
Citation: Wang, S.; Zhang, X.; Hui,

H.; Li, F.; Wu, Z. Multimodal CT

Image Synthesis Using Unsupervised

Deep Generative Adversarial

Networks for Stroke Lesion

Segmentation. Electronics 2022, 11,

2612. https://doi.org/10.3390/

electronics11162612

Academic Editor: José L. Abellán

Received: 15 July 2022

Accepted: 17 August 2022

Published: 20 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Multimodal CT Image Synthesis Using Unsupervised Deep
Generative Adversarial Networks for Stroke Lesion
Segmentation
Suzhe Wang * , Xueying Zhang, Haisheng Hui, Fenglian Li and Zelin Wu

College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
* Correspondence: wangsuzhe@tyut.edu.cn

Abstract: Deep learning-based techniques can obtain high precision for multimodal stroke seg-
mentation tasks. However, the performance often requires a large number of training examples.
Additionally, existing data extension approaches for the segmentation are less efficient in creating
much more realistic images. To overcome these limitations, an unsupervised adversarial data aug-
mentation mechanism (UTC-GAN) is developed to synthesize multimodal computed tomography
(CT) brain scans. In our approach, the CT samples generation and cross-modality translation differen-
tiation are accomplished simultaneously by integrating a Siamesed auto-encoder architecture into
the generative adversarial network. In addition, a Gaussian mixture translation module is further
proposed, which incorporates a translation loss to learn an intrinsic mapping between the latent
space and the multimodal translation function. Finally, qualitative and quantitative experiments
show that UTC-GAN significantly improves the generation ability. The stroke dataset enriched by
the proposed model also provides a superior improvement in segmentation accuracy, compared with
the performance of current competing unsupervised models.

Keywords: stroke lesion segmentation; generative adversarial network; unsupervised data augmentation

1. Introduction

Stroke is the problem with blood supply blocking in cerebral vessels, and it is the most
prevalent cause of mortality and acquired handicap [1,2]. Among various types of strokes,
ischemic stroke is reported in a large proportion, and it mainly induces brain cell death
and fatal paralysis. Hence, early diagnosis and quantification of the lesions could help
stroke patients achieve effective recovery, which also benefits clinicians in optimizing the
therapeutic schedules. Quantitative stroke lesion segmentation from medical imaging is a
necessary procedure for the doctor to make decisions. Additionally, computed tomography
(CT) is a typical effective non-incursion technique to evaluate the lesion regions of stroke
patients [3,4]. It also has the merits of speediness, wide availability and inexpensiveness
in detecting brain structure by ionizing radiation. Moreover, CT perfusion modalities
including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT)
and time to peak of the residue function (Tmax) are also successfully used to assess stroke
infarct core size [5]. However, precise segmentation based on these diagnostic means
requires rich experience and a significant amount of time from physicians.

Recently, deep neural network-based methods have shown a remarkable impact on the
segmentation accuracy for various medical images [6,7]. However, the scarcity of labelling
multimodal pictures due to the enormous time cost and complex acquisition procedures of-
ten leads to low segmentation accuracy. Although previous image augmentation strategies
such as rotation, flipping and elastic deformation have been applied widely to expand the
volume of the dataset [8–10], it is impossible to produce a wide diversity of new features
from the aspects of texture, shape and location. The disadvantages also limit the learning
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capacity of the deep medical image segmentation model. Generative Adversarial Net-
work (GAN) is a solution for verisimilar image generation and domain translation [11,12].
Nonetheless, this technique always relies on fully annotated paired images and supervised
training, which is impractical to collect all modalities for each patient. Additionally, they
always have an arduous process for the cross-modality translation. Several recent GAN
variants try to tackle the problem by encouraging the extra encoders to capture the domain
features [13–16]. However, the quality of the synthetic image may be negatively influenced
when the difference between domains increases.

In this work, we proposed a GAN-based data enhancement architecture for CT is-
chemic stroke lesion segmentation. An unsupervised translation cycle generative ad-
versarial network (UTC-GAN) is presented for the sake of the segmentation accuracy
improvement. The main contribution includes the following:

• We develop an image augmentation architecture that is capable of synthesizing CT
images and automatic learning translation from CT to its perfusion domains. It allows
us to tackle the data scarcity problem for stroke segmentation.

• A Gaussian mixture–translation representation module (GM-TRM) is proposed to
learn the transformations between CT modalities automatically, and its corresponding
translation loss function is defined. The module guarantees the model could flexibly
learn the various translations.

• Experiments demonstrate the proposed model offers a better quality of synthesis
imaging and lesion segmentation accuracy on popular datasets than its counterparts.

2. Related work
2.1. Medical Image Segmentation

Numerous deep network designs have been exploited for medicine image segmenta-
tion in recent years [17–19]. Albert Clèrigues et al. [20] introduced symmetrical residual
auto-encoding U-Net to perform lesion segmentation on CT images. Meanwhile, modality
augmentation is utilized to provide more symmetric samples. Liu et al. [21] embeds an
attention component in the deep CNN architecture to improve the predictive quality for
white matter hypertension lesions. Furthermore, Zhang et al. [22] employed a 3D DenseNet
model with dense block and multi-scale unit to localize the stroke lesions with harsh noise
and low picture quality. Among those convolutional neural networks, U-Net is an influen-
tial architecture for biological image segmentation. For example, in [23], a U-Net model
was applied to complete interwoven neurons and neurites segmentation tasks. Instead of
only including contracting and expanding paths, Cui et al. [24] exploited a Bi-Directional
ConvLSTM U-Net for blood vessel segmentation to fuse higher resolution features and
semantic information.

Traditional works mainly focus on supervised learning. However, it requires sufficient
training images with pixel-wise annotations. Therefore, some segmentation studies based
on data augmentation are reported [25,26]. In these works, the supervised generative
adversarial networks (GAN) are well used to expand the data amount by modelling proper
data distribution in a two-player game framework. Jelmer et al. [27] employed DCGAN to
complete brain CT image synthesis from MRI. A similar method has been employed in [28]
to convert the T1 MRI scans into the T2 modality. Moreover, a multi-stage GAN method is
designed to form image–mask pairs for segmentation task, by using the U-Net-like WGAN-
GP as the central architecture [29]. To gain a higher augmentation quality and segmentation
performance, a multi-scaled GAN framework, which also preserves the boundary of the
tumor core, is composed to collaborate with the U-Net [12]. In addition, GAN is utilized for
the unbalanced semantic segmentation task to balance data distribution [30]. Most GANs
are hard to translate more than two domains or need to obtain the domain label for all
training images.
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2.2. Unsupervised Generative Adversarial Network

Several works use GANs to shift domain by unsupervised transferring of information
between multiple modalities. Andrade et al. [31] trained Cycle-GAN to transform skin
images from the macroscopic domain into the dermoscopic domains, which helps to acquire
better segmentation capacity. Chen et al. [32] adapted a formation and appearance-detached
augmentation GAN for unannotated cardiac CT image segmentation, synthesizing data
from the annotated MRI slices. A unified generative adversarial network is established to
execute 3D multimodal segmentation [33]. Such ideas above use other information to guide
the generator in GAN to master the domain translation mapping. However, it is hard to cap-
ture semantic information across multimodal domains. To improve shape transformation
and focus on the difference among the domains, U-GAT-IT [13] introduces an attentional
component and a new layer instance-normalization technique in the least-squares GAN
to complete the unsupervised domain transfer task. More recently, a tuple of concurrent
GANs are designed to perform multi-class unsupervised image domain translation through
conditional image generator and multi-task adversarial discriminator [14–16], where the
generator is used for encoding content and class. In other words, the figure from a certain
domain is composed of content and type information simultaneously.

3. Network Implementation

In this section, the overall UTC-GAN framework is firstly given. After that, we then
offer the details of the translation representation module (GM-TRM) and objective loss
functions accordingly.

3.1. Model Architecture

The image synthesizing is realized by a UTC-GAN module, which allows translating
the CT slices from one modality domain to another. This model inherits the benefits of
Cycle-GAN [31], which consists of a forward and backward cycle. The forward cycle of
UTC-GAN is illustrated in Figure 1 and vice versa. It is noted that generator GA is designed
to transfer CT images to its perfusion modalities on the dimension of latent space, and
GB provides the reversed mapping images. The discriminators DB try to discriminate
whether the synthesized images are fact or fiction. Inspired by the observation in the auto-
encoding transformations approach [34], a paralleled auto-encoding structure is embedded
in discriminator DB to extract the representation of modality transformation automatically.
Therefore, the discriminator is partitioned into diverse components: encoder E, decoder
De and classifier C. Additionally, the architecture of each part is illustrated in Figure 2.
Firstly, two encoders EA, EB are trained to extract the desired parameters of the training
image from different domains, which uses a Siamese structure to share weight and obtain a
co-training information. Each encoder introduces the AlexNet [17] as the backbone, and
the Inception v1 block is embedded to enhance the network convergence. The decoder
De, a network with one convolutional layer and one fully connected layer, is coupled with
the encoders to estimate the modality translation from the fused features. Finally, one
classifier CAdv is added upon the encoder EA from generated domain to decide whether
the synthesized image is real or not, and another CTran is built upon the decoder De to
distinguish which transformation is inputted. Each classifier contains two convolutional
layers followed by two other fully connected layers.
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Figure 1. Illustration of the UTC-GAN architecture. Figure 1. Illustration of the UTC-GAN architecture.

3.2. Gaussian Mixture–Translation Representation Module

As in the UTC-GAN, the auto-encoding structure, also called the Gaussian mixture–
translation representation module (GM-TRM), is proposed for learning the modality trans-
formation representations automatically. The GM-TRM module first encodes the CT images
from different modalities into a latent space. Then, the translation representation is ex-
tracted (self-supervised) in the decoding part via estimating the mutual information across
the latent features. The GM-TRM module would lead the generator to build highly en-
tangled translation representations, and would enforce the discriminator to obtain more
additional supervision on image generation. Here, we elaborate on the principle of the
GM-TRM as shown in Figure 3.

Let d(x) presents the data distribution of an image x from the original modality A.
When it is translated to another modality B, a translation function t is assumed to turn d(x)
into t(d(x)). The encoder EA is considered to produce a representation from the image
t(x) with network parameters θ, which also maps the low-dimensional input data t(x) to a
high-level latent variable r. The classical reflection of the latent variable r from encoder is
a statistical formulation, which is specified by the mean mθ and variance σ2

θ of a normal
distribution N(ε|0, I) , such that:

r = mθ(t(x)) + vθ(t(x)) (1)
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To better approximate the transformation in latent space, the probabilistic density of
encoding images can be assumed to follow the Gaussian mixture model instead of a single
Gaussian. The resultant probabilistic representation of true posterior can be formulated as:

dθ(r|t, x) =
k

∑
i=1

φi N
(

ri

∣∣∣miθ(t(x)), σ2
iθt(x))

) k

∑
i=1

φi = 1 (2)

where N denotes a standard normal distribution, k is the total count of transformations, φi
is a weight vector, and miθ and σ2

iθ are defined as the mean and variance of the ith Gaussian
component, respectively.
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Meanwhile, we train a decoder De to estimate the applied transformation parameters
t by comparing the representations from encoded image features of original and target
modality. The probabilistic density of decoder is defined as pϕ(t

∣∣r, r̃) with the parameter
ϕ, and r̃ represents the probabilistic density from sample of original domain.

From an information-theoretic viewpoint [35], the transformation t can be equivalent
to the joint mutual information I(t, (r, r̃)) between itself and the encoding latent space (r, r̃),
and the maximum I(t, (r, r̃)) can be considered the optimized representation. However,
the posterior pϕ(t|r) cannot be calculated directly. So, a moment matching approximation
approach is introduced to compute pϕ(t|r) conveniently, which can be derived to the
following formulation:

I(t, r) = H(t)− H(t|r)

= H(t) +
k
∑

i=1
φiElogdiθ(ti|ri)

= H(t) +
k
∑

j=1
δjElogpjϕ

(
tj
∣∣rj
)
+

k
∑

i=1

k
∑

j=1
E(KL(diθ

(
tj
∣∣ri
)
||pjϕ

(
tj
∣∣ri
)
))

≥ H(t) +
k
∑

j=1
δjEdθ(t,r|x)logpjϕ

(
tj
∣∣ri
)

(3)

where KL(diθ
(
tj
∣∣ri
)∣∣∣∣pjϕ

(
tj
∣∣ri
)

represents a non-negative Kullback–Leibler divergence be-
tween density diθ and pjϕ, δj is the mixture weight. From this representation, the variational
posterior distribution dθ(r|t, x) can be tractable and replaced approximated by an upper-
bounded parameterized model pϕ(t

∣∣r) . In addition, the entropy H(t) is independent of
parameters θ and ϕ with respect to GAN model. So, we can maximize the lower variational
bound I(t, r) through only calculating logpϕ(t

∣∣r, x) .
In the meantime, the decoded transformation vector can be associated with the input

images pairs, which enforces the generator to utilize classified transformation information
as well. Hence, the corresponding generated image will learn different attributes from the
other domains.

3.3. Loss Function

The UTC-GAN not only relies on the model architecture mentioned above but also
the appropriate loss function to perfect the model performance. Our loss includes three
components, of which the translation representation loss is newly proposed to learn the
style transferring from the CT slices pair automatically.
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3.3.1. Adversarial and Cycle-Consistency Loss

The adversarial and cycle-consistency loss from Cycle-GAN [30] are employed both in
the generation cycle and discriminator. For the images translation A→ B , the adversarial
loss can be expressed as:

LAdv(GA, DB) = Ev∼pB(v)[logDB(vB)] + Eu∼pA(u)[log(1− DB(GA(uA)))] (4)

where u and v are the training slices come from source and target modality. Similarly, the
adversarial loss of the translation B→ A is denoted as:

LAdv(GB, DA) = Eu∼pA(u)[logDA(uA)] + Ev∼pB(v)[log(1− DA(GB(vB)))] (5)

In order to ensure the generated slices can be reconstructed to their previous modality
simultaneously, a cycle-consistency loss LCyc(GA, GB) is utilized into architecture to asso-
ciate the reconstructed image GA(GB(uA)) with the input image u. Thus, the loss function
with forward–backward consistency is defined as:

L(GA, GB, DA, DB) = LAdv(GA, DB) + LAdv(GB, DA) + λ1
(

LCyc(GA, GB)
+LCyc(GB, GA)

) (6)

where λ1 is the relative importance of GAN loss concering cycle loss.

3.3.2. Translation Representation Loss

Since the adversarial loss cannot detect the transformation directly from encoders,
we have used the joint mutual information I(t, v|u) as the decoder to predict domain
translation. Additionally, the lower variational bound of I(t, v|u) can be maximized by
learning the expectation over posterior distribution pϕ(t

∣∣v) according to (2). Thus, the
translation forecasting loss LTran can be described as:

LTran = maxI(t, v|u) = maxθ,ϕElogpϕ(t|r)

= maxθ,ϕδj
k
∑

j=1
logN(t|uj(r), v2

j (r))
(7)

where the mean uj and variance vj are derived from the encoder, respectively, and δj is
a weight vector. This loss function, LTran, is added to the discriminator DB to learn the
transformation functions between different domains. Then, the whole augmented objective
function is given by:

LTotal = LAdv + λ1LCyc + λ2LTran (8)

where λ2 is a hyper-parameter applied for affecting the significance proportion in total loss.

4. Experiments
4.1. Experimental Settings
4.1.1. Dataset

The Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2018 dataset is used to
execute the training and assessment of our augmenting-based segmentation. The dataset
contains multiple modalities, including CT and four derived perfusion maps, i.e., mean
transit time (MTT), time to peak of the residue function (Tmax), cerebral blood flow (CBF)
and cerebral blood volume (CBV) [36,37]. In our experiments, the 94 labelled cases with
the CT and its perfusion modalities serve as input for the UTC-GAN network.

Additionally, all images in the dataset are preformed augmentation via skull stripping
and traditional operations such as flipping, scaling and rotating. Finally, eighty percent of
all the image scans are treated as the training and validation set, and the remainder is the
testing set. That is, we uses 10,980 slices for training, 3660 slices for validating and 3660
slices for testing, respectively.
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4.1.2. Baseline Model and Evaluation Measures

For comparison in augmentation, we use the ISLES2018 dataset to compare UTC-GAN
to five existing unsupervised baseline models: Cycle-GAN [30], DRIT++ [14], EGSC-IT [15],
FUNIT [16] and U-GAT-IT [13]. The Cycle-GAN and U-GAT-IT model have a similar
mechanism and effectiveness to the proposed method. DRIT++ introduces the disentangled
representation model to learn the mapping from the CT to other perfusion modalities.
EGSC-IT realizes unsupervised image-to-image translation by adopting weight-sharing
architecture and feature masks. FUNIT is chosen as another comparable baseline model to
perform image translation in that it has a multi-task synthesis structure with reconstruction
and feature-matching loss function. At the segmenting phase, a multiple-scale minus
network (MSNet) [38] is trained to evaluate the improvement by the generative model. To
input the multi-modalities CT slices, the encoder path of the MSNet is duplicated five times
and concatenated to the decoding part. Due to computational constraints, every slice image
is resized to 256× 256.

We verify the synthesis methods by adopting four widely used metrics: Peak Signal to
Noise Ratio (PSNR), Normalized Mean Squared Error (NMSE) and Structural Similarity
Index Measurement (SSIM) [39].

Six performance metrics are chosen to analyze the improvement in the segmentation
accuracy for the testing set, including Dice Coefficient (DC), Intersection-over-Union (IoU)
score, Precision, Accuracy, Recall and Hausdorff Distance (HD) [40].

4.1.3. Implementation Details

In the data augmentation stage, we adopt the ResNet architectures from Miyato et al. [20]
as the backbone of the UTC-GAN generator. For UTC-GAN discriminator, encoder EA and
EB in each branch consists of InceptionV1 block, then the output features from decoder
De are concatenated to a convolutional classifier CTran. Classifier CAdv is framed as same
as CTran. During the segmentation stage, a standard U-Net framework is trained for
segmenting stroke lesion areas. The back-propagation of both networks were completed
by adopting ADAM optimization algorithm [41] with β1 = 0.5 and β2 = 0.999. The
initial learning rate was positioned at 2× 10−4 for all networks. The loss-balancing weight
parameters λ1 and λ2 were determined as 15 and 10, respectively. The exponential decay
rate is used at a rate of 0.001 every 30 epochs, training the model for a total of 200 epochs
with batch size of 24. Each paired input contains the original CT slice and their perfusion
modality counterpart.

The synthesis and segmentation networks were implemented by Pytorch on the
NVIDIA Titan XP GPU device. Furthermore, the overall experiments are conducted five
times with varying random seeds, and the average value is reported.

4.2. The Impact of GM-TRM Module

First, we compare the generation quality to assess the effectiveness of components
in our UTC-GAN model. The main component including the GM-TRM module and the
classifier CTran concatenated to decoder De are replaced in the architecture and compared
with other existing schemes in sequence. As the competitors for comparison, the AET
module also employs the auto-encoding architecture to learn the unsupervised transfor-
mation representation. Additionally, the AVT module creates the translation information
by applying a constrained variational approach to the similar auto-encoders network.
Table 1 firstly presents the quantitative synthesis performance with GM-TRM and other
modules. We observe that the GM-TRM enhances the synthesized performance by leading
to 1% improvement on average over PSNR, and 0.3% over NMSE. The evaluation result
demonstrates that the mixture density can derive better transformation representation.
Moreover, we also quantitatively compare the results by varying different classifiers upon
the GM-TRM. The traditional non-linear classifier adopts fully connected layers to discrete
transformations, whereas the convolutional type takes advantage of the convolution kernel
to narrow the range of the transformation prediction. From the results, we can see that
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the convolutional classifier is consistently better than the non-linear classifier, and our
synthesis model can almost achieve the best PSNR no matter which classifier is used.

Table 1. Synthesizing performance of the UTC-GAN composed of different components.

Method PSNR NMSE SSIM

AET + non-linear [42] 24.12 0.125 0.8654
AET + conv [40] 24.86 0.125 0.8675

AVT + non-linear [34] 24.47 0.122 0.8590
AVT + conv [34] 25.19 0.119 0.8678

GM-TRM + non-linear 25.97 0.109 0.8816
GM-TRM + conv 26.40 0.096 0.918

4.3. Comparison with Other Unsupervised Data Augmentation Methods

Moreover, we next evaluate the UTC-GAN compared with various corresponding
synthesis models.

Table 2 reports the quantitative synthesis results for all baselines. From the results
underlined in Table, the UTC-GAN surpasses the other five unsupervised models by raising
the PSNR from 23.13 to 26.40, and the NMSE approximates 0.096 when the SSIM achieves
0.918. This indicates our model attains the transformation characteristic across different
modalities, and that it contributes to achieving superior synthesis effectiveness.

Table 2. Synthesizing performance comparison with different baselines.

Method PSNR NMSE SSIM

Cycle-GAN 23.13 0.153 0.8594
U-GAT-IT 23.25 0.149 0.8673

FUNIT 23.09 0.233 0.8516
EGSC-IT 23.86 0.146 0.8624
DRIT++ 24.72 0.115 0.8946

UTC-GAN 26.40 0.096 0.918

Figure 4 shows a visualization comparison under different types of modalities between
the proposed UTC-GAN model and other unsupervised baselines. As we can see, the UTC-
GAN generates much more realistic synthesis images, while samples from Cycle-GAN and
U-GAT-IT generate some unclear regions or fail to create a detailed feature. In contrast,
samples from FUNIT, EGSC-IT and DRIT++ show similar results, which supply more complex
attributes of the brain to a certain extent but also have some unwanted artifacts that can be
found in the image. Overall, the proposed method yields higher visual realism results for all
CT modalities than the others, as indicated by qualitative and quantitative measures.

4.4. Segmentation Using Data Augmentation

To investigate the influence of UTC-GAN on the segmentation improvement, we
first use the real and synthetic data to provide for the MSNet segmentation model, the
performance evaluation is described in Figure 5. The synthetic images have a positive
effect on the segmentation accurateness where the synthetic data ratio is less than 60%. The
increasing proportion of the synthetic images leads to 7% and 8% improvement on the dice
score and precision than the results obtained only by the real images. Moreover, we found
that too many synthetic images could degrade the performance.
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Figure 5. The performance of stroke segmentation by changing the percentage of synthetic images.

The second experiment is conducted on the task of segmentation by applying both all
the data augmentation methods mentioned earlier and the MSNet model on ISLES2018
data. The quantitative results of segmentation can be viewed in Table 3. According
to the demonstration in the table, all of the synthesis models provide more significant
improvement on all evaluation metrics than only using the MSNet segmentation method
with the randomness added by data pre-processing. Additionally, our process appears
to produce the most significant improvement when generating transformation detectable
images. For example, our proposed UTC-GAN allows the Dice score to improve from
0.675 to 0.768, increasing the precision by and 10% and reducing the Hausdorff distance
by 9.3 mm, respectively. The IoU score and accuracy also achieved the highest value.
This improvement may benefit the most due to the high contrast and variation from the
generated images. Furthermore, the boxplot of the Dice coefficient is also used to analyze
the segmentation robustness in Figure 6. Overall, the mean value and the median line of
the UTC-GAN expresses relatively higher improvement than the other six competitors.

Table 3. Segmentation performance comparison with different strategies.

Method Dice
Coefficient IoU Precision Accuracy Recall Hausdorff

Distance (mm)

MSNet 0.675 0.578 0.721 0.894 0.699 27.03
Cycle-GAN + MSNet 0.709 0.633 0.773 0.903 0.725 25.00
U-GAT-IT + MSNet 0.684 0.602 0.745 0.907 0.687 24.21

FUNIT + MSNet 0.718 0.645 0.786 0.912 0.732 20.34
EGSC-IT + MSNet 0.751 0.683 0.809 0.925 0.773 34.11
DRIT++ + MSNet 0.735 0.669 0.781 0.915 0.758 19.99

UTC-GAN + MSNet 0.768 0.685 0.820 0.926 0.781 17.73

Additionally, three representative cases of visual segmentation scan for variant com-
binations are displayed in Figure 7. Compared with other data augmentation means, the
UTC-GAN produces considerable improvements in the segmentation mask, allowing seg-
mentation regions to be closer to their manual annotation counterpart. This intuitively
demonstrates that the stroke CT images augmented by the UTC-GAN model help obtain a
more accurate lesion region.
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5. Conclusions

In this paper, a GAN-based data augmentation paradigm is presented to promote the
exactness of ischemic stroke segmentation. By integrating Siamesed auto-encoders and
information-theoretic loss into a Cycle-generative adversarial framework, the architecture
can learn sufficient representations about transformation from the original to the target
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domain in an unsupervised fashion. The sampling problem on latent data space is further
solved by introducing a Gaussian mixture probability distribution to better approximate
the characteristics of the transformation. Based on the experimental evaluation and com-
parison, it demonstrates that the proposed method outperforms alternative structures
and provides better high-quality generated stroke images. Meanwhile, the augmenta-
tion method could yield higher segmentation quality improvement by cooperating with
traditional segmentation methods.
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