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Abstract: This research proposes a methodology for the selection of input variables based on eX-
plainable AI (XAI) for energy consumption prediction. For this purpose, the energy consumption
prediction model (R2 = 0.871; MAE = 2.176; MSE = 9.870) was selected by collecting the energy
data used in the building of a university in Seoul, Republic of Korea. Applying XAI to the results
from the prediction model, input variables were divided into three groups by the expectation of the
ranking-score (Fqvar) (10 ≤ Strong, 5 ≤ Ambiguous < 10, and Weak < 5), according to their influence.
As a result, the models considering the input variables of the Strong + Ambiguous group (R2 = 0.917;
MAE = 1.859; MSE = 6.639) or the Strong group (R2 = 0.916; MAE = 1.816; MSE = 6.663) showed
higher prediction results than other cases (p < 0.05 or 0.01). There were no statistically significant
results between the Strong group and the Strong + Ambiguous group (R2: p = 0.408; MAE: p = 0.488;
MSE: p = 0.478). This means that when considering the input variables of the Strong group (Fqvar:
Year = 14.8; E-Diff = 12.8; Hour = 11.0; Temp = 11.0; Surface-Temp = 10.4) determined by the XAI-based
methodology, the energy consumption prediction model showed excellent performance. Therefore,
the methodology proposed in this study is expected to determine a model that can accurately and
efficiently predict energy consumption.

Keywords: energy forecasting; input variable selection; long short-term memory (LSTM); eXplainable
AI (XAI); SHapley Additive exPlanations (SHAP)

1. Introduction

As environmental problems arise due to global warming, greenhouse gas emissions
have emerged as a serious problem [1]. In 2005, the Kyoto Protocol went into effect, and the
reduction of greenhouse gas emissions began to be made mandatory in developed countries;
while in 2014, the Intergovernmental Panel on Climate Change recommended the high-level
reduction of greenhouse gas emissions [2,3]. To efficiently manage such greenhouse gas
emissions, it is necessary to balance energy consumption and supply [4]; in addition, sophis-
ticated prediction research on energy consumption is required in advance [5]. Accurately
predicting energy consumption is an important strategy for improving energy efficiency [6],
and it occupies an important part in low-carbon energy conversion and renewable energy
projects [7,8].

For this purpose, various studies on energy consumption prediction based on machine
learning or deep learning were recently conducted. Fang and Lahdelma (2016) used
the SARIMA model to predict heat demand and reported the prediction accuracy of (91,
77, and 96) % R2 values for the overall, summer, and winter seasons, respectively. The
input variables used for this purpose were outdoor temperature, wind speed, weekly and
daily usage patterns, and regional information (residential, commercial, and industrial
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areas) [9]. Sandberg et al. (2017) predicted actual heat demand data using eight weather
information, holiday information, heat demand from the previous day (kWh), heat demand
from the same time period one week ago (kWh), and average heat demand for the past
24 h (kWh) [10]. Johanson et al. (2017) presented an online machine learning prediction
algorithm based on Extra-Trees Regressor and Extreme Learning Machines, and the input
variables used in this case were actual weather forecast and historical heat demand data [11].
However, other than on the training data, their model showed somewhat poor performance
under exceptional circumstances.

As mentioned above, although various studies on energy demand forecasting were
conducted, there were differences in the input variables used depending on the purpose.
To predict the heating energy demand of a residential building, solar radiation, wind speed,
external temperature, hot water flow rate the previous day, and facility outlet hot water
temperature were used as input variables [12]. Additionally, the history of building use, the
characteristics of heating power, and climate data were considered to predict the heating
demand in a short time range [13]. In a study to predict the energy consumption used in
schools, information on the school’s architectural form and architectural characteristics
were adopted as input variables [14]. Magalhaes et al. (2017) used building characteristics
and location information, heating patterns, and indoor temperature as input variables in
their study to specify the relationship between heating patterns and energy demand [15].
However, to the best of our knowledge, the criteria or rationale for the selection of input
variables were not clearly presented.

This study proposes a novel methodology for the selection of input variables for fore-
casting energy consumption based on eXplainable artificial intelligence (XAI). Developed
to solve the “Black-box” problem of the AI model, XAI is another artificial intelligence (AI)
model that makes it possible to explain the results derived from other AI models and their
processes [16]. The XAI is a state-of-the-art algorithm that enables the analysis of reliability,
evidence, error causes, and improvement plans of results derived from artificial intelligence
models [17]. In this study, these characteristics of XAI are applied to analyze the influence
of input variables on energy consumption forecasting and, through this, select an optimal
input variable.

2. Materials and Methods
2.1. Overview

Figure 1 shows the overall workflow for the XAI-based input variable selection method-
ology for energy consumption forecasting. First, a model for energy consumption forecast-
ing was determined using directly measured energy consumption data and input variables
selected through literature research. XAI was applied to the results derived from the
determined model, and three groups (Strong, Ambiguous, and Weak) were classified with
the magnitude of the influence of each input variable on the prediction result. Finally, the
optimal input variables were selected by re-evaluating the energy consumption forecasting
model selected for each group and intergroup combination.

2.2. Data Acquisition
2.2.1. Target Variable: Energy Consumption Data

The actual energy consumption data were measured from a gas heat pump (GHP)
installed in a university building in Seoul, Korea of Republic, to learn the energy consump-
tion forecasting model. The building is a complex with a total of 17 floors (5 basement floors
and 12 ground floors): Parking lot from the 5th basement floor to the 3rd basement floor;
classrooms on the 2nd and 1st basement floors; convenience facilities, such as hospitals,
pharmacies, cafes, and restaurants, on the 1st and 2nd floors; venture companies and
meeting rooms on the 3rd floor; professorial laboratories and graduate school laboratories
on the 4th to 8th floors; guesthouses on the 9th to 11th floors; and 12th floor conference
room. The actual measurement period of energy consumption data was from 14:00 on



Electronics 2022, 11, 2947 3 of 13

15 December 2020, to 13:00 on 15 December 2021, and a total of 8760 data were acquired for
each time.
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Figure 1. Overall workflow for XAI-based input variable selection for energy consumption forecasting.

2.2.2. Input Variables: Time Information, Climate Data, and Historical Energy
Consumption Data

The input variables used to build the energy consumption prediction model consist of
time information, climate data, and past energy consumption data, which were selected
through previous research in the literature (Table 1). The climate data were acquired in
XML format through the open API of the Automated Surface Observing System, and the
energy consumption data measured were used for the historical energy data.

Table 1. Input variables selected to build the energy consumption forecasting model.

Data Type Input Variables Abbreviation References

Time Year Year [18]
Month Month [18]

Day Day [18]
Hour Hour [18]

Climate Temperature Temp [18,19]
Wind-speed W-speed [12,18,20–22]

Wind-direction W-direction [19]
Cloud amount C-amount [19]

Dew-point D-point [18,22]
Solar-insolation-amount S-I-amount [12,20,22,23]

Visibility-range V-range [19,24]
Humidity Humid [18,22]

Surface-temperature Surface-Temp [19,25]
Sunshine-amount S-amount [19,26]

Energy Energy-consumption-difference E-Diff [13,15,21]

2.3. Energy Consumption Forecasting Models

All models used to forecast energy consumption were evaluated by classifying data
into 80% training dataset, 10% validation dataset, and 10% test dataset, which were ran-
domly selected. In order to maintain data integrity, null values were replaced with the
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average of the before and after values, and categorical variables were converted into nu-
meric variables. The numeric input variables used in all models were normalized within
the range of 0 and 1. Additionally, zero values were replaced with a very small value (10−6)
to improve the forecasting performance.

Extreme Gradient Boosting (XGBoost) is a distributed gradient-boosted decision tree
machine learning library for solving classification and regression problems [27], and in this
study, a Classification and regression tree (CART) [28] was used. Regression and mean
absolute error (MAE) were used for the objective function and loss function, respectively.
The hyperparameters are used to minimize a value of the mlogloss, which is an evaluation
index of a training set. The eta that represents a learning rate was 0.05, the gamma for
specifying loss reduction was 0, the max_depth that represents the maximum depth of an
ensemble model tree was 5. The min_child_weight to adjust the minimum value of the sum
of weights for the observed values was 1.

Support vector regression (SVR) is a regression analysis algorithm derived from the
support vector machine (SVM), which is widely used in the classification, regression, and
outlier discrimination fields [29] and was used to predict energy consumption in this study.
The thickness E of a tube is 0.5. The SVR uses the loss function, which does not penalize’
errors below some E (> 0). The penalty factor C, which penalizes any deviation beyond
the ε-tube, is 1. The gaussian radial basis function is considered, so the gamma was set
automatically.

The Light Gradient Boosting Model (LightGBM) is a horizontal tree learning algorithm
based on gradient boosting, and consists of gradient-based one-side sampling (GOSS) and
greedy bundling [30]. The GOSS was used to extract samples for the energy consump-
tion forecasting model, and greedy bundling was used to select features to ensure the
performance of the model [30]. The maximum depth (max_depth) of the tree was −1. The
num_leaves for searching the maximum tree leaves for base learners was 31. The learning
rate was 0.01, and finally, boosting as the gbdt-gradient boosting decision tree.

Long short-term memory (LSTM) is a neural network structure developed to solve the
long-term dependencies of recurrent neural networks (RNNs) and is mainly used to forecast
long-term time-series data, such as energy consumption [31–33]. The number of hidden
layers was 2, and the number of hidden layer neurons was 128. The tanh function was used
to prevent the loss of the model, and the sigmoid function was used at the output layer for
interpreting. Mean squared error (MSE) was chosen as the loss function to calculate the
error for predicting and target values. The adam algorithm was used as a model optimizer.
Epochs were set to 50, and batch size was 16.

Coefficient of determination (R2) [34], mean absolute error (MAE) [35], and mean
squared error (MSE) [36] were used to evaluate and compare the performance of energy
consumption forecasting models. The R2 was used to compare the scale of the actual value
with the predicted value by the models used for energy consumption forecasting in this
study, while MAE and MSE, which are mainly used for regression problems, were used
to quantify the error between the actual and predicted energy consumptions. The best
energy consumption forecasting model was selected through the results calculated by these
performance indicators. Using the model, a total of 10 models were constructed, from a
model using data from the previous day as an input variable, to a model using accumulated
data for 10 days.

2.4. Selection of Optimal Variables Based on eXplainable AI (XAI) for Energy
Consumption Forecasting

The Shapley additive explanation (SHAP) of XAI was applied to all results derived
from the 10 models to quantitatively analyze the influence of input variables on the energy
consumption forecasting results. XAI is a state-of-the-art technology to find answers about
how much to trust the results derived from the artificial intelligence model, what is the
reason for the derivation, and how to improve the model [17]. The SHAP is a technique
that calculates the contribution of each input variable to the prediction result using Shapley
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values [37,38]. The XAI regenerated 215 = 32,768 models for each forecasting model, where
15 represents the number of input variables, and calculated the difference in prediction
results according to the presence or absence of all input variables, to obtain the importance
of specific variables. This process was repeated for the 10 models.

The 15 input variables were classified into three groups (Strong, Ambiguous, and Weak)
by analyzing the results of XAI applied to the energy consumption forecasting model. For
this, a ranking-score was assigned to each input variable: {1st = 15; 2nd = 14; . . . ; 14th = 2;
15th = 1}, and Fqvar was quantified as the expectation of the score (Equation (1)):

Fqvar =
n

∑
i = 1

rvar
i P(rvar

i ) (1)

where Fqvar means the expectation of the ranking-score of the input variable, and i and
rvar

i represent the number of days of analysis of (1–10 days) and the i-th ranking-score of
the variable, respectively. P

(
rvar

i
)

is the probability of occurrence of rvar
i , and 0.1 was used

here. Therefore, the minimum value of Fqvar was 1, while the maximum was 15. Fqvar was
classified into Strong, Ambiguous, and Weak groups according to Equation (2):

If


10 ≤ Fqvar

5 ≤ Fqvar < 10
Fqvar < 5

, then


Strong group

Ambiguous group
Weak group

 (2)

The optimal input variables were determined by re-evaluating the consumption
forecasting models for each group and intergroup combination (Strong + Ambiguous,
Strong + Weak, Ambiguous + Weak, and Strong + Ambiguous + Weak).

2.5. Statiatical Analysis

The difference between the energy consumption forecasting results for each group and
the intergroup combination was analyzed using independent t-test. For statistical analysis,
SPSS 15.0 software (SPSS Inc., Chicago, IL, USA) was used, and all statistical significance
levels were 0.05 or 0.01.

3. Results
3.1. Energy Consumption Data

The energy consumption data measured from the city gas meter (gas, heat pump, GHP)
consist of the uncorrected cumulative value, the correction coefficient and the compression
coefficient, and the temperature and pressure values of the gas at the moment it passes
through the meter. The uncorrected cumulative value means the pure value before the
standard condition measured by the mechanical meter. The energy consumption data used
in this study were the corrected cumulative value obtained by converting the uncorrected
cumulative value with the correction and compression factors. Figure 2 shows the corrected
cumulative values for each hour measured from 14:00 on 15 December 2020, to 13:00 on
15 December 2021.

The x- and y-axes represent time and energy consumption, respectively, and the unit of
energy consumption is the normal cubic meter

[
Nm3

]
per hour. The energy consumption

data showed a tendency to increase in the summer and winter seasons due to cooling and
heating, respectively, and to decrease in the spring and autumn seasons. According to the
report from the National Weather Service [39], the cooling-related energy consumption
increases in summer due to the hot and humid characteristics of the domestic weather, while
winter is generally cold and dry under the influence of continental cyclones, increasing
heating-related energy consumption. In spring and fall, energy consumption is low due to
the clear and dry days caused by migratory anticyclones.
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(c) month.

3.2. Results of Energy Consumption Forecasting Models

Figure 3 shows the prediction results of four models on the test data (red solid line).
The x-axis and y-axis represent the number of test data and the energy consumption[

Nm3/h
]
, respectively. Figure 3a–d show the energy consumption results for each model

on test data, respectively.
Table 2 shows the performance evaluation results of each model for the test data. In

R2, LSTM showed the highest level, and MAE and MSE were lowest in LightGBM and
LSTM, respectively. The predictive model that showed the lowest overall performance
evaluation was SVR. In this study, the best energy consumption forecasting model was
preferentially selected with the highest coefficient of determination (R2 = 0.871). Therefore,
the LSTM model was determined even though the MAE was not the first priority. The
LSTM model establishment was implemented using Tensorflow with version 1.14.0 and
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Keras 2.2.4 and Python 3.7.13 (64-bit). It took 19 min and 24 s for the model to learn the
data and approximately 30 s for prediction.

Electronics 2022, 11, 2947  7  of  14 
 

 

3.2. Results of Energy Consumption Forecasting Models 

Figure 3 shows the prediction results of four models on the test data (red solid line). 

The  x‐axis  and y‐axis  represent  the number of  test data  and  the  energy  consumption 
ሾNmଷ/hሿ, respectively. Figure 3a–d show the energy consumption results for each model 

on test data, respectively. 

 

Figure 3. Energy consumption prediction results for each model on test data. (a) XGBoost, (b) 

SVR, (c) LightGBM, and (d) LSTM. 

Table 2 shows the performance evaluation results of each model for the test data. In 

R2, LSTM showed the highest  level, and MAE and MSE were  lowest  in LightGBM and 

LSTM, respectively. The predictive model  that showed  the  lowest overall performance 

evaluation was SVR. In this study, the best energy consumption forecasting model was 

preferentially selected with the highest coefficient of determination (R2 = 0.871). Therefore, 

the LSTM model was determined even though the MAE was not the first priority. The 

LSTM model establishment was implemented using Tensorflow with version 1.14.0 and 
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(c) LightGBM, and (d) LSTM.

Table 2. Performance evaluation result of each forecasting model on test data.

Models R2 MAE MSE

XGBoost 0.807 2.449 13.109
SVR 0.580 4.095 28.619

LightGBM 0.855 2.094 11.044
LSTM 0.871 2.176 9.870

Table 3 shows the performance evaluation results for forecasting energy consumption
by applying the 15 input variables to the LSTM model from (1 to 10 days). The range of R2

was (0.705–0.912), and the ranges of MAE and MSE were (1.966–4.143) and (6.963–16.855),
respectively. The model using 2 days (48 h) of data showed the highest R2 value (0.912),
while the 1-day (24 h) data-based model showed the lowest error. There was no significant
trend for each period.
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Table 3. LSTM energy consumption forecasting performance for time (1 to 10 days).

Day (Hour) R2 MAE MSE

1 Day (24 h) 0.897 1.966 6.963
2 Days (48 h) 0.912 2.023 7.628
3 Days (72 h) 0.860 2.532 12.431
4 Days (96 h) 0.889 2.220 9.264

5 Days (120 h) 0.795 2.789 16.855
6 Days (144 h) 0.786 4.143 13.707
7 Days (168 h) 0.887 2.082 8.962
8 Days (192 h) 0.894 2.117 8.456
9 Days (216 h) 0.705 3.323 13.713
10 Days (240 h) 0.898 1.976 8.103

3.3. Optimal Input Variables by Using XAI (SHAP)

The XAI (SHAP) was applied to interpret the influence of input variables on the
predicted energy consumption results for each time period, and Figure 4 shows a sample
of the results, i.e., a sample of the SHAP value for the predicted result using 6 days of
data. The vertical axis represents the 15 input variables considered in this study, and the
horizontal axis is the impact on model output. The SHAP values are expressed in the form
of dots with the influence of each input variable. Each input variable means a positive
influence on the right side and a negative on the left side on the prediction result centered
on the baseline (SHAP value = 0.00). The range of the SHAP value indicates the degree of
influence on the prediction result, and through this, the variables located on the vertical
axis are sorted in order of importance from top to bottom. In this case, it was found that
the Year had the largest influence on the prediction result, while the S-I-amount had the
smallest influence.
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The expected value of the ranking-score calculated by Equation (1) was classified into
three groups according to the criterion of Equation (2), and the results were represented
with the value of Fqvar (Table 4).
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Table 4. Input variable grouping according to the XAI analysis results.

Strong (Fqvar) Ambiguous (Fqvar) Weak (Fqvar)

Year (14.8) Day (9.8) S-amount (4.9)
E-Diff (12.8) Dew-point (9.3) V-range (4.9)
Hour (11.0) Month (7.8) W-direction (4.8)
Temp (11.0) Humid (6.8) W-Speed (2.6)

Surface-Temp (10.4) C-amount (6.5) S-I-amount (2.2)

3.4. Performance Evaluation with The Optimal Variables

Figure 5 shows the results of energy consumption predicted by applying each group
and intergroup combination to the LSTM model. Figure 5a–c shows the performance of the
LSTM model evaluated by R2, MAE, and MSE, respectively, and the differences between
each group were analyzed statistically. The higher the R2, the lower the MAE and MSE, the
better the predictive performance, and each evaluation index was presented in order of the
highest performance. The groups containing Strong showed high R2 and low MAE and
MSE, while in contrast, the groups containing Weak showed low performance. In all the
results, the predictive performances of the (Strong + Ambiguous) groups were quantitatively
the highest, but there were no statistically significant differences with the results of the
Strong groups (R2: p = 0.408; MAE: p = 0.488; MSE: p = 0.478).
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4. Discussion

This research presents an XAI-based input variable selection methodology for energy
consumption prediction. For this purpose, the gas consumption data for one year (from
14:00 on 15 December 2020 to 13:00 on 15 December 2021) consumed in a 17-story building
located within the university were measured. Because the selected building was composed
of diverse facilities including commercial properties and offices, its complexity could
make the study difficult not only to forecast energy consumption but also to select the
appropriate relevant variables. The SHAP of XAI was applied to analyze the influence of
each input variable on the predicted result from the model, and the optimal input variable
was selected.

The input variables used to build the energy consumption forecasting model con-
sisted of time information [18], climate data [12,18–26], and past energy consumption
data [13,15,21]. The time information and the past energy data were considered to reflect
the characteristics of the time series data. The changes in temperature have a direct effect on
energy consumption to maintain body temperature [32]. Dew point [40] and humidity [38],
with the temperature, determine the sensible temperature. Wind speed [41] and wind
direction [42] cause internal temperature changes due to air infiltration in the building,
and surface temperature, along with the wind information, affects heating and cooling
consumption in buildings [43]. The solar insolation amount causes a change in the temper-
ature inside the building because it directly affects the temperature of the exterior wall of
the building [44]. The cloud amount determines the absorption and scattering of the solar
insolation amount [45]. Sunshine amount [46] and visibility range [47] affect energy con-
sumption as factors that mainly determine people’s indoor and outdoor activities. Energy
consumption forecasting models were evaluated based on these input variables (Table 2),
and these results were similar to those of previous studies, but slightly different (R2 = 0.85,
MAE = 15, RMSE = 8.83 in XGBoost [9]; R2 = 0.32, MAE = 0.65, RMSE = 0.68 in SVR [48];
MAE = 4.16, RMSE = 5.06 in LightGBM [49]; MAPE = 28.248, RMSE = 0.127 in LSTM [32]).
These differences are thought to be caused by the characteristics of the measured building
or the type of energy. LSTM was selected through these performance index analysis results
of each energy consumption prediction model. Since the energy consumption data have the
characteristics of time series information with periodicity [31,50], among the several models,
the recurrent neural network method was adopted. From the results of daily training of
past data (from 1 to 10 days before) to forecast the energy consumption for 24 h using
LSTM, the cases with high performance were 1-day (R2 = 0.897; MAE = 1.966; MSE = 6.963)
and 2 days (R2 = 0.912; MAE = 2.023; MSE = 7.628), and the case with the lowest prediction
performance was 9 days (R2 = 0.705; MSE = 3.323; MSE = 13.713). However, there was no
significant trend in the daily energy consumption prediction performance.

In this study, the SHAP of XAI was applied to analyze the influence of each input
variable on the energy consumption forecasting result, and through this, 15 input variables
were classified into 3 groups of Strong, Ambiguous, and Weak. In addition, the LSTM-based
energy consumption forecasting model was re-evaluated for each group and intergroup
combination. As a result, the cases in the Strong group showed high performance, while the
cases in the Weak group showed low performance. In all performance indices (R2, MAE, and
MSE), the combination of Strong and Ambiguous showed the best results (R2 = 0.917 ± 0.012,
MSE = 1.859 ± 0.198, and MSE = 6.639 ± 1.148), and there was no significant difference
from the results of the predictive model using only the Strong group (R2 = 0.916 ± 0.016;
MAE = 1.862 ± 0.169; MSE = 6.663 ± 1.212). In addition, these results were statistically
different from the performance of the forecasting model using all variables (p < 0.05 or 0.01).
In other words, this suggests that if the model is trained using the high-impact variable
determined through XAI analysis, the performance of the energy forecasting model can be
sufficiently improved.

Although various studies on energy consumption prediction were previously con-
ducted, there were differences in the input variables used depending on the research
purpose or analysis targets (buildings); as far as we know, the input variable selection
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criteria or bases in these earlier works were not clearly presented. Therefore, this study
presented an XAI-based input variable selection methodology for an efficient energy con-
sumption forecasting model; through this, it was evaluated that the performance of the
forecasting model can be advanced. However, some limitations are inherent in the results
of this study, such as the limited analysis targets, input variables, and predictive models.
Additionally, the energy consumption data for this study were collected from 14:00 on
15 December 2020, to 13:00 on 15 December 2021. The data collecting period falls into
a pandemic period of COVID-19; however, the result of the energy forecasting model,
including pandemic-related variables (cumulative numbers of confirmed cases in the na-
tionwide, Seoul, and metropolitan areas), showed no significant discrepancy comparing to
the one without. R2, MAE, and MSE from the forecasting model with the pandemic-related
variables were 0.854, 2.324, and 10.021, respectively, and those without turned out to be
0.871, 2.176, and 9.870. Moreover, the influences of the three variables analyzed with XAI
were also low, and each SHAP value was 0.00402, 0.000443, and 5.285 × 10-5. It is expected
that a multi-aspect analysis of the pandemic situation along with the non-pandemic period
will yield much more meaningful results. In future studies, much more general conclusions
will be drawn from studies that take into account socioeconomic variables for various types
of buildings.
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