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Abstract: State-of-the-art modern microprocessor and domain-specific accelerator designs are domi-
nated by data-paths composed of regular structures, also known as bit-slices. Random logic placement
and routing techniques may not result in an optimal layout for these data-path-dominated designs.
As a result, implementation tools such as Cadence’s Innovus include a Structured Data-Path (SDP)
feature that allows data-path placement to be completely customized by constraining the placement
engine. A relative placement file is used to provide these constraints to the tool. However, the tool
neither extracts nor automatically places the regular data-path structures. In other words, the relative
placement file is not automatically generated. In this paper, we propose a semi-automated method for
extracting bit-slices from the Innovus SDP flow. It has been demonstrated that the proposed method
results in 17% less density or use for a pixel buffer design. At the same time, the other performance
metrics are unchanged when compared to the traditional place and route flow.

Keywords: data-path; placement; routing; innovus; electronic design automation; physical design

1. Introduction

In the era of the deep-submicron, System-on-Chip (SOC) design has become a daunting
and challenging task. Aggressive performance goals and stringent time-to-market deadlines
put huge pressure on design teams to deliver the masks in time for production, validate the
design, build a prototype, and make the chip available commercially. The Electronic Design
Automation (EDA) industry is the key enabler for the growth and huge success of the entire
VLSI design community by reducing the gap between design complexity and productivity.
Computer-Aided Design (CAD) tools automate many tasks, such as verification, synthesis,
timing analysis, and physical design. In particular, physical design and implementation
tools help in achieving higher quality (in terms of performance goals such as area, timing,
and power) with shorter execution times. However, the increased complexity of modern
SoCs, growing design sizes, and the introduction of new technologies pose challenges to
the CAD tools developed by the EDA industry. Standard cell placement is a critical step in
physical design, which determines the quality of the layout. The goal of any placement
tool or placer is to meet the timing constraints while minimizing the area, power, and wire
length. The placement engines or algorithms run iteratively to achieve the best Quality of
Results (QoR). Innovus from Cadence is one of the physical design tools which automates
the whole physical design flow, including standard cell placement.

Data-paths are common in modern microprocessors, graphics processors, and domain-
specific accelerators, where the same logic is repeated multiple times. The structure of a
data-path is highly regular, and it typically includes registers, multiplexers, and arithmetic
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circuits such as adders and multipliers. To produce the output, each bit in a data-path
goes through the same data operations. The data-path is the most important and crucial
component of the entire design. As a result, designing the data-path and its layout is critical
for the chip’s overall performance goals. Data-path designs are placed in a bit-sliced pattern
to achieve the best results, such as area, timing, and power. Traditionally, these data-path
elements can be hardened and brought as macros in higher-level designs. However, this
approach is not comfortable since all the physical and timing views need to be generated
whenever there is a change in the data-path—leading to multiple iterations and increased
turnaround time. It would be preferable to work with high-level modules that incorporate
both random and data-path logic and do the necessary data-path customization to achieve
the best results. The placer of the Innovus does achieve good QoR; however, if the design
has Structured Data-Path (SDP) elements, the tool does not identify them and therefore
places them randomly. This might result in a compromise of QoR. Innovus can handle
the SDP elements using a relative placement file; however, by default, it will not identify
them. The tool vendors provide some initial scripts and recommendations to extract
SDP structures; since there are no deterministic algorithms it cannot be fully automated.
However, if the implementation engineer have a good idea of the design, the tools will help
us in extracting SDP structures. The main contributions of the proposed work are:

• We evaluate the SDP flow of Cadence’s Innovus using two case studies, summarize
our design experience, and discuss the results.

• A generic methodology is proposed to use the SDP flow of Innovus to achieve the best
Quality of Results (QOR).

• The proposed methodology recommends the extraction of bit-slices of the design in a
semi-automated way to generate a placement file, which orients the instances in the
design such that routing between the bit-slices is minimized, and places the instances
of the SDP with required gaps to reduce the vertical or horizontal congestion.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 gives brief details of the designs that are considered for evaluating the methodol-
ogy. Section 4 describes our methodology. Experiments and results of our methodology are
discussed in Sections 5 and 6, respectively. Concluding remarks are given in Section 7.

2. Related Work

The structured data-paths are regular in their structure, and their careful placement is
essential for obtaining a good quality layout. Chou et al. in [1] present an algorithm that
can exploit the regular structures in the design, i.e., it can extract them and place them
appropriately to minimize the wire length, etc. In [2], Ye et al. talk about capturing data-path
bit-sliced structures using Abstract Physical Model (APM), which can be extracted from the
data flow graph. This APM can be further used for interconnect and congestion planning.
This methodology was implemented in C++ and benchmark data-path circuits, which
is an FIR filter. In [3], Nijssen et al. present an algorithm for the automatic extraction of
regular structures from the logic netlist of data-paths for better placement. In [4], Ward et al.
discuss extracting data-paths using a novel data learning technique and a new placement
algorithm. In [5], Serdar et al. present a design flow for automatic data-path placement
using simulated annealing and a global placement flow based on the o-tree algorithm.
Liew et al. in [6] proposed a manual placement algorithm for handling SDP elements using
Integrated Circuit Compiler I (ICC I) from Synopsys. In their approach, from the initial
ICC placement, structured registers, including their connections, are extracted to form
RP (Relative Placement) groups. Later, these extracted RP groups were placed manually
using an algorithm named SDP-RP using ICC I. Synopsys also introduced ICC II, which
has an SDP flow similar to Cadence’s Innovus SDP flow. In [7], Henrik et al. used ICC
II SDP flow for a synthesizable register file design. He also extracted the SDP structures
from the design using script named pyplace and generated the relative placement file as
per the syntax of ICC II. However, the results of the SDP flow of ICC II were not as good
as the normal flow of ICC II, where the tool does everything, i.e., no manual intervention.
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We presume that the relative placement file did not capture all the SDP elements leading
to poor results. Sabyasachi et al. in [8] presented a methodology for detailed routing of
data-path connections that are regular in nature. Similarly, structured nets across various
bit-slices are identified as net clusters. For each representative net of the cluster, an optimal
route was identified first, and the same routing was inferred for the rest of the nets. This
approach results in more regular connections, and since only a few nets are routed, it will
also result in significant speedup. In [9], Sotiriou et al. presented two algorithms named
Greedy and Isomorphism to extract SDP clusters from synthesized gate-level netlists. In the
same paper, they also presented an SDP placement algorithm—compatible with commercial
tools—to place the extracted SDP clusters. Currently, the most widely used tools ICC and
Innovus from Synopsys and Cadence, respectively, support the SDP flow. However, these
tools do not extract the SDP elements automatically and place them. Though there are
many algorithms proposed to extract data-path elements automatically in [1–6], design
knowledge is essential to extract the data-path structures and place them; therefore, none of
the commercial tools have automatic data-path extraction in their flow. Therefore, extracting
the SDP elements is an essential step in custom placement of them. Our work in this paper
extracts the SDP elements in the design using scripts based on the design knowledge and
the structure of the generated netlist. Furthermore, we evaluate the SDP flow of Innovus
and present a methodology for achieving optimal results. To the best of our knowledge,
this is the first work to try and evaluate the SDP flow of Innovus.

3. Designs for Evaluation

In this section, a brief overview of two designs that are considered for the evaluation
of SDP flow is presented. The first design is a Register File (RFile) of a Coarse Grain Recon-
figurable Array (CGRA), and the second design is a Pixel Buffer (PB) of an Adaptive Median
Filtering (AMF). These minimal design details will help us understand the methodology
and the results sections.

3.1. Register File

A CGRA [10] fabric consists of an array of Processing Elements (PEs) arranged in
two rows and an arbitrary number of columns. The Register File (RFile) is an important
component of the PE that provides local storage to the computational units. Raw data
from a scratchpad memory is written to an RFile for processing, and processed data are
read back again into the scratchpad memory. For further details of the CGRA design, we
refer to [11,12] and restrict our discussion in this paper to RFile only. The design of the
RFile is shown in Figure 1, where a register row is instantiated 64 times, and each row is
of 16-bit length—it can be easily visualized as 16 D flip-flops in a row. The RFile has two
read and write ports, each with a dedicated address that points to one row of the RFile
for read/write. This is shown in Figure 1 using 1 × 64 multiplexer or 64 × 1 multiplexers.
The RFile also has one 256-bit bidirectional port, which is dedicated to the data transfer
between scratchpad memory and the RFile. The data in one row of the scratchpad memory
occupies 16 successive locations of RFile and vice versa, as shown in Figure 1 using Block-
A, B, C, or D. To select one of these blocks for either read/write operation, a dedicated
read/write address is provided using multiplexers associated with the scratchpad interface,
see Figure 1.
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Figure 1. Register File Architecture

3.2. Pixel Buffer

In image processing, median filters are often used to remove the impulse noise [13].
However, if the probability of impulse noise becomes high, a standard median filter with a
window size of either 3× 3, 5× 5, 7× 7, or 9× 9 is used depending on the percentage (%) of
noise [14]. Since the amount of noise is random and unknown a priori in adaptive median
filters, the window size is chosen dynamically or at run-time [15]. For further details of
the adaptive median filters, we refer to [13,15]. In such adaptive filters, pixel buffers are
often needed in the hardware, cf. Figure 2. In this pixel buffer of 9 × 9—arranged in a 2-D
matrix style—each element is an 8-bit D-type register (flip-flop) storing the neighborhood
of all the window sizes. The filtering algorithm can adaptively choose a window size,
calculate the median and determine whether a center pixel is noisy or not, and replace it if
needed. Pixel buffer supports raster scanning of the image where 9 pixels per clock can
enter it either from right Zx or left Xx, controlled by a multiplexer with a control signal,
right_left_ctrl, see Figure 2. To maximize the reuse of the pixels present in the buffer, at both
column ends of an image, the pixel values are shifted in a bottom-up fashion. Here, the
new pixels enter from the bottom (Yx), controlled by a multiplexer with a control signal
(bottom_ctrl). To summarize, the pixel buffer consists of 8-bit shift registers in a 9 × 9 matrix
form, supporting right, left, and bottom-up data movement.
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Figure 2. Pixel Buffer Architecture

4. Methodology

In this paper, our focus is on the data-path of a design that is already synthesized using
standard cells of a given technology. The designer extracts data-path bit-sliced structures
manually or semi-automatically for a given design. Such a bit-sliced structure benefits are
straight and short control and data signal routes. By placing the data-path in a bit-sliced
pattern, the area is reduced because of the abutted cells, and the signal and clock skews
are minimized. The aligned cells create straight wires reducing vias and jogs, resulting in
better timing, power, and congestion. However, the design and implementation are often
done by different people; thus, identifying the bit-sliced patterns might not be easy by just
looking at the synthesized netlist.

4.1. Traditional Design Flow

In a traditional or normal standard cell-based design flow, the implementation steps
shown in Figure 3a are followed, which includes: (a) importing a floor-planned, power-
planned design, (b) placing the standard cells, (c) synthesizing the clock tree, and (d) routing
the design. Optimizations can be performed at each step to improve the performance
metrics such as area, timing, and power. The same standard flow can be followed for the
data-path-based designs where the tool places the data-path standard cells along with other
(logic and control) standard cells. In this flow, the advantage is that no manual intervention
is needed, the flow is standardized, and most importantly, detailed design knowledge is
not required. Albeit the tool might do the job, but there is still a possibility to improve the
timing and reduce the use and power. To overcome this challenge, a data-path hardening
flow can be used as shown in Figure 3b. In this flow, one needs to identify the bit-sliced
patterns of the data-path and harden them using the standard flow shown in Figure 3b.
These hardened data-path structures are similar to hard macros, which are brought into
the traditional design flow, see Figure 3a. These macros can now be placed per the design
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requirements, which might improve the performance metrics. Though this approach is
promising, it has many disadvantages and is error-prone. For instance, for all the data-path
structures, physical views such as LEF, GDS, etc., and timing views such as ILM, ETM,
etc., need to be generated, which is time-consuming. Furthermore, these views need to be
generated whenever there is a change to the datapath structure, or the hardening of the
datapath structure does not yield good results. In this case, re-hardening of the datapath
structure is needed to improve the results further. To overcome these challenges, the SDP
flow of Innovus is highly recommended. The datapath structures in the SDP flow of Innovus
are handled similar to hard macros by which the placement can be customized using the
available standard cell views. There is no need for generating either physical or timing views.
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Figure 3. Traditional Design flow for Standard cell-based Design. (a) Traditional Design Flow.
(b) Datapath Hardening Flow.

4.2. SDP Flow

The SDP flow is recommended for structured data-paths where better performance,
power, and area are required. Since it is a semi-custom methodology, one must have a
detailed understanding of the design to improve these performance metrics. Currently,
Innovus does not identify bit-sliced patterns automatically. Based on the design knowledge,
a script must be written to extract the bit-sliced patterns of the data-path for placement.
This flow might not yield good results if these patterns are not extracted and appropriately
placed. The main benefits of SDP flow are controlled placement throughout the flow, which
might result in uniform routing, and improved performance metrics.

Figure 4 shows the SDP flow for standard cell-based data-path dominating designs.
Here, the placement of the bit-sliced structure is provided to the tool using a Relative
Placement File (RPF) or TCL commands. However, it is highly recommended to use the RPF
and generate it using either Perl or Python scripts to try out different placement scenarios.
For the syntax of this file, rules, and notations, we refer to [16]. An exemplary RPF is shown
in Figure 5a, and the corresponding placement is shown in Figure 5b.

In RPF notation, the entire core area is divided into either rows or columns, where a
row can have multiple columns, or a column can contain multiple rows. In RPF, nesting
of rows inside another row or nesting of columns inside another column is not allowed.
However, nesting of rows inside a column or columns inside a row is allowed with even
deep nesting. In Figure 5, the entire core area is visualized as a single row (R1), though
physically, it has four rows, see Figure 5b. In R1, using column C1, instance U5_0 is
placed first, followed by skipping of two rows (using skipspace 2), and instance U5_1 is
finally placed. The origin statement controls the start of the row, and the justifyBy statement
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controls the justification or alignment of the row. In the same R1, using column C2, instances
U5_2, U5_3, U5_4, and U5_5 are placed vertically. To have some empty space between
columns C1 and C2, skipspace 10 was used, which leaves 10 M2 tracks between C1 and C2.
In this way, a very detailed and fine placement of data-path structures can be done as per
the user’s requirements. There are more constructs that can be used in RPF, which allow us
to control the orientation (MX, R180, MY, etc.) of instances, justify rows and columns (SW,
NW, etc.), align instances by pin name, the origin of a row or column, etc. [16].

Import Design

Define (modify) SDP

Constraints

SDP 

Relative Placement File

SDP Tcl Commands

Datapath Design Information 

(preferably bit-sliced)

place_opt_design

(with SDP constraints)
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timing,  edit columns, rows etc.

Clock Tree Synthesis

Results 

OK?

Analyze the Clock Tree

(Count of buffers, skew, trial 

route, placment density etc.) 

Route

(Verify DRC, Connectivity)

Compare Density, Timing, Power 

with Traditional Flow

Results 

OK?

End

Start

Yes

No

Yes

No

Figure 4. SDP-based Standard Cell Design Flow.

datapath DP {           #DP is an identifier

     row R1 { #R1 is an identifier

        origin 0 10

        justifyBy SW

column C1 { #C1 is an identifier

    inst U5_0

    skipspace 2 #skip 2 rows

     inst U5_1

  }

  skipspace 10 #skip 10 tracks

  column C2 {

      justifyBy SW

      inst U5_<2:5>

  }

       }

}

(a)

Origin: 0 10

Skip 10 tracks

Skip 2 

rows

U5_0

U5_1 U5_5

U5_4

U5_3

U5_2

(b)

Figure 5. Relative Placement File and its Corresponding Placement. (a) Relative Placement File;
(b) Placement of Cells.
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Figure 6 shows the placement of a D-Flip-Flop and associated multiplexers for the pixel
buffer design. A D Flip-Flop has an enable pin; therefore, it results in one more additional
multiplexer (M1) apart from the right_left_control multiplexer (M3) and bottom_control
multiplexers (M2), see Figures 2 and 6. Placement of the multiplexers and D-FF is shown
in Figure 6a for normal flow and in Figure 6b for SDP flow. All the connections among
these cells are highlighted in yellow in both cases. In the SDP flow, since the placement is
controlled using the RPF, cells are placed very close to each other, whereas, in the normal
flow, cells are placed apart, see Figure 6. Therefore, generating the right RPF file is important
in the SDP flow.

enable
mux 
(M1)

bottom 
Ctrl mux 

(M2)

right left 
ctrl mux 

(M3)

D Filp-Flop
Register  

(R1)
  (R2)  (R2)

  (M1)

  (M2)  (M3)

  (R1)

(a)

enable
mux 
(M1)

bottom 
Ctrl mux 

(M2)

right left 
ctrl mux 

(M3)

D Filp-Flop
Register  

(R1)
  (R2)  (R2)

  (M1)

  (M2)  (M3)

  (R1)

(b)

Figure 6. Placement of D-FF and Multiplexers in both Normal and SDP Flow. (a) Placement in
Normal Flow. (b) Placement in SDP Flow.
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Once the RPF file is read into Innovus, placement of these SDP structures can be
visualized in GUI and, if needed, RPF can be modified. Once the placement of SDP
elements is finalized, the standard steps shown in Figure 4 can be followed, which are more
or less similar to the traditional flow. However, after each step in the flow (i.e., placement,
clock tree synthesis, or routing), use, timing, power, etc., can be compared to the normal
flow. If only the results are satisfied, we proceed to the next flow step. Else, we analyze the
design and modify the RPF before restarting the flow, see Figure 4. Multiple iterations are
required to arrive at the best RPF that improves the performance metrics. The SDP flow of
Innovus makes it easy to perform these iterations.

5. Experiments

To evaluate the SDP flow of Innovus, both the RFile and Pixel Buffer (PB) designs
were considered, and the implementation was made with and without SDP flow as per
the steps shown in Figures 3a and 4, respectively. The RPF files for both designs were
generated using Python scripts. Based on the design knowledge, the bit-sliced data-
path structures were extracted for both designs. For the RFile design, an RPF file was
generated with the following design information. In the RFile design, each row contains 16
D-FFs, and each FF is independent (unlike shift registers, no data transfer within rows);
therefore, these FFs were placed in the same row. Furthermore, to allow routing to these
registers, sufficient space was left between them. The same bit registers in each row
were also aligned to enforce the straight routes since the same input might enter one of
these registers. This information was easy to extract from the design, and an RPF file
was generated with this information. However, the RFile design contains a lot of logic
(multiplexers/demultiplexers with read/write addresses, see Figure 1) associated with
the read/write ports of RFile itself or the scratchpad interface. However, extracting the
bit-sliced patterns from this logic is tough; since one must understand the synthesized
netlist and identify the structured patterns. Therefore, the generated RPF does not contain
any information about the placement of this mux/demux logic. This logic is placed using
the tool itself after the placement of the SDP structures.

For the PB design, extracting the data-path structure was relatively easy. The PB buffer
is in the form of a 9 × 9 matrix where each element is an 8-bit FF. All the elements have
a shift register structure, i.e., 8-bit data can be pushed from left, right, or bottom. Since
each element is an 8-bit register, it can be thought of as a 9 × 9 structure shown in Figure
2 existing for each bit—in total, eight structures. Furthermore, all these eight structures
are independent, i.e., there are no connections among these structures. All the connections
exist within the structure itself, which also means that these structures can be placed
independently. An RPF was generated to capture the above information and each structure
was placed together and away from the others. Once the RPF was generated for the designs,
the flow steps shown in Figure 4 were followed to complete the implementation.

6. Results and Discussion

The results for both RFile and PB designs are summarized in Tables 1 and 2, respec-
tively. Figure 7a shows the layout of the RFile design using normal design flow, whereas
Figure 7b shows the layout of the RFile design with the placement of its rows using the
RPF. It can be observed from Figure 7a,b that placement of registers is much more regular
and uniform in SDP flow, resulting in low placement density compared to normal flow.
In Table 1, the worst negative slack (WNS), total negative slack (TNS), density, power, con-
gestion, total net length, and clock cell area were compared for both normal and SDP flow
for the same core area. It can be observed that the SDP flow results were not as good as the
normal flow since the RPF contains only the rows of the register file, as shown in Figure 7b.
Due to the lack of design knowledge, no more information was added to the RPF, which
resulted in poor results. The rest of the mux/demux logic in the design was placed all
over the chip, highlighted by M2 routing alone (red color); see Figure 7b. Total net length,
number of vias, and wire capacitance were high, resulting in more power consumption and
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less TNS though the density was a bit better in the SDP flow than in normal flow. Since the
FFs were placed regularly, clock cell count or area was less in SDP compared to normal flow.
In the normal flow of RFile design, Innovus was able to optimize the placement of not only
the register rows but also mux/demux logic, see Figure 7a, resulting in better performance
metrics. To summarize, the SDP flow did not yield better results, proving that it is essential
to extract the bit-sliced patterns of data-path design for the success of the SDP flow.

Figure 8b shows the layout of the PB design with the placement of data-path structures
using the RPF. As aforementioned, a similar structure exists for each bit of the registers in
the design, as shown in Figure 2. Each such structure can be placed regularly, as shown
in Figure 8b; the numbers in the yellow boxes denote the bit positions. Figure 8a shows the
layout of the PB design using normal flow. Table 2 compares various performance metrics for
normal and the SDP flow using the same core area. For the PB design, the SDP flow results
were better since the RPF file was complete, i.e., all the needed bit-sliced information was
captured. It can be observed that SDP flow has 17% less density compared with the normal
flow; see the empty space in Figure 8b. In normal flow, the instances were placed all over
the core area, see Figure 8a. Figure 9a,b show the clock tree network for the normal and SDP
flow, respectively. In both cases, the clock has straight routes; however, in the SDP flow, the
clock net length or total wire length was less, resulting in slightly lower power consumption.
Timing in the SDP flow was slightly degraded; however, the use/density and other metrics
were lower for the SDP flow. SDP flow is present in both Cadence’s Innovus and Synopsys’
ICC II; however, it is still not a part of the standard design flow because its quality of results
depends on effective data-path extraction, for which there are no deterministic algorithms.
Therefore, to avail of the benefits of the SDP flow, design knowledge is essential to extract the
data-path components for optimal placement using an RPF.

Table 1. Summary of Results for RFile Design, Core Area W = 179.6 µm, L = 179.55 µm.

WNS
(ns)

TNS
(ns)

Density
(%)

Power
(mW)

Congestion
(%)

Total Net
Length (µm)

Clock Cell
Area (µm2)

#Vias

Flow Step Normal SDP Normal SDP Normal SDP Normal SDP Normal SDP Normal SDP Normal SDP Normal SDP

Placement 9.270 8.622 0 0 73.599 63.747 - - 0 0%H, 1.54%V - - - - - -
CTS 9.251 8.605 0 0 74.068 71.853 - - 0 0%H, 1.81%V - - - - - -
Route 9.229 7.354 0 0 74.068 71.853 0.777 0.91 0 0%H, 1.92%V 1.34 × 105 2.34 × 105 296.514 272.232 65,822 67,867

Table 2. Summary of Results for PB Design, Core Area W = 114.8 µm, L = 107.73 µm.

WNS
(ns)

TNS
(ns)

Density
(%)

Power
(mW)

Congestion
(%)

Total Net
Length (µm)

Clock Cell
Area (µm2)

#Vias

Flow Step Normal SDP Normal SDP Normal SDP Normal SDP Normal SDP Normal SDP Normal SDP Normal SDP

Placement 9.077 8.971 0 0 69.886 0 - - 0 0 - - - - - -
CTS 9.055 8.961 0 0 70.58 52.824 - - 0 0 - - - - - -
Route 9.043 8.968 0 0 70.58 52.824 0.4516 0.4427 0 0 1.61 × 104 1.45 × 104 85.842 85.5 17,802 15,423
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Figure 7. Layout of RFile in both Normal and SDP Flow. (a) Layout of RFile in the Normal Flow.
(b) Layout of RFile in the SDP Flow.
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Figure 8. Layout of Pixel Buffer in both Normal and SDP Flow. (a) Normal Flow. (b) SDP Flow.
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Figure 9. Clock Tree in both Normal and SDP Flow. (a) Normal Flow. (b) SDP Flow.



Electronics 2022, 11, 2965 14 of 15

7. Conclusions and Future Work

This paper evaluated the Structured Datapath Placement (SDP) flow of Cadence’s
Innovus using a register file and pixel buffer designs. The bit-sliced structures of the designs
were extracted based on the design knowledge and synthesized gate-level netlist. A relative
placement file was generated using Python scripts where the bit-sliced information was
represented using the supported statements or syntax of the tool. For both designs, the
SDP flow and traditional or normal flow results were compared in terms of utilization or
density, timing, power, congestion, clock cells’ area, total wire length, and the number of
vias in the design. SDP flow did not show any improvement for the register file design
compared to the normal place and route flow. The register file design contains register
rows and multiplexer and demultiplexer logic controlling the reads/writes from/to it. For
the multiplexer and demultiplexer logic, bit-sliced structures could not be identified using
the gate-level netlist. Therefore, placement constraints were not captured in the relative
placement file resulting in poor performance metrics. However, for the pixel buffer design,
the SDP flow shows significant improvements over the normal flow. It shows 17% less use
while the rest of the performance metrics almost remains the same. The relative placement
file captured all the structural details and placement constraints. Based on our evaluation,
the SDP flow is recommended for structured data-path placement; however, the success
of the flow depends on the finer or detailed extraction of the data-path structures and
generating placement constraints, i.e., relative placement file. In the future, we would like
to work on coding guidelines to extract data-path easily by the tools and a more structured
and automated approach for generating the relative placement file.
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