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Abstract: Digital image blending is commonly used in applications such as photo editing and
computer graphics where two images are combined to produce a desired blended image. Digital
images can be blended by addition or multiplication, and usually exact addition or multiplication is
performed for image blending. In this paper, we evaluate the usefulness of inexact multiplication
for digital image blending. Towards this, we describe how an exact array multiplier can be made
inexact by introducing vertical cut(s) in it and assigning distinct combinations of binary values to
the dangling inputs and product bits. We considered many 8-bit digital images for blending and
the blended images obtained using exact and inexact multipliers are shown, which demonstrates
the usefulness of inexact multiplication for image blending. For 8 × 8 image blending, one of
our inexact array multipliers viz. IAM01-VC8 was found to achieve 63.3% reduction in area, 21%
reduction in critical path delay, 72.3% reduction in power dissipation, and 78.1% reduction in energy
compared to the exact array multiplier. In addition, IAM01-VC8 achieved 60.6% reduction in area,
9.7% reduction in critical path delay, 64.7% reduction in power dissipation, and 68.1% reduction in
energy compared to the high-speed exact 8 × 8 multiplier that was automatically synthesized using
a logic synthesis tool. The exact and inexact multipliers were physically realized using 32/28 nm
CMOS process technology.

Keywords: approximate computing; arithmetic circuits; multiplier; combinational logic; low power;
high speed; CMOS

1. Introduction

Inexact computing is a promising alternative to exact computing for error-resilient
practical applications [1,2] that facilitates higher speed, lesser power dissipation, and
greater energy efficiency. Examples of such practical applications include digital image,
video and audio processing [3–5], multimedia [6], big data and analytics [7], neuromorphic
computing [8], hardware implementation of neural networks for AI and machine learn-
ing [9], software engineering [10], memory storage [11], memory systems for multicore
processors [12], low-power graphics processing [13], etc. The limits of human perception
pave the way for error resilience in many practical applications which involve digital signal
processing. For example, minor distortions in digital images and video frames and feeble
noise in a digital audio are not discernible by humans due to the innate limitations of
human perception.

Inexact computing relates to hardware, software, and memory storage, and inexact
hardware covers arithmetic circuits and logic circuits [3,4]. As regards inexact arithmetic
circuits, the primary focus has been on the design of inexact adders and multipliers [5]
since addition and multiplication are pervasive in general purpose microprocessors, digital
signal processors, and application specific processors. In this context, this paper describes
the designs of inexact array multipliers (IAMs) and evaluates their usefulness for a digital
image-blending application. We compare the performance and design metrics of the exact
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array multiplier (EAM) with different IAMs with respect to 8 × 8 image blending. The
quality of image blending was quantified using standard signal processing metrics such
as the signal-to-noise ratio and the structural similarity index. The error metrics of the
IAMs were calculated, and the design metrics of EAM and IAMs were estimated after
implementation using a 32/28 nm CMOS process technology.

A preliminary version of this work was presented in [14], and this paper is an extended
version that presents additional blended images obtained by experimentation, which
consistently demonstrates the superiority of one of our IAMs for image blending. In
addition, the energy of the EAM and IAMs were estimated and shown for a comparison in
this paper. The remainder of the paper is organized into five sections. Section 2 presents
the schematic of an 8 × 8 EAM and describes how vertical cut(s) can be introduced in it
and how different combinations of binary values can be assigned to the dangling inputs
and product bits to generate different 8 × 8 IAMs. Nevertheless, the procedure of obtaining
IAMs from an EAM is generic and it can be extended to address multiplication of any size.
Section 3 gives the values of some popular error metrics viz. mean absolute error (also
called mean error distance) and root mean square error, calculated for the IAMs. Section 4
discusses image blending and shows examples of blended images obtained using the EAM
and IAMs. Section 5 gives the design metrics, namely area, critical path delay, and average
power dissipation of EAMs and IAMs. The EAMs and IAMs were described in Verilog
hardware description language and synthesized using a logic synthesis tool by using a
32/28 nm CMOS standard digital cell library. Section 6 concludes the paper.

2. Exact and Inexact Array Multipliers

We consider the blending of two 8-bit digital images as a practical application to
evaluate the usefulness of IAMs. To blend two 8-bit images, an 8 × 8 multiplier is sufficient.
To perform small multiplications, an 8 × 8 multiplication for example, the array multiplier
architecture is preferable as it has a regular structure and is thus convenient to layout [15],
and it can also be easily pipelined to increase the throughput as needed.

The schematic of an 8 × 8 EAM is shown in Figure 1, where P7 to P0 and Q7 to Q0
represent the multiplier inputs, and M15 to M0 represent the product bits. In the multiplier
inputs, bits P7 and Q7 are the most significant while bits P0 and Q0 are the least significant.
In the multiplier output, bit M15 is most significant while bit M0 is the least significant. An
8 × 8 EAM generates 64 partial products which can be realized using an array of 2-input
AND gates. In Figure 1, P7Q7 up to P0Q0 represent the 64 partial products, which result
from the multiplication of input bits P7 to P0 with Q7 to Q0. The EAM incorporates a carry
save adder comprising half adders and full adders, where the carry outputs generated from
the half adders and/or full adders in one logic level are passed on as carry inputs to the
half adders and/or full adders present in the next logic level. A binary half adder adds two
input bits and produces a sum bit and any carry overflow, while a binary full adder adds
two input bits including any carry input and produces a sum bit and any carry overflow.
An 8 × 8 EAM comprises 8 half adders and 48 full adders.

In Figure 1, vertical cuts labelled as VC0 up to VC13 are shown as examples by blue
dashed lines, and any of these vertical cuts may be made in an EAM to generate an IAM.
Basically, after making a vertical cut in an EAM, the circuit portion on the right side of
the cut will be eliminated and the circuit portion on the left side of the cut would be
retained, but with some modification. The deeper the vertical cut, more logic would be
eliminated, and hence, more inaccuracy would be introduced in the multiplication. For
example, vertical cut VC0 would eliminate just one 2-input AND gate, whereas vertical
cut VC2 would eliminate five 2-input AND gates which realize the partial products P2Q0,
P1Q1, P1Q0, P0Q1, and P0Q2; one 2-input AND gate that produces M0; and 2 half adders
and 1 full adder. Therefore, the choice of a vertical cut should be made commensurate
with the extent of inaccuracy that would be deemed acceptable for a practical application.
For an illustration, Figure 2 shows the result of a vertical cut VC8 made on the EAM. The
circuit portion on the right side of VC8 is eliminated. The full adders shown in rose in
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Figure 2 have one of their inputs cut, which are referred to as dangling inputs; these may
be assigned a constant binary value of 0 or 1. The full adder that produces product bit M9
in Figure 1 has both its inputs cut in Figure 2, so it is eliminated; the sum output of the full
adder present above it is now labelled as M9. The full adder that produces product bit M10
in Figure 1 has one of its inputs cut in Figure 2, so it is converted to a half adder, which is
shown in rose. After making the vertical cut VC8 on the EAM, product bits M8 up to M0
will become dangling, and hence, they can be assigned a constant binary value of 0 or 1, as
shown in Figure 2. Given these, after making a vertical cut on an EAM, four generalized
IAM architectures can be derived, which are given as follows:

• IAM00–binary 0 is assigned to the dangling input of the full adders (shown in rose),
and binary 0 is assigned to the dangling product bits (here, M8 up to M0)

• IAM01–binary 0 is assigned to the dangling input of the full adders (shown in rose),
and binary 1 is assigned to the dangling product bits (here, M8 up to M0)

• IAM10–binary 1 is assigned to the dangling input of the full adders (shown in rose),
and binary 0 is assigned to the dangling product bits (here, M8 up to M0)

• IAM11–binary 1 is assigned to the dangling input of the full adders (shown in rose),
and binary 1 is assigned to the dangling product bits (here, M8 up to M0)

Figure 1. Architecture of an 8 × 8 exact array multiplier (EAM). Example vertical cuts VC0 up to
VC13, any of which could be made on an EAM to generate an inexact array multiplier (IAM), are
shown as blue dashed lines.
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Figure 2. Portrayal of how IAMs are derived by making an example vertical cut VC8 on an
8 × 8 EAM.

Among the above, IAM00 architecture was presented in [16,17], and IAM01, IAM10,
and IAM11 architectures are our propositions. IAM00 and IAM10 architectures have a
commonality in that the dangling product bits are assigned a binary 0, and IAM01 and
IAM11 architectures have a commonality in that the dangling product bits are assigned a
binary 1.

When binary 0 is given as an input to the full adders shown in rose in Figure 2,
they would be transformed into half adders. To explain this, let us presume that A, B,
and C represent the inputs of a full adder, and SUM and COUT represent its sum and
carry outputs, which are expressed by SUM = A⊕B⊕C and COUT = (A⊕B) C + AB,
respectively. Supposing one of the inputs, say C, is assigned a binary 0, then SUM = A⊕B
and COUT = AB, which represent the equations of a half adder. Therefore, the full adders
shown in rose in Figure 2 can be replaced by half adders, which is applicable to IAM00 and
IAM01 architectures. Alternatively, if say C is assigned a binary 1 (i.e., binary 1 is given as
an input to the full adders shown in rose in Figure 2), then SUM = A�B, and COUT = A + B,
which can be realized using a 2-input XNOR gate and a 2-input OR gate. Hence, the full
adders shown in rose in Figure 2 can be reduced to the combination of a 2-input XNOR
gate and a 2-input OR gate, which is applicable to IAM10 and IAM11 architectures.

The IAMs resulting from the vertical cut VC8 made on an 8× 8 EAM, after performing
the above-mentioned logic optimization, is shown in Figure 3, where Figure 3a depicts
examples of IAM00 and IAM01 architectures, and Figure 3b depicts examples of IAM10
and IAM11 architectures. Referring to Figure 3a, IAM00 would have product bits M8 up
to M0 assigned a binary 0, and IAM01 would have product bits M8 up to M0 assigned a
binary 1. Referring to Figure 3b, IAM10 would have product bits M8 up to M0 assigned a
binary 0, and IAM11 would have product bits M8 up to M0 assigned a binary 1.
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Figure 3. (a) Logic schematic of IAM00 and IAM01 architectures resulting from vertical cut VC8 made
on the 8 × 8 EAM. (b) Logic schematic of IAM10 and IAM11 architectures resulting from vertical cut
VC8 made on the 8 × 8 EAM.
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3. Error Metrics of Inexact Array Multipliers

We calculated two widely used error metrics for the IAMs, namely the mean absolute
error (MAE) and the root mean square error (RMSE). Among these, RMSE is more useful
as it effectively quantifies the extent of signal degradation in digital signal processing [18].
An 8 × 8 multiplier would have a total of 216 distinct inputs; the entire set of distinct
inputs was considered to accurately calculate MAE and RMSE for different IAMs. Towards
this, Python models of 8 × 8 EAM and 8 × 8 IAMs were developed. For each distinct
input supplied, the absolute difference between the product produced by the EAM and the
product produced by each IAM was calculated to subsequently calculate MAE and RMSE
for the IAMs. MAE and RMSE were calculated using Formulas (1) and (2). In Formulas
(1) and (2), EAM_Product(P, Q) denotes the product of an EAM with inputs P and Q, and
IAM_Product(P, Q) denotes the product of an IAM with the same inputs of P and Q.

MAE =
28−1

∑
P =0

28−1

∑
Q=0
|IAM_Product(P, Q)− EAM_Product(P, Q)| (1)

RMSE =

√√√√ 1
216

28−1

∑
P = 0

28−1

∑
Q = 0

(
IAM_Product(P, Q)
−EAM_Product(P, Q)

)2

(2)

Generally, the reductions in design metrics such as critical path delay, area, and
power dissipation for an inexact circuit compared to the exact circuit would depend on the
extent of inaccuracy incorporated [19]. The extent of inaccuracy incorporated is typically
proportional to the savings in design metrics achievable for an inexact circuit compared
to the exact circuit. However, output quality (referring to the quality of blended images
here) assumes a greater priority than the savings in design metrics gained for an inexact
circuit compared to the exact circuit. Therefore, incorporating an optimum (i.e., maximum
allowable) inaccuracy in an inexact circuit commensurate with a target application is more
important than achieving significant savings in the design metrics. An optimum inaccuracy
implies achieving a good trade-off between output quality and circuit performance in
inexact computing. Choosing a less-than-optimum inaccuracy would pave the way for
increased accuracy in the computation (here, multiplication) but would also mean including
more logic and therefore would result in reduced savings in design metrics for an inexact
circuit compared to the exact circuit. On the other hand, choosing a more-than-optimum
inaccuracy implies aggressive reduction of logic to greatly reduce the design metrics, but
at the expense of compromising on the output quality, which may not be acceptable for a
target application. Therefore, a more-than-optimum inaccuracy is not preferable.

For the image blending application, based on repeated experimentation, we found that
vertical cut VC8 corresponds to an optimum inaccuracy, as noted in [14]. Given this, vertical
cuts VC0 up to VC7 would be construed as leading to less-than-optimum inaccuracy,
and vertical cuts VC9 to VC13 would be construed as leading to more-than-optimum
inaccuracy. We calculated MAE and RMSE for IAMs corresponding to vertical cuts VC6
up to VC10 covering two less-than-optimum, one optimum, and two more-than-optimum
representative inaccuracy conditions; the respective error metrics are given in Table 1. In
Table 1, the label of the vertical cut is mentioned as a suffix to the IAM architectures for
clarity. Optimum MAE and RMSE values obtained for an IAM corresponding to each
vertical cut have been shown in boldface.

From Table 1, it can be seen that the IAM01 architecture consistently enables reduced
MAE and RMSE compared to the other IAM architectures for all the vertical cuts. This is
possibly because in the IAM01 architecture, even though the dangling inputs of the full
adders (which are shown in rose in Figure 2) are assigned binary 0, which may impact
the value of product bit M9, this would be compensated by the assignment of a binary
1 to the less significant product bits viz. M8 up to M0. Hence, there is a likelihood for an
internal error compensation to happen in the IAM01 architecture, which is the possible
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reason for its reduced error metrics compared to other IAM architectures. This suggests
that the IAM01 architecture is likely to result in better quality of blended images compared
to the quality of blended images obtained using other IAM architectures. The IAM11
architecture shares a commonality with the IAM01 architecture, given the fixed assignment
of binary 1 to product bits M8 up to M0. However, in the case of IAAM11 architecture,
binary 1 is input to all the full adders (shown in rose in Figure 2), which may exacerbate
the error in the internal computation due to the higher significance of product bits M9
up to M16; this is possibly the reason why the IAM11 architecture consistently reports
greater MAE and RMSE compared to the other IAM architectures for all the vertical cuts.
IAM10 architecture, which also has a constant binary 1 assigned to the full adders (shown
in rose in Figure 2), like the IAM11 architecture, reports reduced error in comparison; this is
because product bits M8 up to M0 of IAM10 architecture are assigned a binary 0 unlike the
IAM11 architecture, thus resulting in relatively less error. In the case of IAM00 architecture,
although product bits M8 up to M0 are assigned a binary 0, and a binary 0 is given as an
input to the full adders (shown in rose in Figure 2), the assumption of a value of 1 by any
significant product bit ranging from M9 up to M16 is likely to overshadow the error arising
from the constant assignment of a binary 0 to the less significant product bits M8 up to M0.
Therefore, the overall error of IAM00 architecture is likely to be lesser compared to IAM10
and IAM11 architectures, but not lesser than the IAM01 architecture, which inherently
features error compensation. Hence, from the perspective of error metrics (given in Table 1),
IAM01 architecture is found to be preferable to the other IAM architectures.

Table 1. Error metrics of various inexact array multipliers, obtained by making vertical cuts VC6 to
VC10 on the exact array multiplier.

Inexact Array Multiplier Mean Absolute Error Root Mean Square Error

Vertical cut VC6 made on EAM

IAM00-VC6 192.25 224.032
IAM01-VC6 101.362 132.241
IAM10-VC6 575.750 587.127
IAM11-VC6 702.75 712.101

Vertical cut VC7 made on EAM

IAM00-VC7 448.25 513.169
IAM01-VC7 243.854 315.848
IAM10-VC7 1087.774 1116.071
IAM11-VC7 1342.750 1365.793

Vertical cut VC8 made on EAM

IAM00-VC8 896.25 1024.757
IAM01-VC8 484.249 628.713
IAM10-VC8 1664.762 1736.354
IAM11-VC8 2174.798 2230.785

Vertical cut VC9 made on EAM

IAM00-VC9 1664.25 1916.367
IAM01-VC9 876.747 1146.270
IAM10-VC9 2444.210 2610.774
IAM11-VC9 3455.707 3583.020

Vertical cut VC10 made on EAM

IAM00-VC10 2944.25 3435.35
IAM01-VC10 1514.87 1984.46
IAM10-VC10 3303.20 3656.69
IAM11-VC10 5256.70 5537.27
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4. Digital Image Blending

Digital image blending has been considered as a practical application to evaluate the
performance of different IAMs versus the EAM. Two digital images of size 512 pixels × 512
pixels were considered for blending, and their grayscale resolution is 8 bits. The blended
image is also of size 512 pixels × 512 pixels. The gray values of the images are multiplied
pixel by pixel, and the grayscale resolution of the blended image is 16 bits. We considered
some standard digital images from [20] viz. Lena, cameraman, Einstein, and woman with dark
hair for blending with a mask image. Figures 4–7 show the blended images obtained via
exact and inexact multiplications. Figures 4a, 5a, 6a and 7a show the original images and
the blended images obtained by exact multiplication. It was shown in [14] that vertical cut
VC8 represents an optimum inaccuracy with respect to image blending. Figures 4b, 5b, 6b
and 7b show the blended images obtained by inexact multiplication using different IAMs
corresponding to vertical cut VC8 made on the EAM.

Figure 4. (a) Lena and mask images, and the exactly blended image. (b) Blended images obtained
using various inexact array multipliers (IAM00-VC8, IAM01-VC8, IAM10-VC8, and IAM11-VC8)
based on vertical cut VC8 made on the exact array multiplier.

To measure the quality of blended images, popular figures of merit such as peak
signal-to-noise ratio (PSNR) [21] and structural similarity index metric (SSIM) [22] were
used. PSNR is measured in decibels (dB). PSNR is infinite for the exactly blended image
since no noise is introduced in the exact computation, whereas a finite PSNR results for the
inexactly blended images due to the introduction of noise owing to inexact computation.
Nevertheless, a high PSNR is preferred for the inexactly blended images, which is indicative
of less distortion. Typically, a PSNR greater than 30 dB is preferred for 8-bit digital image
processing [21]. SSIM is a measure of the structural similarity between a reference image
(i.e., an exactly blended image) and a target image (i.e., an inexactly blended image). SSIM
ranges from decimal 0 to 1, with decimal 0 indicating that the reference image and the
target image are completely different and decimal 1 indicating that the reference image and
the target image are the same. A high SSIM is preferred for an inexactly blended image,
which indicates good similarity with the exactly blended image. The visual differences
between the inexactly blended images in Figures 4b, 5b, 6b and 7b may be noticed upon
close observation. Nevertheless, PSNR and SSIM are scientific metrics which can be used to
ascertain the real quality of inexactly blended images obtained using different IAMs and to
distinguish the difference in quality between them. From Figures 4b, 5b, 6b and 7b, it can
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be seen that the IAM01 architecture (i.e., IAM01-VC8) consistently enables greater PSNR
and SSIM for the inexactly blended images compared to the other IAM architectures. This
is possibly due to the reduced error metrics (MAE and RMSE) of the IAM01 architecture
compared to the other IAM architectures, as evident from Table 1.

Figure 5. (a) Cameraman and mask images, and exactly blended image. (b) Blended images obtained
using various inexact array multipliers (IAM00-VC8, IAM01-VC8, IAM10-VC8, and IAM11-VC8)
based on vertical cut VC8 made on the exact array multiplier.

Figure 6. (a) Einstein and mask images, and the exactly blended image; (b) Blended images obtained
using various inexact array multipliers (IAM00-VC8, IAM01-VC8, IAM10-VC8, and IAM11-VC8)
based on vertical cut VC8 made on the exact array multiplier.
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Figure 7. (a) Woman and mask images, and the exactly blended image. (b) Blended images obtained
using various inexact array multipliers (IAM00-VC8, IAM01-VC8, IAM10-VC8, and IAM11-VC8)
based on vertical cut VC8 made on the exact array multiplier.

5. Implementation and Design Metrics

We structurally described an exact 8 × 8 EAM and many 8 × 8 IAMs resulting from
vertical cuts VC6 up to VC10 made on the EAM in Verilog HDL. We also behaviorally
described an 8 × 8 exact multiplier in Verilog HDL by using the multiplication operator
(*). These multipliers were then synthesized for high speed by a logic synthesis tool
(Synopsys Design Compiler) using a 32/28 nm CMOS standard digital cell library [23].
The default wire load model (parasitic) was included in the synthesis, and a fanout-of-4
drive strength was assigned to the output ports i.e., to the product bits of multipliers.
A typical case high-Vt CMOS process with a supply voltage of 1.05 V and an operating
temperature of 25 ◦C was considered for synthesis and simulation. The gate-level netlists
of the multipliers generated by Synopsys Design Compiler were verified by performing
functional simulations using Synopsys VCS, and the switching activity was recorded for
power estimation. For functional simulations, a test bench comprising about 1000 random
input vectors was supplied to the multipliers at a timing of 2.5 ns (400 MHz). After
synthesis, the design metrics of the multipliers were estimated, which are given in Table 2.
The total area of the multipliers, including cell area and interconnect area, was estimated
using Synopsys Design Compiler; the critical path delay was estimated using Synopsys
PrimeTime; and the average power dissipation was estimated using Synopsys PrimePower.

From Table 2, it can be seen that IAM00 and IAM01 architectures feature the same
design metrics, and IAM10 and IAM11 architectures also feature the same design metrics.
As mentioned earlier, the difference between IAM00 and IAM01 architectures is that the
dangling product bits (resulting from a vertical cut made on an EAM) are assigned binary
0 in the former and assigned binary 1 in the latter. The same difference manifests between
IAM10 and IAM11 architectures. Binary 0 or 1 is assigned to a dangling product bit (arising
from a vertical cut) by connecting it to ground or supply using a tie to low (TIEL) or a
tie to high (TIEH) standard library cell. Since TIEL and TIEH cells of [23] have the same
characteristics; therefore, IAM00 and IAM01 architectures have the same design metrics
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since their internal logic is the same, and likewise, IAM10 and IAM11 architectures also
have the same design metrics as their internal logic is the same.

Table 2. Standard design metrics of exact and inexact multipliers implemented using a 32/28 nm
CMOS standard digital cell library.

Multiplier Critical Path Delay (ns) Area (µm2) Power Dissipation (µW)

Exact Multiplier 1.75 474.39 144.20
EAM 2.00 509.47 183.80

Vertical cut VC6 made on EAM

IAM00-VC6 and IAM01-VC6 1.97 334.72 114.70
IAM10-VC6 and IAM11-VC6 1.99 329.62 122.30

Vertical cut VC7 made on EAM

IAM00-VC7 and IAM01-VC7 1.69 260.41 73.29
IAM10-VC7 and IAM11-VC7 1.70 242.76 88.41

Vertical cut VC8 made on EAM

IAM00-VC8 and IAM01-VC8 1.58 187.11 50.90
IAM10-VC8 and IAM11-VC8 1.53 179.99 57.68

Vertical cut VC9 made on EAM

IAM00-VC9 and IAM01-VC9 1.26 138.47 30.68
IAM10-VC9 and IAM11-VC9 1.21 132.32 39.44

Vertical cut VC10 made on EAM

IAM00-VC10 and IAM01-VC10 0.95 124.08 22.89
IAM10-VC10 and IAM11-VC10 0.96 122.81 27.68

It can be seen from Table 2 that as the order of the vertical cut increases, more logic
is reduced and the critical path becomes shorter; hence, the reductions in design met-
rics increase for the IAMs compared to the exact multiplier and EAM. Compared to the
8 × 8 EAM, the exact 8 × 8 multiplier that was described using the multiplication operator
and automatically synthesized for high speed by Design Compiler reports 12.5% reduction
in critical path delay, 7.4% lesser area occupancy, and 21.5% reduction in power dissi-
pation. It was noted in the previous sections that vertical cut VC8 made on the EAM is
acceptable for image blending and the IAM01 architecture is preferable to its counterparts
in terms of the quality of blended images and error metrics. Given this, IAM01-VC8
reportedly achieves the following reductions in design metrics compared to the exact multi-
pliers: (i) 9.7% reduction in critical path delay, 60.6% reduction in area, and 64.7% reduction
in power dissipation compared to the high-speed exact 8 × 8 multiplier that was auto-
synthesized, and (ii) 21% reduction in critical path delay, 63.3% reduction in area, and
72.3% reduction in power dissipation compared to the 8 × 8 EAM.

For digital circuits and systems, the product of power dissipation and critical path
delay (called PDP), representing energy, serves as a low-power figure of merit. Given
this, we calculated PDP for exact and inexact multipliers, plotted in Figure 8. The PDP
of the exact multiplier is plotted in blue, the PDP of EAM is plotted in purple, the PDP
of IAM architectures corresponding to vertical cut VC6 is plotted in orange, the PDP
of IAM architectures corresponding to vertical cut VC7 is plotted in green, the PDP of
IAM architectures corresponding to vertical cut VC8 is plotted in red, the PDP of IAM
architectures corresponding to vertical cut VC9 is plotted in black, and the PDP of IAM
architectures corresponding to vertical cut VC10 is plotted in pink. Obviously, as the
order of the vertical cut increases, the PDP of IAMs decreases due to a decrease in their
design metrics, as noted from Table 2. From Figure 8, IAM01-VC8, which is suitable for
image blending, achieved 68.1% reduction in energy compared to the high-speed exact
8 × 8 multiplier and 78.1% reduction in energy compared to the 8 × 8 EAM.
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Figure 8. Power-delay product (PDP) of exact and inexact 8 × 8 multipliers.

6. Conclusions

Blending of digital images is commonly performed in computer graphics and photo
editing applications. In this work, we analyzed the usefulness of inexact multiplication for
image blending by comparison with exact multiplication. Towards this, we considered the
blending of 8-bit images exactly and inexactly by employing exact and inexact multipliers,
respectively. Different IAMs were derived by making vertical cut(s) on an EAM, and
constant binary values were assigned to the dangling inputs and dangling product bits.
Among the four IAM architectures, IAM01 architecture was found to be better in terms
of having reduced error metrics (MAE and RMSE). Consequently, the IAM01 architecture
was found to consistently yield better quality blended images compared to the other IAM
architectures, where the quality of blended images has been quantified using standard
metrics such as PSNR and SSIM. Vertical cut VC8 made on an EAM was found to be
acceptable for 8-bit image blending, and based on the experimentation, the quality of
blended images obtained using IAM01-VC8 was found to be acceptable in comparison
with the quality of blended images obtained using the exact multiplier. The exact and
inexact multipliers were implemented using a 32/28 nm CMOS standard cell library, and it
was noted that whilst yielding blended images of acceptable quality, IAM01-VC8 achieved
reductions in all the design metrics compared to the exact high-speed 8 × 8 multiplier
and the 8 × 8 EAM. Notably, IAM01-VC8 consumes only 32% of the energy of an exact
8 × 8 multiplier and 22% of the energy of an 8 × 8 EAM.
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