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Abstract: Driving a car is an activity that became necessary for exploration, even when living in the
present world. Research exploring the topic of safety on the roads has therefore become increasingly
relevant. In this paper, we propose a recognition algorithm based on physiological signals acquired
from JINS MEME ES_R smart glasses (electrooculography, acceleration and angular velocity) to
classify four commonly encountered road types: city road, highway, housing estate and undeveloped
area. Data from 30 drivers were acquired in real driving conditions. Hand-crafted statistical features
were extracted from the physiological signals to train and evaluate a random forest classifier. We
achieved an overall accuracy, precision, recall and F1 score of 87.64%, 86.30%, 88.12% and 87.08% on
the test dataset, respectively.

Keywords: car driving; classification; electrooculography; machine learning; smart glasses; wearable
devices

1. Introduction

The ability to move (mobility) is essential in our daily lives nowadays. One of the most
widely used means of transportation is cars due to the increased convenience they provide
compared with other means, such as public transport.

Statistics show that the estimated number of worldwide car sales has followed a con-
stant increasing trend over the past 10 years, with the exception of the period between 2020
and 2021 that corresponded to the COVID-19 pandemic lockdown time [1]. Despite this,
car sales started to raise again in 2021 after the end of most lockdown-related restrictions.

This increased usage of cars has led to a need for further exploration of car-related
research areas, including driver behavior analysis [2] in relation to traffic, safety [3] and
environmental issues [4–6].

Driving a car is an activity that involves many neural circuits in the brain that are
related to visual-motor coordination, episodic and procedural memory, visual search
and executive functions such as the ability to plan, change the strategy of conduct or initiate
and inhibit reactions [7]. Most of the information that reaches the driver while driving a
car takes place through the visual system, due to the need to perceive signs, objects, people
or events [8]. Therefore, proper visual and motor coordination of the driver is necessary [9].

There are undeniable differences in road behavior between a driver who is just learning
to drive and one who is already experienced [10]. An experienced driver performs the basic
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driving activities (e.g., turning the steering wheel, shifting gears or pressing the pedals)
automatically without paying special attention to them. Analyzing the driving styles and
behaviors of both new and experienced drivers could lead to insightful findings for the
future development of the automotive industry by taking advantage of the advances in
driving, which could be made economical and safer [11,12]. Research on driving style
analysis in particular has possible applications to logistics, the transport industry, car
insurance companies, government regulatory organizations, the controlled development of
infrastructure and public transport [13].

One specific field of interest of driving style analysis is accident detection. According
to a WHO report in 9 February 2004, road accidents are a major but neglected public health
challenge that requires a concerted effort toward effective and sustainable prevention. Of all
the systems people deal with on a daily basis, road traffic systems are the most complex and
dangerous. It is estimated that 1.2 million people worldwide are killed in road accidents
and as many as 50 million are injured each year. These numbers are projected to increase
by around 65% over the next 20 years unless a new prevention commitment is made [14].

Studies on the topic of accident detection can be divided into two main categories.
The first category focuses on accident prevention based either on the recognition of cognitive
activities using wearable sensors during driving [15], detection of the road type using either
vision-based or car internal sensors [16] or the monitoring of specific dangerous events
during driving (e.g., wrong-way driving or a drop in vigilance) using either wearable
or vision-based sensors [17–19]. The second category investigates the topic of post-crash
detection for either the dispatching of emergency services [20,21] or as an inspection tool
for car-renting companies [22–24].

In this paper, we investigate the first category of work through the topic of road type
detection. To the best of our knowledge, the number of past studies regarding this topic is
very limited, and they exclusively use either vision-based or car internal sensors. Jo et al.
for instance [25] proposed a vehicle-tracking and behavior-reasoning algorithm to provide
advanced driver assistance using LIDAR, radar and RGB camera data to obtain insight
on the surroundings of the vehicle. Ramanishka et al. [26] introduced the Honda Research
Institute Driving Dataset , a dataset combining RGB and car modalities (GPS, LIDAR, CAN-
Bus and IMU sensors) in suburban, urban and highway environments to help researchers
investigate the topic of automated driving scene analysis. Finally, many other studies have
been proposed in the past to automatically analyze the surroundings of a vehicle without
necessarily directly classifying road types. Examples include the monitoring of cars in
neighboring lanes in a highway environment [27] or of weather or traffic conditions in
highway and urban environments [28]. It can be noted from the aforementioned work that
the topic of road type detection using wearable devices is still unexplored.

We therefore propose a system for the automatic detection of road types based on
applying state-of-the-art machine learning techniques on physiological data acquired from
a pair of smartglasses. We use in our study the JINS Meme glasses (Jins Inc., Tokyo,
Japan) that record electrooculography (EOG), characterizing eye movements, and the linear
acceleration and angular velocity, characterizing head movements. The data acquired by
such a device have been shown to be useful for recognizing cognitive activities in a driving
context in past studies [15]. We try to verify if road type detection is possible on the basis of
solely using wearable modalities in particular, without any assistance from other external
sensors such as car internal sensors. To the best of our knowledge, this study is the first to
tackle this specific classification problem exclusively using physiological sensor modalities.

To abstract the problem of road type detection from a machine learning point of view,
we translate it into a classification problem and solve it using standard supervised learning
techniques, following the standard pattern recognition chain that comprises the following
steps [29]:

• Data acquisition: the choice and set-up of sensors and design of an experimental
set-up;
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• Data processing: operations to clean the data such as noise removal, filtering, syn-
chronization and segmentation;

• Feature extraction: computations of specific values in the data that carry a specific
relevance for the classification problem to be solved;

• Classification: training and evaluation of a classifier operating on vectors of the
features previously extracted.

In particular, we focus on four types of areas to recognize: a city, a highway, a housing
estate and an undeveloped area [30]. We manually extracted statistical features from the
data following our past observations that more complex feature-learning methods using
deep neural networks tend to not necessarily produce better results for problems where
physiological time series data are involved and data are relatively scarce [22,31]. Using
these features, we perform a comparative study of the most widely used state-of-the-art
classifiers and a feature analysis based on the computation of feature importance scores
using ANOVA.

To summarize, the main contributions of our paper are as follows:

• We perform a machine learning study for the classification of four different road types
(city road, highway, housing estate and undeveloped area) using manually crafted
features extracted from physiological signals (EOG, acceleration and angular velocity)
acquired from smart glasses worn by the driver;

• We perform a comparative experiment involving several state-of-the-art classifiers to
find the best configuration for the classification problem to be solved;

• We perform feature selection with ANOVA to determine what the top-performing
features are for the classification problem at stake.

The rest of our paper is structured as follows. The materials and methods used in
our study are first described in Section 2. The results of our experiments are presented
in Section 3 and discussed in Section 4. Finally, a conclusion and comment about future
outlooks are provided in Section 5.

2. Materials and Methods
2.1. Technology Used

For the data acquisition, we used JINS MEME smart glasses, a device furnished with
three-point EOG and a six-axis inertial measurement unit (IMU) with an accelerometer and
a gyroscope [15,32]. The sampling frequency of the acquired signals was 100 Hz. The data
were transmitted to a computer via Bluetooth or USB and could be exported to a CSV file.

For the data preparation and classification, we used MATLAB R2022a. The models
were trained using a PC with an Intel(R) Core(TM) i5-9300H CPU processor and 16 GB
of RAM.

2.2. Data Acquisition

A dataset of physiological data obtained by the JINS Meme smart glasses (i.e., EOG,
IMU linear acceleration and angular velocity), was acquired for this and previous related
studies [8,33]. The study was conducted in accordance with Chapter 4 of the Act on
Vehicle Drivers of the Republic of Poland and with the permit issued by the Provincial
Police Department in Katowice. Before the study, the volunteers presented all the necessary
documents confirming that they were allowed to participate in road traffic. The participants
voluntarily gave their informed consent to participate in the study.

Data were acquired under real road conditions from 30 healthy subjects, including
20 experienced drivers and 10 students attending a driving school [34–36]. There were 16
males and 14 females with an average age of 38 ± 17 who participated in the study. The
complete dataset is available at the IEEE DataPort [37].

Each participant performed a driving test on a route of 28.7 km, which took approx-
imately 75 min. The route was localized in the Silesian Voivodeship (southern Poland)
in the cities of Tarnowskie Góry, Radzionków, Bytom, and Piekary Śląskie. The course of
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the route was determined in consultation with the driving instructor and on the basis of the
rules of practical driving tests in Poland. While performing a test, the driver was wearing
the smart glasses. The set-up of the experiment is presented in Figure 1.

Figure 1. Experiment set-up.

All data were labeled during the drive and then divided the into four groups regarding
the type of the road (1: highway; 2: city road; 3: undeveloped area; 4: housing estate).
The labeling process was performed manually by simply putting a marker when the
particular type of road started and ended.

2.3. Data Preparation

The data acquired from smart glasses include signals from three axes of the ac-
celerometer (ACCX, ACCY and ACCZ), signals from three axes of the gyroscope (GYROX,
GYROY and GYROZ), and the four channels of the EOG signal (EOGL, EOGR, EOGH and
EOGV). Table 1 contains general statistics for all the acquired signals.

Table 1. Dataset description: general statistics.

Signal Minimum Median Maximum Mean Standard Deviation

ACCX –12,083 340 19,519 1070.2 1616.9
ACCY –32,767 –453 19,199 –1342.9 1853.3
ACCZ –32,768 –2128 32,767 –8230.8 7017.4

GYROX –10,575 12 2519 11.8098 141.3119
GYROY –3465 3 4427 3.1471 132.9203
GYROZ –10,279 14 10,073 10.7835 345.0692
EOGL –2048 470 2047 379.7323 640.3718
EOGR –2048 –69 2047 41.6679 730.8121
EOGH –4080 189 4095 338.0645 825.8395
EOGV –2047 –61 2048 –210.6461 548.9904

The magnitude of the acceleration was computed using the Euclidean norm of the 3D
acceleration, as shown in Equation (1) [38]:

ACC =
√

ACC2
X + ACC2

Y + ACC2
Z (1)
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All signals were then filtered using the third-order median filter and rescaled to the
range [0 1] using min-max normalization, as specified in Equation (2):

Xrescaled =
X – minX

maxX – minX
, (2)

where the min and max values were determined for each signal. All normalized sensor
signals were then segmented with a sliding time window approach with a window length
of 1 s (100 samples) and a 50% stride (50 samples). We applied the original label to each
window. If the signal length was not divisible by 50, then the last samples were discarded.

2.4. Feature Extraction

For this problem, we decided to apply traditional feature engineering. For each win-
dow, the following features were calculated:

• μ and σ of a normal distribution fitted to the data [39];
• Skewness and kurtosis;
• Minimum and maximum value.

The feature extraction process resulted in 36,669 feature vectors of 48 dimensions
(6 features for each of the 8 sensor channels) that were used to train, validate and test
the classifiers.

Finally, feature selection was also performed using ANOVA on each feature separately
to determine which ones maximized the distance between the four classes we used in our
problem. Figures 2 and 3 present the F scores and associated p-values, respectively, for each
feature on which ANOVA was applied.

Figure 2. All features ranked by decreasing ANOVA F scores.

Through the trial-and-error method, it was decided to select the 30 features that
maximized the ANOVA F score, as it was the configuration that produced the best results.

2.5. Classification

For this study, we used a tool available in MATLAB called Classification Learner [40].
It enabled quickly training, validating and testing many classifiers, tuning the parameters
and comparing the results. The models available in this tool are different types of widely
used supervised machine learning classifiers, whose list is provided below:

• Classification trees;
• Model with Gaussian, multinomial or kernel predictors (nearest neighbors);
• K-nearest neighbor;
• Support vector machine;
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• Boosting, random forest, bagging, random subspace and ECOC ensembles for multi-
class learning (generalized additive model).

Figure 3. The p-Values associated to the ANOVA test for each feature. The features are ranked in
order of decreasing F-score. It can be noted that with the exception of two features, all p-values were
below 0.05, meaning that their associated F-scores were significant.

Data were randomly separated into training, validation and test datasets in proportions
of 70%, 20% and 10%, respectively, and the validation scheme was holdout validation. We
performed a series of tests on different classifiers and hyperparameters, compared them
and chose the one that best handled the problem.

The preliminary experiments showed that most misclassifications were concerning
examples from classes 1 and 2. To reduce their numbers and improve the performances of
our models overall, we introduced classification penalty costs to make examples belonging
to specific classes count more in the computation of the loss during the training of the
models. The matrix of such costs is provided in Table 2.

Table 2. Misclassification costs.

Predicted Class

True Class

1 2 3 4

1 0 2 1 1
2 2 0 1 1
3 1 1 0 1
4 1 1 1 0

Table 3 presents the comparison of the overall performance parameters of the four
best classifiers from the initial tests. A detailed comparison of results obtained with these
classifiers can be found in Appendix A.

Table 3. Comparative evaluation metrics of state-of-the-art classifiers on the test dataset. Bold font
indicates best result obtained for each metric.

Classifier Accuracy Precision Recall F1 Score

SVM 0.74 0.72 0.73 0.72
KNN 0.73 0.72 0.72 0.72

Neural networks 0.77 0.76 0.76 0.76
Ensemble classifiers 0.84 0.82 0.85 0.83
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The initial tests showed that the problem was significantly better when solved by an
ensemble classifier. For this reason, we decided to continue working on improving only
this model.

In order to obtain the best possible classification accuracy, we decided to conduct a
hyperparameter optimization process. The method was Bayesian optimization, and the
acquisition function was expected in terms of improvement per second. Figure 4 shows the
process of tuning the hyperparameters.

Figure 4. Hyperparameter optimizing process.

In this process, different sets of hyperparameters were tested, and the set with the
smallest classification error was selected. The hyperparameters tested include the following:

• Preset: specifies the type of the classifier to be used. The types available were boosted
trees, bagged trees, subspace discriminant, subspace KNNs and RUSBoost trees.

• Ensemble method: a method to meld the weak learners into a model with a high-
quality. There was a different choice of ensemble methods for each preset.

• Number of learners: this parameter defines a number of weak learners to use in the
ensemble;

• Learning rate: regulates the speed of the learning process. Using a smaller learning
rate helped to make sure that the model was not overfitted;

• Maximum number of splits: this parameter controlled the depth of the tree learners
(i.e., “branch points”).

The best classification model that we found was ensemble classification with random
undersampling boosted trees (RUSBoosted Trees) [41], a random forest classifier where each
weak learner (e.g., decision tree) is trained on a random subset of the whole training set
that is undersampled when it comes to the dominant class. More specifically, RUSBoosted
Trees iteratively trains a chosen number of weak learners, with each learner being trained
on a subset of the training set that underwent two modifications: a random subsampling
of the dominant class and a normalized weighting of the examples of the training subset,
which is taken into account when computing the loss of the learner. The weights are
initialized to follow a uniform distribution for the first iteration and then iteratively updated
using an update parameter computed using the loss at the previous iteration. The model
hyperparameters that were determined to be optimal in the end were as follows:

• Preset: RUSBoosted Trees;
• Ensemble method: AdaBoost;
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• Learner type: decision tree;
• Maximum number of splits: 2078;
• Number of learners: 451;
• Learning rate: 0.81048.

3. Results

To evaluate the relevance of our trained classifier, we calculated some standard eval-
uation metrics computed from the confusion matrix of the classifier (shown in Figure 5),
which presented the number of examples from the test dataset classified into a specific
group (predicted label) compared with their real class label (true label).

Figure 5. Confusion matrix for the test dataset.

We also compute the accuracy, precision, recall and average F1 score, whose expres-
sions are provided in Equations (3)–(6):

Accuracy =
True Positive + True Negative

True Positive + False Positive + True Negative + False Negative
(3)

Precision =
True Positive

True Positive + False Positive
(4)

Recall =
True Positive

True Positive + False Negative
(5)

F1-Score = 2 × Precision × Recall
Precision + Recall

(6)

Finally, we used the receiver operator characteristic (ROC) as a tool to assess the
correctness of the classifier. It provided a joint description of the sensitivity and specificity;
in other words, it can be described as a graph of dependency between the true positive
rate and false positive rate [42,43]. In a multi-class model, we could plot the N number of
the area under the curve (AUC) ROC curves for the N number of classes using the one vs.
all methodology. In our case, we had a class 1 threshold, minimizing or maximizing the
distributions overlapping when the AUC was around 0.9, which means that there was a
90% chance that the model would be able to distinguish a positive class from a negative
class [44]. For comparison, the work related to driver drowsiness or anger evaluation
with the ROC-AUC showed that the AUCs for the models were 0.904, 0.863 and 0.805,
related to the threshold balancing classification between the AUC and ROC curves for
drowsiness [45], and 0.7914–0.8635 for driver anger evaluation [46]. Figures 6–9 present the
ROC curves for all four classes.
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The values obtained for all the aforementioned evaluation metrics (accuracy, precision,
recall, average F1 score and AUC) are provided in Table 4.

Table 4. Performance parameters for the test dataset.

Type of Road Accuracy Precision Recall F1 Score AUC

Highway 0.8755 0.8155 0.8755 0.8445 0.98
City road 0.8377 0.9037 0.8377 0.8695 0.97

Undeveloped area 0.9035 0.8050 0.9035 0.8514 0.99
Housing estate 0.9081 0.9278 0.9081 0.9179 0.99

Overall 0.8764 0.8630 0.8812 0.8708

The proposed approach yielded an overall accuracy of 87.64%. Among the four
specific classes, housing estates were the best recognized. The highway was the least
well-recognized class, although its recognition accuracy remained relatively high for a
four-class classification problem at 83.77%.

Figure 6. ROC: class 1 (positive).
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Figure 7. ROC: class 2 (positive).

Figure 8. ROC: class 3 (positive).
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Figure 9. ROC: class 4 (positive).

4. Discussion

The topic of this paper was the development of a classification algorithm based on
machine learning techniques for road type classification. The problem faced by this work
was to determine whether physiological data acquired with smart glasses (EOG, ACC
and GYRO signals) are suitable for classifying the type of road traveled by the person
driving the car.

The best classifier that was found (RUSBoosted Trees) yielded a promising accuracy of
87.64% for a four-class classification problem. This relatively high accuracy indicates that
physiological data acquired from JINS MEME smart glasses (EOG, acceleration and angular
velocity) are sufficient to determine the type of road being traveled. It should be noted
that the ANOVA analysis we performed on our features showed that the most relevant
information to our classification problem resided in the IMU data, as shown in Figure 2,
and more specifically the angular velocity measured by the gyroscope. This might indicate
that head movements (rather than eye movements) are one of the main factor that could
lead to the distinction of a road type.

A possible axis of development is the investigation of additional physiological modali-
ties that could be set up in an unobtrusive way for the driver to provide insights regarding
the environment they are driving in. For instance, Leicht et al. [47] investigated the moni-
toring of the heart rate (HR) and respiration rate (RR) of drivers in both urban and rural
scenarios. More specifically, the efficiency of unobtrusive sensors for obtaining an esti-
mation of both the HR and RR was evaluated in both real and simulated conditions by
comparing the estimations derived from them to the readings of the reference HR and RR
sensors. Under laboratory conditions, magnetic induction and photoplethysmography,
both integrated into the seat belt, and hybrid imaging, combining visual and thermal
imaging, were evaluated for respiration rate (RR) sensing. In real driving, the sensing of
the RR by hybrid imaging and sensing of the heart rate (HR) by a seat-integrated capaci-
tive electrocardiograph (ECG) were evaluated. Under laboratory conditions, reliable RR
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detection was possible using all three sensor technologies. In real-world driving, reliable
HR and RR detection was possible during the rural scenario only. In the urban scenario,
only RR detection was feasible. Due to motion artifacts, the capacitive ECG was disturbed,
and the HR detection was impaired. The evaluated unobtrusive measurement systems can
monitor physiological parameters during, for example, driving for a long time on highways,
but they could not reliably accomplish this during agile inner city driving situations due to
motion artifacts.

The overview literature devoted to research on transport infrastructure cannot be
separated from the aspects of artificial intelligence that support the management and
organization of modern transport and logistics. The field of computer science that deals
with the practical application of algorithms for data analysis, based mainly on machine
learning, aims to create an automatic system that, based on accumulated experience and
knowledge, will be able to detect driving style patterns in the processed data, predict
future events and also react to them, such as during real travel [17]. Among the practical
applications of machine learning systems, the following can be distinguished. First, research
about recognizing elements in the image may also inspire analyzing single or multi-modal
signals such as EOG [48,49], recognition of speech by detection using wearable devices
around the head with all interference caused by such devices [50], written text, navigation in
an unknown area, recommendation systems, guidance, forecasting financial and economic
trends, and more pioneering research can open up new areas [51].

Finally, possible improvements regarding the machine learning aspects of the study
could be tested. The investigation of several methods of signal analysis and their impact on
the results might be advantageous [52,53]. More advanced feature extraction methods such
as feature learning with deep neural networks (e.g. convolutional neural networks) [29]
could be investigated once the dataset size is increased to a point where enough data are
available to properly train such models. Time-series transfer learning techniques to refine
the performances of these models could also be investigated [54].

5. Conclusions

In this paper, a machine learning method using physiological data acquired from
smart glasses for the detection of road types while driving a car was presented. A pair of
JINS Meme smart glasses collecting the EOG, linear acceleration and angular velocity was
used by 30 subjects driving a car in real-life conditions. Statistical features were manually
extracted from the data and used to train a classifier for the recognition of four different
road types (city road, highway, housing estate and undeveloped area). A comparative study
between various state-of-the-art classifiers was carried out and led to a best overall accuracy
of 87.64% using boosted trees. Additionally, a feature importance calculation based on
ANOVA showed that the most important features were coming from head movements.

Despite the very promising results obtained by our proposed approach, our study still
has some major limitations. The most important one is that we used a single dataset for
our analysis due to the lack of publicly available data that deal with a similar problem.
Moreover, the dataset was limited in size because of sanitary restrictions caused by the
COVID-19 pandemic, which might limit the generalization capacities of our method. Finally,
it is currently not possible to compare our results to other studies due to the lack of past
research working on a similar problem.

Future works will focus on increasing the amount of data used for such a study. This
will first accomplished by resuming and extending the data acquisition campaign in real
conditions that were interrupted by the COVID-19 pandemic. Alternative approaches
based on acquiring synthetic data using simulators will also be tested, as they provide
a relatively cost-effective way to acquire additional data that could be used to boost the
generalization capacity of our trained classifiers [55–57]. Finally, additional unobtrusive
sensor-monitoring physiological modalities such as the HR or RR [47] will be considered in
future studies.
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Appendix A. Comparison of Classifiers

To justify the choice of the final classifier we ended up using, we present a comparison
of the four best solutions from different groups in this appendix. For all the classifiers, we
used the same validation scheme (holdout validation) and the same data partition scheme
(70, 20, 10).

Appendix A.1. Support Vector Machine

From the group of SVM classifiers, the best results were achieved with the follow-
ing hyperparameters:

• Preset: cubic SVM;
• Kernel function: cubic;
• Kernel scale: automatic;
• Box constraint level: 1;
• Multiclass method: one vs. one;
• Standardize data: true.

Figures A1 and A2 and Table A1 present the performance of aforementioned model.

https://doi.org/10.21227/4yte-5s06
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Figure A1. Confusion matrix of the SVM classifier.

Figure A2. ROC curves of the SVM classifier.

Table A1. Evaluation metrics of the SVM classifier on the test dataset.

Type of Road Accuracy Precision Recall F1 Score AUC

City road 0.68 0.61 0.68 0.65 0.89
Highway 0.72 0.78 0.72 0.75 0.89

Housing estate 0.69 0.63 0.69 0.66 0.90
Undeveloped area 0.82 0.84 0.82 0.83 0.94

Overall 0.74 0.72 0.73 0.72
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Appendix A.2. k-Nearest Neighbors

From the group of KNN classifiers, the best results were achieved with the follow-
ing hyperparameters:

• Preset: Fine KNN;
• Number of neighbors: 1;
• Distance metric: Euclidean;
• Distance weight: equal;
• Standardize data: true.

Figures A3 and A4 and Table A2 present the performance of the model.

Figure A3. Confusion matrix of kNN.

Figure A4. ROC curves of kNN.
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Table A2. Evaluation metrics of the kNN classifier on the test dataset.

Type of Road Accuracy Precision Recall F1 Score AUC

City road 0.64 0.65 0.64 0.65 0.78
Highway 0.73 0.73 0.73 0.73 0.80

Housing estate 0.67 0.67 0.67 0.67 0.80
Undeveloped area 0.81 0.81 0.81 0.81 0.87

Overall 0.73 0.72 0.72 0.72

Appendix A.3. Neural Networks

From the group of NN classifiers, the best results were achieved with the following hy-
perparameters:

• Preset: wide neural networks;
• Number of fully connected layers: 2;
• First layer size: 100;
• Second layer size: 10;
• Activation: ReLU;
• Regularization strength (Lambda): 0;
• Standardize data: yes.

Figures A5 and A6 and Table A3 present the performance of the model.

Figure A5. Confusion matrix of neural networks.

Table A3. Evaluation metrics of the neural network classifier on the test dataset.

Type of Road Accuracy Precision Recall F1 Score AUC

City road 0.71 0.66 0.71 0.69 0.91
Highway 0.78 0.83 0.78 0.80 0.93

Housing estate 0.72 0.68 0.72 0.70 0.90
Undeveloped area 0.84 0.86 0.84 0.85 0.95

Overall 0.77 0.76 0.76 0.76
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Figure A6. ROC curves of neural networks.

Appendix A.4. Ensemble Classifiers

From the group of ensemble classifiers, the best results were achieved with the follow-
ing hyperparameters:

• Preset: bagged trees;
• Ensemble method: bag;
• Learner type: decision tree;
• Maximum number of splits: 33,002;
• Number of learners: 30.

Figures A7 and A8 and Table A4 present the performance of the model.

Figure A7. Confusion matrix of the ensemble classifier.
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Figure A8. ROC curves of the ensemble classifier.

Table A4. Evaluation metrics of the ensemble classifier on the test dataset.

Type of Road Accuracy Precision Recall F1 Score AUC

City road 0.84 0.75 0.84 0.79 0.95
Highway 0.82 0.87 0.82 0.84 0.96

Housing estate 0.87 0.77 0.87 0.82 0.96
Undeveloped area 0.86 0.91 0.86 0.88 0.98

Overall 0.84 0.82 0.85 0.83
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