same as the KITTI images. The interframe
variations of this dataset are much smaller than those of KITTI, which might result in
the model learning a repetition instead of prediction.

4.2. Training Setting

We implemented the PPNet using the PyTorch platform and trained it on a Geforce
RTX 3070 GPU. The length of the input sequence was set to 10 and the number of layers in
the network was set to sex. Other hyper-parameters are shown in Table 1. Influenced by
initialization, the time-weight A; of the prediction error generated at the first time step was
set to 0.5, whereas the rest were set to 1.

Table 1. Hyper-parameters for training, including the training epoch, learning rate and hyper-
parameters p and Ay, defined in Section 3.3.

Hyper-Parameters Datasets
yp KITTI Caltech Pedestrian KTH
epoch 300 200 200
learning rate 0.0002
P 10* 10* 103
0.5, ift=0
At At = 1
1, ift>0

In order to select a suitable value for the hyper-parameter p, as proposed previously,
we performed two sets of experiments using part of the KITTI dataset and the Caltech
Pedestrian dataset to explore its influence. The results are shown in Figure 6. The horizontal
lines indicate the results obtained without adding any weight. According to Equations (2)
and (4), when the value of p was set to 1, the loss function was equivalent to the mean
square error loss. Obviously, the method of dividing the error into positive error and
negative error was indeed beneficial. Better results could be observed when the value ofp
was greater than five (or six) compared to those obtained without any weighting. The
training loss (mean error) decreased with the increase inp, and we obtained a result close
to the best result when its value was close to 10* However, continuing to increase its value
may have resulted in the opposite performance. Therefore, we chose a value around 10°
for the subsequent experiments.

4.3. Evaluation Results

In this section, we used SSIM [26], PSNR [27] and LPIPS [28] for quantitative evalu-
ations. SSIM is an early measure of image similarity, which compares two images from
the perspective of brightness, contrast and structure. PSNR is also a metric for evaluating
image quality. It measures the degree of image distortion by calculating the ratio of the
maximum signal to background noise. However, the above two evaluation indicators have
the same problem: the results may not match the evaluations performed by the human
visual system [29]. To solve this problem, Zhang et al. proposed the LPIPS metric to try to
simulate the evaluations performed by the human visual system. Higher values indicate
better results for SSIM and PSNR, whereas lower values indicate better results for LPIPS.
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Figure 6. Experimental results obtained with the KITTI dataset (red) and the Caltech Pedestrian
Dataset (green) using different values of p. The horizontal lines indicate the results obtained without
adding any weights.

Results for the KTH dataset: Table 2 shows the quantitative evaluation results ob-
tained with the state-of-the-art methods on the KTH dataset. Similarly to previous works,
we made calculations based on the average results obteined over 10 future frames (10 — 20)
and 30 frames (10 — 30), respectively, with 10 input frames. Our method achieved better
or comparable results compared with the state-of-the-art works in terms of accuracy assess-
ments. However, in the video prediction tasks, its pure quantitative evaluations seemed to
be weak sometimes. Therefore, we also visualized the predicted results. Figure 7 shows ex-
amples of the predictions of our method and those of other proposed methods. Obviously,
our method also achieved good results from the perspective of the human visual system
evaluation, whereas Conv-TT-LSTM [30], which has acquired outstanding performance in
quantitative evaluations, performed poorly from the perspective of visual presentation (in
fact, it also performed poorly in another work [31]). This is a common problem in video
prediction tasks. In such tasks there is not an accurate and uncontroversial evaluation
metric, as in the case of image classification or semantic segmentation. As a result, it was
necessary to combine the quantitative evaluation and the qualitative evaluation to make a
better comparison.

Table 2. The quantitative evaluation results obtained on the KTH dataset. The results were averaged
for 10 future time steps (10 — 20) and 30 time steps (10 — 40), respectively.

Methods 05 0—15
SSIM 1 PSNR 1 LPIPS | SSIM *t PSNR 1 LPIPS |

MCNet [18] 0.804 25.95 - 0.73 23.89 -
fRNN [32] 0.771 26.12 - 0.678 23.77 -
PredRNN [33] 0.839 27.55 - 0.703 24.16 -
PredRNN++ [34] 0.865 28.47 22.89 0.741 25.21 27.90
VarNet [19] 0.843 28.48 - 0.739 25.37 -
E3D-LSTM [35] 0.879 29.31 29.84 0.810 27.24 32.88
Conv-TT-LSTM [30] 0.907 28.36 13.34 0.882 26.11 19.12
LMC-Memory [31] 0.894 28.61 13.33 0.879 27.50 15.98

Ours 0.886 31.02 13.12 0.821 28.37 23.19
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Results for the Caltech and KITTI datasets: We also validated our methods on the
Caltech and KITTI datasets, which contain more complex scenarios and events. Table 3
shows the quantitative evaluation results. Obviously, even though we only counted the
predicted frames of five future time-steps, the results were still much worse than the
performance on KTH. In fact, this is related with how complex and varied the scene is. The
more complex the scene and the greater the variation, the more difficult it is to predict. As
shown in Figure 8, we visualized the inter-frame variations of the three datasets separately.
The Caltech dataset has a similar level of sophistication as KITTI, but KITTI is more variable
than Caltech and therefore the methods performed worse on KITTI. Achieving predictions
in complex scenes is also an urgent problem to be solved in relation to current video
prediction tasks.

L

@ Inputs (1 = 10)——»= - Ground truth or prediction (10 — 40)

PPNet(ours)

E3D-LSTM

Conv-TT-LSTM

PPNet(ours)

E3D-LSTM

Conv-TT-LSTM

Figure 7. Visual representation of predicted frames for the KTH dataset. We took 10 frames as an
input and predicted the next 30 frames.

Table 3. The quantitative evaluation results obtained for the Caltech and KITTI datasets, respectively.
The results were averaged for 5 future time steps (10 — 15).

Methods Caltech 10 — 15 KITTI 10 — 15
SSIM{T PSNR{T LPIPS| SSIM{ PSNR? LPIPS |

MCNet [18] 0.705 - 37.34 0.555 - 37.39
PredNet [15] 0.752 - 36.03 0.475 - 62.95
Voxel Flow [36] 0.711 - 28.79 0.426 - 41.59
Vid2vid [37] 0.751 - 20.14 - - -
FVSOMP [38] 0.756 - 16.50 0.608 - 30.49
Ours 0.812 21.3 14.83 0.617 18.24 31.07

Comparison with PredNet As we mentioned above, PredNet strictly follows the com-
putational style of a traditional predictive coding framework, and the network structures
of PPNet and PredNet are similar (for example, both use ConvLSTM as their backbone).
The PredNet model is redrawn in the same way as our model in Appendix A. Therefore,
it is relatively easy to set the same parameters, such as network depth and width, to re-
train PredNet and make a fair and clear comparison, which can be considered an ablation
study, to highlight the rationality and superiority of our model. Table 4 shows the models’
next-frame prediction performance on the KTH, Caltech and KITTI datasets, respectively.
Obviously, our method’s performance was superior to that of PredNet in terms of both
its prediction accuracy and computational overhead. The pyramid style is effective. By
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reducing the oscillation frequency, not only can higher-level neurons obtain longer-term
information, but this approach can also reduce the computational cost.

Figure 8. Visualization of variations between frames in each dataset. In each group, the first row
indicates the raw frames, the second row indicates positive variations and the last row denotes

negative variations.

Table 4. Evaluation of next-frame predictions for each dataset. We undertook comparisons in terms
of prediction accuracy and the computational overhead.

Metrics KTH Caltech KITTI

Ours PredNet Ours PredNet Ours PredNet
SSIM t 0.945 0.934 0.919 0.887 0.787 0.642
PSNR 71 36.47 33.31 28.44 23.56 21.96 16.58
LPIPS | 8.03 8.92 7.35 14.65 21.49 38.51
Time/ms | 27.6 52.2 37.0 714 37.2 715

Figure 9 visualizes the long-term predictions for each dataset with different predicted
time steps, respectively. In general, our results were better than those of PredNet. First, it
can be seen in the figure that the inter-frame variations of the KITTI dataset were much
larger than those of the other two datasets, and both PPNet and PredNet made fuzzy
predictions for this dataset. However, PPNet could still make better predictions in the first
few steps, whereas PredNet made blurry predictions and then merely reproduced them.
This kind of replication is more obvious when using the Caltech dataset for evaluation.
Though generating clearer frames compared to our method, PredNet merely reproduced
previous frames, instead of making predictions. On the contrary, PPNet was still able to
capture the motion information in the input sequences and make authentic predictions.
PredNet captured the motion information on the KTH dataset eventually, but it learned
only the person’s direction and their approximated speed, whereas other subtle movements,
such as the actions of the person’s arm and leg, were lost.
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Figure 9. Visual presentation of predicted frames for the KITTI, Caltech and KTH datasets, respectively.

In summary, we have presented several experiment results to show the remarkable
performance of our method, which was superior to that of PredNet in terms of its prediction
accuracy, computational cost and visual presentation. In addition, we were also able to
obtain results equal to or better than the other state-of-the-art methods, thus indicating the
superiority of our method.

5. Discussion
5.1. Propagation of Weighted Errors

Additional experiments were performed to explore the influence of the propagation
of prediction errors. As mentioned above, the prediction errors propagate upward to a
higher level. This leads to the question of which errors should be passedupward—the
original errors or the weighted errors? It is necessary to indicate that the results shown in
Figure 6 were those in which the original errors were transmitted upward and the weighted
errors were only propagated backward. We obtained a worse result when we propagated
the weighted errors both upward and backward after being normalized (Table 5). As
Corlett [39] and Fletcher et al. [40] have speculated, errors may be “false” after being
weighted. Profound corrections would be made to our model of the world if waves of
persistent and highly weighted “false errors” were propagated upward. Using the adaptive
weights proposed in Section 3.3, we have provide a possible proof for this assumption from
the perspective of an artificial neural network.

Table 5. The mean errors (ME) obtained using different methods of propagation.

Value of p 5 10 100 1000 10,000
backward kitti 0.0335 0.0312 0.0259 0.0247 0.0247
caltech 0.0233 0.0221 0.0198 0.0192 0.0199

kitti 0.0450 / / 0.0463 0.0460

backward and upward 0 / 0.0303 0.0311 0.0316 /
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5.2. The Efficiency of the Pyramid-like Architecture

A set of priors is often already active on a higher level of the cognitive hierarchy,
poised to impact the processing of new sensory inputs without further delay when con-
textual information has been put in place.Similarly, there is a delay in the upward flow of
information at the beginning, but this disappears once the information reaches the highest
level in our model, which may result in a trivial reduction of the computational cost when
the input sequence is long enough. However, long sequences are not required. LSTM
networks may capture spurious long-term dependencies that may have been present in the
training data, hence learning inadequate causal models [41]. Additionally, we performed a
set of experiments on both PPNet and PredNet, processing the same data into sequences
with different lengths to prove our point (note that the total number of video frames was
constant). As shown in Figure 10, the length of the input sequence had little effect on
the prediction accuracy, but less time was required when using a shorter sequence in our
proposed PPNet. Therefore, we can process the data into shorter sequences during training
to reduce the consumption of resources and achieve sustainable artificial intelligence.

1.0
&0 4 \_'/\'/'_'_. i ——— 51—
09
55 4
o 08
=
Ew 2
]
07
45 4
06
404 —=— PPNt —— Piliet
—8— Prodiet —8— ProdNet
s
7 8 9 10 1 12 13 14 15 7 8 9 10 i} 12 13 14 15
sequence length sequence length

Figure 10. Evaluation of the KTH dataset using input sequences with different lengths. The left figure
shows the time required for each training epoch, and the right one shows the prediction accuracy.

6. Conclusions

In this paper, we have demonstrated the use of a pyramidal predictive network for
visual-frame prediction based on the predictive coding concept, along with the considera-
tion of efficient computational performance. This model encodes information at various
temporal and spatial scales, with an up-down propagation of predictions and a bottom-up
propagation of the combination of sensory inputs and prediction errors. It has a stronger
temporal correlation in its structure and requires lower computation costs. We analyzed
the rationality of the model in detail from the perspectives of predictive processing and
machine learning. Importantly, this proposed model achieved a remarkable performance
compared to state-of-the-art models, according to the experimental results.

Nevertheless, there is still room for improvement of the proposed model. In the
long-term forecasting process, false “prediction errors” may cause the model to average
the possible future predictions into a single, fuzzy forecast, which is an urgent problem
existing in most predictive models. In addition, performing predictions on the basis of
directly predicting natural visual frames is still a challenging task due to the curse of
dimensionality. Therefore, in the future, we intend to reduce the prediction space to high-
level representations, such as semantic and instance segmentation, and depth space, in
order to simplify the prediction task, which will make it easier for intelligent robots to
predict and perform advanced actions.
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Appendix A

Here we provide a clear comparison of our model and PredNet to further illustrate the
differences between the two models. Figure A1 shows the architectures of the two models,
with PredNet redrawn in the same way as PPNet. As shown in the figure, the biggest
difference between the models is that in PPNet the update frequency of neurons decreases
as the network level increases (ConvLSTM, etc.), whereas in PredNet, neurons of all levels
are calculated and updated at each time step. Therefore, in our model, higher-level neurons
can receive information from longer time series with a lower computational overhead, and
this advantage becomes more pronounced as more network layers are stacked.

._

141

Conv+Pool

ConvLSTM mg ConvLSTM ConvLSTM |

X,

=8

PPNet PredNet

Figure A1. The network structures of PPNet and PredNet, with PredNet is redrawn in the same way
as PPNet, to enable a better comparison.

In addition, the computational concepts of the two models are different. PredNet
considers that the prediction is generated by the internal model first, so that the prediction
is first made at the top layer, then passed down to the lowest layer, and finally compared
with the sensory input (depicted the green) to obtain the prediction error, which is then
passed up to the higher level.On the contrary, we believe that there should be sensory
input before the prediction is made (as discussed in Section 3.1: Efficiency in the Pyramid
Architecture). Thus, in our model, the lowest-level neurons first receive a sensory input
and make predictions, and the information is passed up only after the prediction error is
obtained by comparing the current prediction with the sensory input of the next time step.
Moreover, the information we transmit upward includes not only the predictive error but
also contains sensory input information. The reasons for this have also been explained in
Section 3. The above is the main difference between our model and PredNet in terms of its
network structure.
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