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Abstract: The binarized neural network (BNN) is one of the most promising candidates for low-cost
convolutional neural networks (CNNs). This is because of its significant reduction in memory and
computational costs, and reasonable classification accuracy. Content-addressable memory (CAM) can
perform binarized convolution operations efficiently since the bitwise comparison in CAM matches
well with the binarized multiply operation in a BNN. However, a significant design issue in CAM-
based BNN accelerators is that the operational reliability is severely degraded by process variations
during match-line (ML) sensing operations. In this paper, we proposed a novel ML sensing scheme to
reduce the hardware error probability. Most errors occur when the difference between the number of
matches in the evaluation ML and the reference ML is small; thus, the proposed hardware identified
cases that are vulnerable to process variations using dual references. The proposed dual-reference
sensing structure has >49% less ML sensing errors than that of the conventional design, leading to
a >1.0% accuracy improvement for Fashion MNIST image classification. In addition, owing to the
parallel convolution operation of the CAM-based BNN accelerator, the proposed hardware achieved
>34% processing-time improvement compared with that of the digital logic implementation.

Keywords: BNN accelerator; content-addressable memory; XNOR bit-counting operation; dual reference

1. Introduction

Convolutional neural networks (CNNs) have been widely used for a range of tasks,
including image and speech recognition, and traffic prediction. This is because they
achieve far higher accuracies than that of conventional techniques [1–5]. However, recently
developed CNNs based on excessive floating-point parameters and operations require
multiple power-hungry general-purpose processing units such as graphics processing
units [6]. It is challenging to apply CNNs to low-power devices, and considerable research
effort has been directed towards improving the operational efficiency of CNNs [7].

Binarized neural networks (BNNs) with binary weights and activations (such as –1
and +1) has gained significant attention as a potential candidate for satisfying desired
computation and memory requirements with reasonable accuracy [8–12]. Many researchers
have paid attention to improve the efficiency and/or classification accuracy of BNN by
proposing various methods such as semi-binarized framework, semantic segmentation,
and object recognition [13–15].

The computational benefit achieved by using BNNs in inference is that complex
floating-point-based multiplying and accumulating (MAC) operations can be replaced with
lightweight bitwise XNOR and bit-counting computations [9]. Such bitwise operations
in a BNN exploit the processing-in-memory (PIM) architecture by performing XNOR bit-
counting logic operations locally in the memory [16,17]. The PIM architecture reduces
data movement between the host processor and memory, which improves the memory
bandwidth and power consumption. In particular, PIM architectures developed using
content-addressable memory (CAM) have attracted considerable attention because the
binarized multiply operation in a BNN can be easily implemented into the CAM array.
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Moreover, CAM has the distinct advantage of a fully parallel search operation, leading to
high throughput and energy efficiency [17].

However, the main drawback of the CAM-based BNN accelerator [17] is that the
reliability of the XNOR bit-counting operations is adversely affected by process variations,
resulting in significant sensing errors. Thus, it is imperative to improve the operational reli-
ability of XNOR bit-counting operations. In this paper, we propose a new design technique
that reduces the number of operational errors. Considering that XNOR bit-counting opera-
tion errors in the PIM hardware mainly occur in cases of small match differences between
the evaluated match-line (ML) and reference ML, the proposed hardware can find cases
that were vulnerable to XNOR bit-counting errors using a dual-reference sensing scheme.

The remainder of this paper is organized as follows. Section 2 presents the basics of
the CAM array based BNN accelerator design. In Section 3, we discuss the proposed CAM
design for reducing XNOR bit-counting errors. Section 4 presents the simulation results,
and Section 5 concludes the paper.

2. CAM-Based BNN Accelerator Design
2.1. XNOR Bit-Counting Operation

The BNN proposed in [9] restricts the inputs and weights to ±1. Figure 1a shows the
truth table of the multiply operations in the BNN, which are based on the binarized bits of
±1. However, a Boolean expression could not represent −1 in a single digit; therefore, we
assigned the logical value 0 instead of −1 for simplified BNN hardware implementations [9].
The multiplication operation based on +1 and 0 (Figure 1b) can be realized by an XNOR
gate because the output of XNOR is 1 if both inputs matched and 0 otherwise [18]. In
addition, the post-accumulation signum function in the BNN [9], as shown in Figure 2a, is
mapped to a bit-counting operation with a comparator of n/2 (half the cumulative size)
threshold (Figure 2b) [19]. If the number of matches is equal or greater than that of the
threshold, the output activation is 1; otherwise, it is 0.
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2.2. CAM-Based BNN Accelerator

CAM compared the input search data with stored data and returns the address of the
matching location. Figure 3a shows a 10T-based CAM bit-cell that consists of an 6T SRAM
and two stacked NMOS transistors on both sides [14,15]. The ML sensing operation of the
CAM array is explained as follows (Figure 4a,b) [20,21]:

1. Prior to the ML pre-charge phase, the search-line (SL) pairs are deactivated to prevent
unintentional ML discharges.

2. During the ML pre-charge phase, all MLs in the array are pre-charged to the supply
voltage.

3. When SL pairs are set to search for data, the two stacked NMOS transistors compared
the search and stored data.
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As shown in the truth table from Figure 3b, when the search data are not equal to the
stored data, one of the two stacked NMOS transistors is turned on, and a pull-down path
is formed such that the ML node is discharging. In contrast, when the search and stored
data are matched, both stacked NMOS transistors are turned off, and there is no current
path from the ML to the ground [20]. Hence, the XNOR operation for the BNN could be
implemented as a search operation for CAM. To perform the convolution operations in the
BNN (Figure 5a), the input (iFMAP) is mapped to the storage node of the CAM bit-cell, and
the SL node is determined by the weight such that the XNOR operation can be performed
by comparing the input and weight in the CAM bit-cell (Figure 5b) [17].
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The bit-counting operation for the BNN, which compares the number of matches
with the threshold value, is conducted by comparing the voltage of the evaluated ML
and reference ML [17]. As shown in Figure 6, the ML voltage depends on the number of
matched CAM bit-cells (the higher the number of matched CAM bit-cells, the higher the
ML voltage). Therefore, we can determine whether output activation is 1 or 0 by comparing
the voltage of the evaluated ML with that of the reference ML using the sense amplifier.
For example, if the voltage of the evaluated ML is higher than that of the reference ML, the
number of matched CAM bit-cells in the evaluated ML is larger than that in the reference
ML, such that the output activation became 1. However, the output activation became 0
when the voltage of the evaluated ML is lower than that of the reference ML.
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By performing the XNOR bit-counting operation in the modified CAM array, the
computationally intensive convolution operations of the BNN are replaced with the XNOR
bit-counting operation in the CAM array. Therefore, the power and performance overheads
caused by the data movement between the digital processor and memory are mitigated.
Moreover, a high-throughput XNOR bit-counting operation is enabled in CAM-based BNN
accelerators because CAM arrays performed multiple ML operations in parallel.

3. Proposed BNN Accelerator Design

The main shortcoming of the CAM-based BNN accelerator [17] is that the reliability
of the XNOR bit-counting operations is severely affected by process variations, result-
ing in significant sensing errors. Thus, it is imperative to improve the reliability of ML
sensing operations.
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In this paper, we propose a novel sensing technique that reduces the number of ML
operation errors. XNOR bit-counting operation errors mainly occur when the difference in
the number of matched CAM bit-cells between the evaluated ML and reference ML is small.
This is due to the fact that the ML discharging speeds of the evaluated ML and reference
ML are close to each other when there are small differences in the number of matches [17].
Thus, when considering local process variation, there is a high possibility that the output of
the ML sense amplifier would be reversed. To address the issue of ML sensing reliability,
we propose a new sensing scheme with dual references to identify cases prone to process
variation. Two separate references are determined as follows. In the first reference ML
(REF1), two additional CAM cells are mismatched; thus, the discharging speed of REF1
is higher than that of the conventional reference. The second reference ML (REF2) have
two additional match cases; hence, the discharging speed of REF2 is lower than that of the
conventional reference.

Figure 7 shows a detailed example of the proposed sensing scheme with a dual
reference of a ±2 bit match. REF1 and REF2 had 6 and 10 bit match bit-cells, respectively.
For the 14 bit match input (Figure 7b), the ML discharges much slower than both dual
references (REF1 and REF2); thus, the evaluated ML voltage is higher than that of the
voltages of both references, and the outputs of the two sense amplifiers are identical
to 1. The difference in number of matched CAM bit-cells between the reference ML and
evaluated ML is significant; hence, the error probability of the XNOR bit-counting operation
is close to 0, and the output of the XNOR bit-counting operation is determined as 1. For
the case where two CAM bit-cells are matched (Figure 7c), the evaluated ML discharges
significantly faster than those of REF1 and REF2, and the two sense amplifiers have the
same outputs of 0; thus, the reliability of the XNOR-bit-counting operation is also high
owing to the large difference in the matched bit-cell between the evaluated and reference
ML. The result of XNOR bit-counting operation is reliable, and the output activation is
considered 0.

In contrast, when the difference in the matched CAM bit-cells between the evaluated
ML and reference ML is small, the discharging speed of the evaluated ML (8 bit match case)
is similar to that of the two references. Hence, the reliability of the XNOR bit-counting
operation is prone to process variations. In such a situation, the evaluated ML voltage is
between the voltages of the two references, as shown in Figure 7d. Thus, we determined the
case of a high sensing error probability when the sensing outputs from the two references
are different. Because the ML sensing output is not reliable in this case, the proposed
structure performs a digital logic-based XNOR bit-counting operation followed by an
SRAM read operation (with an additional clock cycle) to reduce the XNOR bit-counting
errors in the modified CAM array (caused by process variation) [22].

Figure 7a shows the proposed CAM array architecture. It should be noted that in our
proposed memory structure, two reference MLs were located on top of the CAM array, and
each evaluated ML is compared with the two reference MLs using two sense amplifiers.
As aforementioned, if the results from the two sense amplifiers are the same, the result of
the XNOR bit-counting operation is considered reliable, and the output is as is. Otherwise,
the ML operation results are inaccurate, and additional digital logic-based operations
are performed.
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4. Results and Discussion

To evaluate the effectiveness of the proposed CAM-based BNN accelerator, the second
convolutional layer of the LeNet-5 model [22] was implemented using commercial 28 nm
CMOS technology. Five banks (150 cells per ML) separated by ML switches were imple-
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mented in the modified CAM array architecture, with each bank consisting of a 30 × 11
array (nine rows for CAM cells and two rows for reference cells). SPICE circuit-level
simulations are performed to evaluate the power, performance, and ML sensing reliability
of our proposed CAM array with a conventional single-reference based CAM array [17] in
TYPICAL 1 V and 25 ◦C corner (clock cycle: 250 MHz).

Figure 8a shows a comparison of the XNOR bit-counting failure rates between the
conventional and the proposed designs (dual reference of ±2 and ±5 bit case) with respect
to the difference in the number of matched CAM bit-cells between the evaluated ML and
the reference ML. As previously discussed, the operation failure rates increase when the
absolute values of the difference in matched CAM bit-cells between the evaluated ML and
reference ML decreased [17]. The proposed dual-reference designs exhibited significantly
lower operational failure rates than those of the conventional scheme. This is because the
cases, which are vulnerable to ML operational reliability, are detected by the dual reference
sensing scheme, and the digital logic-based operations are selectively performed for the
reliable XNOR bit-counting results.
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As listed in Table 1, when the ML sensing error probability of the conventional single
reference design was applied to the XNOR bit-counting results, 8.83% of the total output
activations for the Fashion MNIST test image were flipped, resulting in a top-1 accuracy
degradation of 2.9% for the LeNet-5 [23,24]. However, the proposed memory architecture
with dual references of ±2 bit mismatch achieve ~50% reduction in XNOR bit-counting
operation errors (4.42% error), leading to an improvement in the classification accuracy
(1.0%) as compared with that of the conventional design. The dual references of the ±5 bit
mismatch design further improves the error probability reduction by 89% (1.00% error)
because more errors are detected by a wider range of dual references. Thus, only a small
classification accuracy reduction of 0.5% is observed in the Fashion MNIST dataset.

Table 1. Error probability and classification accuracy comparison of CAM-based BNN accelerators.

XNOR-Bitcounting Error Probability Fashion MNIST Classification Accuracy

TOP-1 Accuracy - 84.4%
Single Ref. [17] 8.83% 81.5%
Dual Ref. (±2) 4.42% 82.5%
Dual Ref. (±5) 1.00% 83.9%
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Moreover, as shown in Figure 8b, the proposed BNN accelerators with dual references
of ±2 bit and ±5 bit mismatches achieve 44.74% and 34.25% reductions in the number of
operation cycles for an input image, respectively, as compared with that of the digital logic-
based XNOR-Net hardware in [22], owing to the parallel ML operations of the CAM array.

Figure 9 shows the area and power consumption comparison results between the
proposed CAM and conventional CAM arrays shown in [17]. Our proposed CAM structure
results in an increase of 5.97% in area as compared to that of the conventional design due
to additional reference ML and sensing circuitries (Figure 7a). In addition, owing to the
operation of additional reference ML and sensing amplifiers, our proposed memory array
showed 7.49% higher power consumption than that of the existing scheme in [17].
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because more errors are detected by a wider range of dual references. Thus, only a small 
classification accuracy reduction of 0.5% is observed in the Fashion MNIST dataset. 
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Figure 9. CAM array comparison between conventional design and proposed dual reference design 
in terms of different aspects: (a) area; (b) power for XNOR-bitcounting operation. 

5. Conclusions 
We propose a reliability improvement sensing technique for fast and robust CAM-

based BNN accelerators. The significant convolution operations of a BNN are replaced 
using a fully parallel search operation of a modified CAM array, leading to an improve-
ment of >30% in operation performance. Moreover, the proposed sensing scheme with 

Figure 9. CAM array comparison between conventional design and proposed dual reference design
in terms of different aspects: (a) area; (b) power for XNOR-bitcounting operation.

5. Conclusions

We propose a reliability improvement sensing technique for fast and robust CAM-
based BNN accelerators. The significant convolution operations of a BNN are replaced
using a fully parallel search operation of a modified CAM array, leading to an improvement
of >30% in operation performance. Moreover, the proposed sensing scheme with multiple
references can reduce the XNOR bit-counting error probability by detecting the cases which
are prone to the process variation. Our proposed BNN accelerator achieves >49% less
XNOR bit-counting operation errors than that of the conventional design, resulting in a
>1.0% accuracy improvement for Fashion MNIST image classification
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