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Abstract: In this paper, a model for maneuver decisions in air combat is established based on
position situation information, the performance of the fighter, the threat of combat intention, and
the multi-fighter collaboration effect. Additionally, a two-layer game decision algorithm based on
the double game tree distributed Monte Carlo search strategy is proposed, and the operational rules
of interval numbers and possibility degree comparison rules are adopted to solve the designed
method. The experiment results show that the model and algorithm are effective in their intended
purpose. The two-layer game decision-making and distributed double game tree MCTS can precut
the huge game tree strategy space and quickly identify the optimal air combat game decision scheme,
which improves the efficiency of strategy searches. By compared experiments, it was found that the
proposed algorithm can improve the performance of air combat.

Keywords: air combat; game; MCTS (Monte Carlo Tree Search); maneuver decision

1. Introduction

In recent years, the decision problem of close-range air combat has become a hot topic.
Close-range air combat is a game process involving a target; it is characterized by high-level
dynamics and intense confrontation [1,2]. Fighters make maneuver decisions according to
rapidly changing information in air combat situations. Since an air combat environment
often contains complex factors such as uncertainty and incompleteness, it poses severe
challenges for air combat decision making. Moreover, fighters are always in high-speed
motion and lots of players are involved in the game. A lack of a definite pattern or method
for soldiers, as well as incomplete combat rules, will lead to explosive growth in the game
solution space. The purpose of air combat maneuver decisions is to obtain an optimal air
combat situation, i.e., to threaten the target fighter and carry out effective attacks, to get rid
of the lock of a target fighter and get out of danger. Therefore, every maneuver will directly
affect the development of the process.

Despite the numerous achievements in air combat maneuver decision-making in a
battlefield environment, few studies have focused on uncertain battlefield environment
information. Addressing the decision problem of air combat maneuvers under the condition
of certain battlefield environmental information, Dr. Luo and Dr. Meng [3] used a multi-
state transition Markov network to construct a maneuvering decision network, which
met the real-time requirements of air combat decision-making but did not use network
parameters for learning. An iterative algorithm for online integral strategy combining
approximate dynamic programming and a zero-sum game was proposed in [4]. An
algorithm combining game theory and a deep reinforcement learning algorithm to study
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the maneuvering decision problem of close-range air combat were proposed in [5,6]. The
above models are mainly game methods applying the strategies of two or more sides, which
can be categorized as matrix games and differential games. Their main characteristics are to
factor an opponent’s strategy into the analysis, and to emphasize the antagonism between
two or more sides. In addition, there are methods that consider unilateral optimization,
focusing on the optimization of their own strategies, as opposed to predicting and analyzing
opponents’ strategies; these mainly include intelligent methods, guidance laws, and expert
systems methods, etc. An evolutionary expert system tree method to study air combat
decision-making is proposed in [7]; it solves the problem associated with the inability
of traditional expert system methods to cope with unexpected situations. The method
described in [8] uses the deep reinforcement learning method to solve the air combat
maneuver decision-making problem. Prof. Du [9] proposed a maneuvering decision
model that combines multi-objective optimization and reinforcement learning. Dr. Xu [10]
combined the characteristics of a missile attack zone and the basic flight maneuver (BFM)
method to study the 1vs1 autonomous air combat decision-making problem. An air combat
maneuver method based on BFM was also introduced in [11].

It is usually difficult for both sides to obtain accurate information about each other
on the battlefield. Therefore, it is necessary not only to study the problem of deterministic
information-based air combat games, but also to solve the problems of incomplete informa-
tion in air combat. Aiming at the problems of uncertain battlefield information, Chen Xia
and Liu Min [12] studied an offensive and defensive setting involving unmanned aerial
vehicle (UAV) air combat. They also modeled the payoff function and combined it with
particle swarm optimization (PSO), proposing the Nash equilibrium solution method under
uncertain information conditions. The authors of [13] established an intuitive fuzzy game
model for UAV air combat maneuvering, and proposed a nonlinear programming method
for solving Nash equilibrium which addresses the problems of UAV air combat maneuver-
ing decision-making under uncertain environments. The authors of [14] attempted to solve
the Nash equilibrium of non-cooperative games under an uncertain battlefield information
environment, and analyzed the influence of different combat factors on the outcomes of
air-to-air confrontations. An information supplement method based on Bayesian theory
and an information reduction method based on rough and light set theory were adopted
to process uncertain air combat information. These processes improved the efficiency of
autonomous decision-making in air combat [15]. Additionally, a belief state based on MCTS
was proposed by Dr. Xu to tackle their use in problems with imperfect information [16].

Motived by the above discussion, in our paper, a close-range air combat decision
process under uncertain interval information conditions is modeled as a two-layer game
decision-making solution. Additionally, a double game tree distributed Monte Carlo
search algorithm is proposed to determine the optimal game strategy scheme. Both parties
establish a game tree to make synchronous decisions. Due to the nature of the applied
multi-fighter, multi-round, continuous air combat game, there are a large number of players,
and the air combat has no fixed strategies, i.e., the combat styles are complex and diverse.
As a result, the maneuvering decision-making solution space dramatically increases in
complexity. Traditional maneuvering decision-making methods are difficult to simulate
and are unable to comprehensively predict situations in air combat games. It is therefore
necessary to find a more efficient solution. The MCTS algorithm introduces the idea of
reinforcement learning based on trial sampling, and simulates and evaluates the air combat
process through the iterative process of the algorithm, which is equivalent to filtering
and optimizing the policy search space. This approach is suitable for solving problems
with huge decision spaces. Therefore, the algorithm can grasp and predict air combat
game situations more and more accurately in a continuous simulation game process, and
as such, can accurately grasp and predict trends in the enemy’s strategy as much as
possible. As a result, it can determine the best maneuvering strategy scheme in current and
future situations.
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2. Modeling of Two-Layer Game Maneuver Decision Problem

Because of limited intelligence information and the influence of electromagnetic in-
terference on the battlefield, sensors may be restricted in their ability to identify targets or
to determine the maximum detection range of radar and the ranges of certain weapons.
As such, partial information is likely to be obtained only within a certain range. Therefore,
it is necessary to study the uncertain information air combat game strategy algorithm for
incomplete information. In order to improve the nature of maneuver decision-making, the
analysis and processing of uncertain information is critical.

Multi-fighter air combat maneuver decision-making needs to solve the problems of
who the combat target is, how to fly, and how to maneuver, which actually involve target
allocation, coordinated tactics, and an action selection strategy. Based on the accurate
modeling of air combat games and the determination of a fighter’s intentions, this paper
simulates operational decision-making thinking according to the idea of simplifying com-
plex problems and divides maneuver decisions into two levels: target allocation and action
selection. Target allocation decisions are made on the first level and air combat maneuver-
ing decisions on the second, after identifying a target. Target allocation decision-making
mainly determines the target allocation strategy in one-to-one or many-to-one situations,
and solves the problem of who the combat target is and with whom to coordinate the
operation. Action selection involves choosing a suitable maneuver strategy based on the
target allocation plan, serving mainly to solve the problems of how to fly and maneuver.
The cooperative nature of the target allocation decision-making layer mainly determines
the cooperative allocation scheme according to the performance threat index and intention
threat index of the whole system and the cooperative effect generated by the game payoffs
of each fighter in the system. The cooperative tactics of the action selection decision-making
layer are mainly determined by the cooperative performance threat index of opponent
fighters and the game payoff value of the maneuver decision-making.

First, a dominant function model should be established to assess the situation and
the effect of multi-fighter coordination, as well as to make multi-fighter air combat target
allocation and maneuver decisions. Many factors affect air combat situations. The process
described in this paper makes air combat target allocation decisions based on angle and
distance factors, the performance threat and combat intention threat indexes, as well as
changes of the total threat index due to multi-fighter cooperation.

2.1. First Layer Target Allocation Decision Model
2.1.1. The Performance Dominant Function

The fighter performance dominant function needs to comprehensively consider fac-
tors such as maneuverability, detection ability, firepower, and electronic countermeasures
ability. Suppose the maximum detection range of the radar of the i-th fighter of N is
dirader= [diradermin, diradermax], its maximum range of attack is dimissle = [dimisslemin, dimisslemax],
and its electronic countermeasure capability coefficient is eiecm = [eiecmmin, eiecmmax]. At the
same time, suppose the maximum detection range of the radar of the j-th fighter of M is
djrader= [djradermin, djradermax

]
, its maximum range of attack is djmissle = [djmisslemin, djmisslemax],

and its electronic countermeasure capability coefficient is ejecm = [ejecmmin, ejecmmax]. Since
the fighter can perform various maneuvers quickly, it can be assumed that the radar on
the fighter is omnidirectional and the fire attack angle is 360 degrees. hi is the air combat
performance advantage index of the i-th fighter of N and hj is the air combat performance
advantage index of the j-th fighter of M. hi and hj are calculated in the same way. Based
on [17], the performance dominance function of fighter i is established as follows:

Sp = hi/max(hi, hj) (1)

hi = [ln(dirader + 1) + ln(dimissle + 1)]eiecm (2)
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2.1.2. The Angular Dominant Function

The influence of the angle between two fighters on an attack situation is called the
angular dominant function. Suppose A is an attack fighter and D is the target fighter
(Figure 1). The target line dAD is defined as the line between A and D. φAD is the angle
between the velocity vector of A and the target line. qAD is the angle between the velocity
vector of D and the target line. Then, the value of angular dominant function may be
defined as follows:

Sa = 1− |φAD|+ |qAD|
π

(3)
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2.1.3. The Distance Dominant Function

The influence of the distance between two fighters on an attack situation is called
the distance dominant function. The distance dominant function represents the distance
advantage of the two fighters and the influence of the distance after an air combat decision.
dAD is the distance between the i-th fighter of N and the j-th fighter of M. Generally, the
maximum detection range of radar is larger than the range of missiles. Suppose that the
distance advantages are 0 and 1 for the cases of outside the radar detection range and inside
the missile range, respectively. When the distance is between the maximum detection range
of the radar and the range of the missile, the distance advantage value increases with the
decrease of the distance between the two fighters. The value of the distance dominant
function may be calculated as follows:

Sd =





0, dAD > diradermax
(dirader−dAD)

(dirader−dimissle)
, others

1, dAD < dimisslemin

(4)

2.1.4. The Performance Threat Index Dominant Function

When multiple fighters cooperate in air combat, the synergistic effect is reflected in that
the total threat index of one side decreases while that of the other side increases. Therefore,
after the targets have been allocated, the performance threat index dominant function of
the i-th fighter of N relative to the j-th fighter of M may be calculated as follows:

Pthij =





0 dAD > djradermax
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(5)

when the distance between the two fighters is larger than the maximum detection range
of the opponent’s radar, the threat index is 0. The parameter k is the threat index; k < 0
suggests that the threat index decreases with an increase of distance. The threat index
dominant function Pthji of the j-th fighter of M relative to the i-th fighter of N is calculated
analogously.

Figure 1. The position relationship between two fighters.

2.1.3. The Distance Dominant Function

The influence of the distance between two fighters on an attack situation is called
the distance dominant function. The distance dominant function represents the distance
advantage of the two fighters and the influence of the distance after an air combat decision.
dAD is the distance between the i-th fighter of N and the j-th fighter of M. Generally, the
maximum detection range of radar is larger than the range of missiles. Suppose that the
distance advantages are 0 and 1 for the cases of outside the radar detection range and inside
the missile range, respectively. When the distance is between the maximum detection range
of the radar and the range of the missile, the distance advantage value increases with the
decrease of the distance between the two fighters. The value of the distance dominant
function may be calculated as follows:

Sd =





0, dAD > diradermax
(dirader−dAD)

(dirader−dimissle)
, others

1, dAD < dimisslemin

(4)

2.1.4. The Performance Threat Index Dominant Function

When multiple fighters cooperate in air combat, the synergistic effect is reflected in that
the total threat index of one side decreases while that of the other side increases. Therefore,
after the targets have been allocated, the performance threat index dominant function of
the i-th fighter of N relative to the j-th fighter of M may be calculated as follows:

Pthij =





0 dAD > djradermax
(((hj − hi)/max(h)) ∗ k ∗ dAD + 1)/(1− k ∗ dAD) others

1 dAD ≤ djradermax ≤ diradermin

(5)

when the distance between the two fighters is larger than the maximum detection range of
the opponent’s radar, the threat index is 0. The parameter k is the threat index; k < 0 sug-
gests that the threat index decreases with an increase of distance. The threat index dominant
function Pthji of the j-th fighter of M relative to the i-th fighter of N is calculated analogously.

2.1.5. The Combat Intention Threat Value

In an air combat environment, both sides will take a series of combat actions to achieve
their combat intentions. Combat actions are achieved through a series of maneuvers, and
the execution of such maneuvers will lead to changes in the fighter status [18]. Therefore,
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the achievement of combat intention is ultimately manifested as the changes of combat
status parameters, while different combat intentions correspond to different change rules of
status parameters. In this paper, intention space in close air combat is defined as four types
of combat intention strategies F = {penetration, attack, cover, withdraw}, where cover
includes reconnaissance, jamming, maneuvering cover, and feint, and penetration includes
low- and high-altitude penetration. According to [19–21], the mapping relationship be-
tween a fighter’s combat intention and the characteristic status parameters can be obtained.
Tables 1–3 list the corresponding relationship between the fighter’s characteristic status
information regarding altitude, course angle, maneuver type and combat intention. The
intention threat value as showed in Table 4.

Table 1. The relationship between altitude and the combat intention of the target fighter.

Altitude/m Most Likely Combat
Intention

Secondary Possible Combat
Intention

50~200 penetration attack
200~1000 cover attack

1000~8000 attack cover
8000~10,000 cover penetration
above 10,000 penetration retreat

Table 2. The relationship between course and the combat intention of the target fighter.

Course Angle/(◦) Most Likely Combat
Intention

Secondary Possible Combat
Intention

0~20 penetration attack
20~60 attack penetration
60~90 cover attack

90~180 retreat cover

Table 3. The relationship between maneuver type and the combat intention of the target fighter.

Maneuver Type Most Likely Combat
Intention

Secondary Possible Combat
Intention

8-shaped cover
0-shaped cover
S-shaped cover penetration

Climb attack retreat
Dive attack penetration

Snake maneuver cover penetration
Postposition tracking turn attack cover

Horizontal scissor maneuver attack cover

Table 4. Combat intention threat value.

Combat Intention F Attack Penetration Cover

Intention threat value
SF

0.8 0.5 0.3

2.1.6. The Combat Intention Threat Index Dominant Function

To estimate the threat index of the combat intentions of both sides, the enemy’s
combat intentions should be identified first. According to the estimated threat index of
combat intention and the influence of combat intention on combat effectiveness, game
countermeasure strategies are adopted to achieve the optimal combat effectiveness. In air
combat, the enemy usually hides their true combat intentions as far as possible, which
leads to the concealment of the status information obtained by the opponent at a given
moment. Moreover, the target fighters’ combat intentions are implemented through a series
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of combat actions and maneuvers. The real intention is usually hidden in the dynamic and
time-changing status information, so the combat intention should be identified from the
target status fighter’s information from several consecutive moments. According to the
method described in [22], we can extract a fighter’s characteristic information from time
series and dynamically changing air combat situation data. On this basis, we can map the
relationship between combat intention and the characteristic status parameters. Then, we
can use the Long Short Term Memory (LSTM) neural network to learn the fighter’s time
series characteristics and identify the target fighter’s combat intention. After determining
the enemy’s combat intention, the threat index of the i-th fighter of N relative to the j-th
fighter of M is estimated using the following formula. The threat index, Pf ji, of the j-th
fighter of M relative to the i-th fighter of N is calculated analogously.

Pf ij = 0.5 +
SFi − SFj

2max(SF)
(6)

2.1.7. The Total Threat Index of Multi-Fighter Coordination

The change in the collaborative total threat index is due to the influence of multi-fighter
coordinated air combat on the combat situation. The total threat index of multi-fighter
coordination mainly manifests in changes in the global performance threat index and
combat intention threat index after multi-fighter coordination. Both the total performance
and the total intention threat index of the whole system should consider the threat of each
combat unit to the each of the opponent’s combat units. These reflect the overall synergistic
threat effect and performance of both sides. Therefore, when multiple fighters cooperate in
air combat, the total performance threat index and the total intention threat index of both
sides may be respectively calculated by the following equations.

The cooperative performance threat index of N and the cooperative performance
threat index of M are calculated using Equations (7) and (8):

PTHn = 1−
n

∏
i=0

m

∏
j=0

(1− Pthij), i = 1, 2, . . . , n; j = 1, 2, · · · , m (7)

PTHm = 1−
n

∏
i=0

m

∏
j=0

(1− Pthji), i = 1, 2, . . . , n; j = 1, 2, · · · , m (8)

Similarly, the cooperative intention threat index of N and the cooperative intention
threat index of M are calculated as follows:

PFn = 1−
n

∏
i=0

m

∏
j=0

(1− Pf ij), i = 1, 2, . . . , n; j = 1, 2, · · · , m (9)

PFm = 1−
n

∏
i=0

m

∏
j=0

(1− Pf ji), i = 1, 2, . . . , n; j = 1, 2, · · · , m (10)

2.1.8. The Target Allocation Decision Function

In the first layer, the decisions of target allocation and combat intention are completed.
In the target allocation decision stage, it is assumed that the following constraints are met:
a fighter from N should attack at least one fighter from M, and only one fighter from M
can be attacked in a discrete short interval. Four factors are considered to make the target
allocation decision. Firstly, the performance and threat factors of the opponent’s fighters,
such as their maneuverability, electronic countermeasure capability, and detection and
firepower capabilities, are assessed. Secondly, the positional factors of the opponent’s
fighters, i.e., the angle and distance are considered. Thirdly, the threat factors of the
combat intentions of both sides are considered after determining the opponent’s combat
intentions. Fourth, the effect factors of the threat index are updated based on multi-fighter
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collaboration. Since height dominance can be derived from the distance and angle, it is
not considered in this paper. Speed is considered in the basic maneuver library, and the
decision to either accelerate or decelerate is made. Taking an N fighter as an example,
the comprehensive dominant function of the i-th N fighter relative to the j-th M fighter is
constructed as Saij, Sdij, SFij and Spij. These values represent the angle dominant function,
distance dominant function, combat intention threat value, and the performance dominant
function of the i-th N fighter relative to the j-th M fighter in the current situation. These are
all normalized values.

In conclusion, the total dominant function of multi-fighter cooperative air combat in
the target allocation scheme can be established. These four factors, as well as the influence
of the collaborative performance threat index and collaborative intention threat index of
the system globally are mainly comprehensively in the target allocation stage. The optimal
payoff of collaborative target allocation is determined on this basis. Therefore, the total
payoff functions of N and M, respectively, can be calculated as follows:

Un = PTHn

n

∑
i=0

m

∑
j=0

(λ1Saij + λ2Sdij + λ3Spij) + PFn

n

∑
i=0

m

∑
j=0

(λ4SFij) (11)

Um = PTHm

n

∑
i=0

m

∑
j=0

(λ1Saji + λ2Sdji + λ3Spji) + PFm

n

∑
i=0

m

∑
j=0

(λ4SFji) (12)

where λ1, λ2, λ3, λ4 are weight coefficients and λ1 + λ2 + λ3 + λ4 = 1.
Both sides in the air combat game always try to maximize their respective payoff

functions. Therefore, the target allocation decision function selects the scheme with the
optimal total dominant function value from many options, i.e., gn or gm.

2.2. The Second Layer Maneuver Decision Model
2.2.1. Basic Maneuver Library

If an air combat game is considered as a game of chess in a three-dimensional space,
then the game strategies can be considered to be based upon the various positions on
the chessboard and the choice of different game strategies, which will result in different
payoffs. According to [1], the maneuvers of a fighter in three-dimensional space can be
divided into 11 categories. As shown in Figure 2, these maneuvers include: 1. direct flight
without any maneuver, 2. Climbing, 3. Diving, 4. Turning left, 5. Climbing to the left, 6.
Diving to the left, 7. Turning right, 8. Climbing to the right, 9. Diving to the right, 10.
Accelerating, and 11. Decelerating. The inclination angle can reach −60◦, 0◦, and 60◦,
corresponding to climbing, flying without any maneuver, and diving, respectively, and the
roll angle can reach −30◦, 0◦, and 30◦, corresponding to turning left, flying without any
maneuver, and turning right, respectively. The basic maneuver library can combine most
tactical maneuvers in air combat, and different combinations of sequences correspond to
different tactical maneuvers [1,9].

Electronics 2022, 11, x FOR PEER REVIEW 2 of 19 
 

 

[4]. An algorithm combining game theory and a deep reinforcement learning algorithm to 
study the maneuvering decision problem of close-range air combat were proposed in [5,6]. 
The above models are mainly game methods applying the strategies of two or more sides, 
which can be categorized as matrix games and differential games. Their main 
characteristics are to factor an opponent’s strategy into the analysis, and to emphasize the 
antagonism between two or more sides. In addition, there are methods that consider 
unilateral optimization, focusing on the optimization of their own strategies, as opposed 
to predicting and analyzing opponents’ strategies; these mainly include intelligent 
methods, guidance laws, and expert systems methods, etc. An evolutionary expert system 
tree method to study air combat decision-making is proposed in [7]; it solves the problem 
associated with the inability of traditional expert system methods to cope with unexpected 
situations. The method described in [8] uses the deep reinforcement learning method to 
solve the air combat maneuver decision-making problem. Prof. Du [9] proposed a 
maneuvering decision model that combines multi-objective optimization and 
reinforcement learning. Dr. Xu [10] combined the characteristics of a missile attack zone 
and the basic flight maneuver (BFM) method to study the 1vs1 autonomous air combat 
decision-making problem. An air combat maneuver method based on BFM was also 
introduced in [11]. 

 
It is usually difficult for both sides to obtain accurate information about each other 

on the battlefield. Therefore, it is necessary not only to study the problem of deterministic 
information-based air combat games, but also to solve the problems of incomplete 
information in air combat. Aiming at the problems of uncertain battlefield information, 
Chen Xia and Liu Min [12] studied an offensive and defensive setting involving 
unmanned aerial vehicle (UAV) air combat. They also modeled the payoff function and 
combined it with particle swarm optimization (PSO), proposing the Nash equilibrium 
solution method under uncertain information conditions. The authors of [13] established 
an intuitive fuzzy game model for UAV air combat maneuvering, and proposed a 
nonlinear programming method for solving Nash equilibrium which addresses the 
problems of UAV air combat maneuvering decision-making under uncertain 
environments. The authors of [14] attempted to solve the Nash equilibrium of non-
cooperative games under an uncertain battlefield information environment, and analyzed 
the influence of different combat factors on the outcomes of air-to-air confrontations. An 
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In the existing literature, the relationship between the current maneuver and the next
one is often ignored. For example, if a fighter chooses to dive to the left, after performing
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this action, only maneuvers 3 and 4 should be possible in the next maneuver decision,
because the fighter cannot, e.g., turn or dive to the right in the next decision-making cycle.
Therefore, for close-range air combat decision-making, the decision result of the current
maneuver affects the range of possible maneuvers in the next decision cycle. Accordingly,
this paper establishes a constraint relationship between the current maneuver decision and
the next maneuver decision library, as shown in Table 5, in order to prevent the algorithm
from searching for the maneuvers that are difficult or impractical.

Table 5. Maneuver transfer list.

Case Number The Current Maneuver
Decision

The Optional Maneuvers in Next Decision
Cycle

1 Direct flight without
any maneuver Any

2 Climb Direct flight without any maneuver, Climb to
the left, Climb to the right

3 Dive Direct flight without any maneuver, Dive to
the left, Dive to the right

4 Turn left Direct flight without any maneuver, Climb to
the left, Dive to the left

5 Climb to the left Climb, Turn left
6 Dive to the left Dive, Turn left

7 Turn right Direct flight without any maneuver, Climb to
the right, Dive to the right

8 Climb to the right Climb, Turn right
9 Dive to the right Dive, Turn right
10 Accelerate Direct flight without any maneuver, Accelerate
11 Decelerate Direct flight without any maneuver, Decelerate

2.2.2. The Maneuver Decision Function

In the second layer, air combat maneuver decisions are made. Decisions regarding
air combat maneuvers consider three factors: the first is the distance factor between the
opposing fighters; the second is the angle factor of the two fighters; and the third is the
performance threat effect factor of multi-fighter cooperation.

Ui = (1−
m

∏
j=1

(1− Pthji))(θ1Saij + θ2Sdij) (13)

Uj = (1−
n

∏
i=1

(1− Pthij))(θ1Saji + θ2Sdji) (14)

where Ui and Uj are the payoffs of a maneuver decision, θ1, θ2 are weight coefficients;
θ1 + θ2 = 1. Saij, Saji, Sdij, Sdji, Pthji, Pthij are different from the decision process of target
allocation. At this point in the process, they are the angle dominant function, distance
dominant function and performance dominant function at the next moment situation.
These values are all normalized.

3. Interval Number Correlation Methods
3.1. The Operational Rules of Interval Numbers

x is called an interval number [23,24], if x = [x−, x+] = {θ|x− ≤ θ ≤ x+, x−, x+ ∈ R},
where R is a set of real numbers, x− is the lower limit value of x, and x+ is the upper limit
value of x.

If x = [x−, x+] and y = [y−, y+] are two interval numbers, then their operational rules
are defined as follows:

(1) Addition
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x + y = [x−, x+] + [y−, y+] = [x− + y−, x+ + y+].

(2) Subtraction
x− y = [x−, x+]− [y−, y+] = [x− − y+, x+ − y−],
and −x = −[x−, x+] = [−x+,−x−], x − x = [x−, x+] − [x−, x+] = [x− − x+,

x+ − x−].
(3) Multiplication
x · y = [x−, x+] · [y−, y+] = [x−y−, x+y+], and λx = [λx−, λx+], where λ is a positive

real number.
(4) Division
x
y = [x− ,x+ ]

[y− ,y+ ] =
[

x−
y+ , x+

y−

]
, where y− > 0

(5) Logarithm
logc b = [logc b−, logc b+], where c > 0
In the first layer game decision, N has mn kinds of allocation schemes and m side

has nm kinds of allocation schemes. According to the operation rules of interval numbers,
due to the uncertainty of the information interval, each value obtained by the payoff
function is an interval number. Therefore, the payoff value of the game can be written as:
Un = [Umin

n , Umax
n ] and Um = [Umin

m , Umax
m ].

Similarly, in the second layer game decision, the payoff value can be written as:
Ui = [Umin

i , Umax
i ] and Uj = [Umin

j , Umax
j ].

3.2. The Solving Game Method Based on the Possibility Degree

According to [25], two interval numbers U1 = [Umin
1 , Umax

1 ] and U2 = [Umin
2 , Umax

2 ]
can be compared by the possibility degree. Namely, the definition of the possibility degree
that U1 = [Umin

1 , Umax
1 ] is superior to U2 = [Umin

2 , Umax
2 ] is regarded as P(U1 � U2):

Accordingly, the definition of the possibility degree that U2 = [Umin
2 , Umax

2 ] is superior
to U1 = [Umin

1 , Umax
1 ] is regarded as:

P(U1 � U2) =





1 Umin
1 ≥ Umax

2
Umax

1 −Umax
2

Umax
1 −Umin

1
+

Umax
2 −Umin

1
Umax

1 −Umin
1
· Umin

1 −Umin
2

Umax
2 −Umin

2
+ 0.5 Umax

2 −Umin
1

Umax
1 −Umin

1
· Umax

2 −Umin
1

Umax
2 −Umin

2
Umin

2 ≤ Umin
1 ≤ Umax

2 ≤ Umax
1

Umax
1 −Umax

2
Umax

1 −Umin
1

+ 0.5 · Umax
2 −Umin

2
Umax

1 −Umin
1

Umin
1 ≤ Umin

2 ≤ Umax
2 ≤ Umax

1

(15)

P(U2 � U1) =





0 Umin
1 ≥ Umax

2

0.5 Umax
2 −Umin

1
Umax

1 −Umin
1
· Umax

2 −Umin
1

Umax
2 −Umin

2
Umin

2 ≤ Umin
1 ≤ Umax

2 ≤ Umax
1

Umin
2 −Umin

1
Umax

1 −Umin
1

+ 0.5 · Umax
2 −Umin

2
Umax

1 −Umin
1

Umin
1 ≤ Umin

2 ≤ Umax
2 ≤ Umax

1

(16)

Using Equations (15) and (16), we can obtain the possibility degree matrix using and

comparing every two interval numbers as follow: P f =

U1 U2 · · · Uh
U1
U2
...

Uh




− P12 · · · P1h
P21 − · · · P2h

...
... · · · ...

Ph1 Ph2 · · · −




.

Uh is the payoff value of the h-th scheme and Pij is the possibility degree value of
Ui � Uj, Pji = 1− Pij, i, j ∈ {1, 2, . . . , h}. When i = j, Pij = Pii = (′ − ′) represents no
comparison. The Pij value indicates the level of Uj � Ui. If Pij = 1, Ui is definitely better
than Uj. Conversely, if Pij = 0, Uj is definitely better than Ui. Thus, the matrix P f is a
complementary judgment matrix.

By comparing all the strategy combination schemes, namely, comparing the inter-
val numbers of the payoff in pairs, we can obtain the possibility degree matrix. Then,
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by employing the improved chaotic particle swarm algorithm and sorting the strategy
combination schemes, we can obtain the optimal scheme.

4. The Solving Algorithm Based on Two-Layer Game Decision-Making and
Distributed MCTS
4.1. Distributed Monte Carlo Search Algorithm Based on Double Game Trees

Both sides establish their own game trees in the air combat game process. The whole
process is described as a path from the root to the leaf of a multi-way game tree because the
game process chooses a target fighter and a maneuver strategy for both sides. After the
target allocation of the first layer decision, the target of each fighter is determined. This is
equivalent to pre-pruning the game tree. Therefore, in the second layer decision-making,
we consider the maneuvering decision under the condition that the target fighter has been
determined. Compared with a one-time decision, the game strategy search space is greatly
reduced, and the searching efficiency is improved.

The MCTS algorithm is used for game strategy selection. The algorithm can maintain
a balance between exploitation and exploration, i.e., it aims to ensure the best rewards
from past decisions and to obtain greater rewards in the future. It can master and predict
game strategies more and more accurately in the current and future situations. The MCTS
algorithm is a method by which to establish a search tree to find the best decision based on
the decision space of sampling in a specific field. In summary, the air combat situation is
mainly determined by the distance and angle between the two fighters. It includes four
steps: selection, expansion, simulation, and back-propagation [26]. In order to search the air
combat game node, in this paper, the MCTS frame adopted a modified Upper Confidence
Bound (UCB) algorithm.

Step 1: Selection. Suppose the root node is the attacking side. The UCB value is
calculated by Equation (17). The node with the maximum UCB value will be selected as
the subsequent node.

UCB = max

{
Ui + C

√
2 ln n

nj

}
(17)

where Ui is a normalized value of the average payoff of fighter i in the past, i.e., t− 1, n is
the total number of times which a game strategy is selected, and nj is the number of times
which the j game strategy was selected. The regulatory factor is C; it is used to adjust the
balance between the return value and the unexplored node.

Step 2: Expansion. If the MCTS algorithm does not reach the termination condition
for the maximum number of iterations or leaf nodes, then it can continue to select the game
strategy is a downward process. If the MCTS algorithm reaches the leaf node, then it needs
to expand the game strategy as a new node; as a result, the new game strategy will be
added to the Monte Carlo tree.

Step 3: Simulation. Since the new node has not yet been visited, the times of visits and
the times of wins are both 0. A simulation is then carried out on the node according to the
default random strategy.

Step 4: Back-propagation. Suppose side N or side M wins. Then, the times of visits
and of wins of every node on the simulation path will both be updated to 1, that is, 1 will
be added to those values on all the father nodes.

In the traditional Monte Carlo search method, both sides of the game play sequential
games on the same game tree and make decisions in turn [16,26]. In this way, both sides
will make game decisions in chronological order. For example, when t = 1, the decision
is made by N, but when t = 2, the decision is made by M; subsequently, when t = 3, the
decision is made by N, and so on. Thus, the game is a repetitive process, as shown on the
left of Figure 3. In sequential game decision-making, the player who makes the strategy
choice and takes the action first usually occupies an advantageous position. The other
player must choose its own strategy on the basis of the opponent’s action strategy. The
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most important characteristic of the air combat game, in contrast to a game of chess, is that
both sides make decisions simultaneously under the current game situation environment.
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Due to the different mission characteristics and the high real-time requirements of the
air combat game, it is not suitable to directly use a traditional Monte Carlo tree search. In
the multi-fighter and multi-round continuous air combat game, not only the coordination
of multi-fighter combat, but also the influence of the historical game strategies of both sides
should be taken into account, and the decisions of both sides should be made at the same
time rather than in turn in order to avoid problems such as lagging decision information.
Therefore, a distributed double game tree Monte Carlo search algorithm was designed in
this paper for maneuvering decisions; this represents a novel MCTS method. As shown on
the right of Figure 3, both sides establish a game tree. At t = 1, t = 2, . . . , t = n, both sides
make synchronous decisions in their respective game trees at every moment, and there is
no need to wait for the opponent to make a decision before taking turns. Meanwhile, the
dominant value and decision function are calculated according to the real-time updated
situation information. In this way, the battlefield situation can be perceived in real time,
the opponent’s strategies can be applied when making decisions, and the optimal game
strategy scheme can be obtained.

4.2. The Algorithm Flow

(1) Initialization: set the values of the parameters
(2) Repeat
(3) Determine the current nodes of the game trees and identify the opponent’s inten-

tions according the situation information;
(4) Calculate the various target allocation schemes, Un or Um, at the current moment;
(5) The first layer of game decision: select the optimal scheme, i.e., gn or gm;
(6) Calculate all possible maneuver decision schemes, Ui or Uj, at the next moment;
(7) The second layer of game decision: select the maneuver decision scheme using the

UCB algorithm and MCTS;
(8) Update the situation information of the game decision trees of both sides;
(9) t = t + 1;
(10) Repeat until the maximum number of iterations, or min|Un −Um|≥ threshold ,

has been reached.
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5. Experiment and Results

A 2vs2 air combat was simulated in three-dimensional space in this experiment. The
initialization in the simulation was as follows. The initial coordinates of the N and M
fighters were (1000, 500, 6100), (1500, 800, 4000) and (5000, 1000, 3200), (4500, 1500, 6500),
respectively. The initial yaw angle, track inclination angle and roll angle were (1, 0, 20), (1,
0, 0), (1, 0, 0) and (1, 0, −15), respectively. The dimissle of N were [12, 16] and [17, 20], and the
djmissle of M were [10, 15] and [17, 21]. The dirader of N were [500, 800] and [800, 1000], and
the djrader of M were [600, 800] and [700, 1000]. The eiecm of N were [0.5, 0.8] and [0.6, 0.9],
and the ejecm of M were [0.7, 0.9] and [0.6, 0.9]. k = −1/400 and C = 0.1. λ1, λ2, λ3, λ4 were
set as 0.2, 0.3, 0.3 and 0.2, and θ1 and θ2 were set as 0.6 and 0.4. The termination condition
of the algorithm was set as follows: reaching the maximum number of decision iterations
(21), or the difference between the two payoff function values reaching the threshold value
of 0.9.

The simulation results are shown in Figures 4–7 and Table 6. In this simulation, it
was assumed that the basic maneuver libraries of both sides were the same, and the same
decision algorithm was adopted. In Figures 5–7, the average values of the interval results
were used for plotting. Table 6 lists the maneuver decisions for all fighters. Figure 4 shows
the air combat flight trajectories of the four fighters. Figure 4a,b present the three- and
two-dimensional plane projection graphs of the flight trajectories, respectively. Each curve
represents the combat flight trajectory of a fighter according to our algorithm. The total
payoff function change curves of N and M, corresponding to the decision in the first layer
game, are shown in Figure 5. Figure 5a presents the total payoff function of decisions taken
by N, and Figure 5b those of M. The payoff function change curves of the four fighters
corresponding to the decisions in the second layer game are shown in Figures 6 and 7.
Figure 6a,b presents the changes of payoff function of fighters 1 and 2 of N in the whole
decision-making process, respectively, while Figure 7a,b presents those of fighters 1 and 2
of M.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 19 
 

 

 
 

(a) (b) 

Figure 4. The air combat flight trajectories of four fighters. (a) The three-dimensional flight 
trajectory diagram; (b) The two-dimensional flight trajectory diagram. 

  
(a) (b) 

Figure 5. The total payoff function change curves of the N and M sides in the first layer decision. 
(a) Total payoff of N; (b) Total payoff of M 

  
(a) (b) 

Figure 6. The payoff function change curves of the N side in the second layer decision. (a) No.1 
fighter’s payoff for N; (b) No.2 fighter’s payoff for N. 

Figure 4. The air combat flight trajectories of four fighters. (a) The three-dimensional flight trajectory
diagram; (b) The two-dimensional flight trajectory diagram.



Electronics 2022, 11, 2608 13 of 17

Electronics 2022, 11, x FOR PEER REVIEW 14 of 19 
 

 

 
 

(a) (b) 

Figure 4. The air combat flight trajectories of four fighters. (a) The three-dimensional flight 
trajectory diagram; (b) The two-dimensional flight trajectory diagram. 

  
(a) (b) 

Figure 5. The total payoff function change curves of the N and M sides in the first layer decision. 
(a) Total payoff of N; (b) Total payoff of M 

  
(a) (b) 

Figure 6. The payoff function change curves of the N side in the second layer decision. (a) No.1 
fighter’s payoff for N; (b) No.2 fighter’s payoff for N. 

Figure 5. The total payoff function change curves of the N and M sides in the first layer decision.
(a) Total payoff of N; (b) Total payoff of M.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 19 
 

 

 
 

(a) (b) 

Figure 4. The air combat flight trajectories of four fighters. (a) The three-dimensional flight 
trajectory diagram; (b) The two-dimensional flight trajectory diagram. 

  
(a) (b) 

Figure 5. The total payoff function change curves of the N and M sides in the first layer decision. 
(a) Total payoff of N; (b) Total payoff of M 

  
(a) (b) 

Figure 6. The payoff function change curves of the N side in the second layer decision. (a) No.1 
fighter’s payoff for N; (b) No.2 fighter’s payoff for N. 

Figure 6. The payoff function change curves of the N side in the second layer decision. (a) No.1
fighter’s payoff for N; (b) No.2 fighter’s payoff for N.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 19 
 

 

  
(a) (b) 

Figure 7. The payoff function change curves of the M side in the second layer decision. (a) No.1 
fighter’s payoff for M; (b) No.2 fighter’s payoff for M. 

Table 6. Results of maneuver decisions. 

Iteration
s 

No.1 Fighter’s  
Maneuver for N 

No.2 Fighter’s  
Maneuver for N 

No.1 Fighter’s  
Maneuver for M 

No.1 Fighter’s  
Maneuver for M 

0 1 1 1 1 
1 1 1 2 3 
2 1 7 5 6 
3 10 1 5 4 
4 1 1 5 4 
5 1 1 5 5 
6 7 10 4 4 
7 9 1 4 6 
8 9 7 6 6 
9 7 8 6 4 

10 7 7 4 4 
11 1 1 1 1 
12 1 1 2 10 
13 4 7 2 2 
14 1 7 1 5 
15 4 8 3 4 
16 5 8 6 6 
17 5 7 6 6 
18 4 9 6 6 
19 4 9 4 4 
20 6 7 5 4 
21 6 7 4 4 

From the experimental results, it can be seen that the algorithm proposed in this 
paper is effective. Under the condition that the fighter performance on both sides is closely 
matched, combat fighters can correctly identify the combat intention and movement state 
of the opponent, forecast the trajectory of the opponent’s fighter and accurately predict 
the battlefield situation, and quickly make the optimal decision. It can be seen from Figure 
4a,b that the two sides struggle due to continuous target allocation and maneuvering 
decisions, and the flight trajectories show a highly staggered pattern. It is obvious that the 
situation changes rapidly and becomes complicated. For example, the target allocation of 

Figure 7. The payoff function change curves of the M side in the second layer decision. (a) No.1
fighter’s payoff for M; (b) No.2 fighter’s payoff for M.



Electronics 2022, 11, 2608 14 of 17

Table 6. Results of maneuver decisions.

Iterations No.1 Fighter’s
Maneuver for N

No.2 Fighter’s
Maneuver for N

No.1 Fighter’s
Maneuver for M

No.1 Fighter’s
Maneuver for M

0 1 1 1 1
1 1 1 2 3
2 1 7 5 6
3 10 1 5 4
4 1 1 5 4
5 1 1 5 5
6 7 10 4 4
7 9 1 4 6
8 9 7 6 6
9 7 8 6 4
10 7 7 4 4
11 1 1 1 1
12 1 1 2 10
13 4 7 2 2
14 1 7 1 5
15 4 8 3 4
16 5 8 6 6
17 5 7 6 6
18 4 9 6 6
19 4 9 4 4
20 6 7 5 4
21 6 7 4 4

From the experimental results, it can be seen that the algorithm proposed in this
paper is effective. Under the condition that the fighter performance on both sides is closely
matched, combat fighters can correctly identify the combat intention and movement state
of the opponent, forecast the trajectory of the opponent’s fighter and accurately predict the
battlefield situation, and quickly make the optimal decision. It can be seen from Figure 4a,b
that the two sides struggle due to continuous target allocation and maneuvering decisions,
and the flight trajectories show a highly staggered pattern. It is obvious that the situation
changes rapidly and becomes complicated. For example, the target allocation of the No.
1 fighter of N changed at t = 11, while the target allocation of the other fighters remained
unchanged. From Figure 5a,b, it can be seen that the total payoff values of both sides and
the payoff values of each fighter fluctuated constantly, indicating that the situation changed
frequently for both sides, and that there were situations in which an advantage turned into
disadvantage, or vice versa. This conforms to actual combat situations. As can be seen
from the results, when t = 1, the initial total payoff values of N and M were 0.6659 and
−0.0375, respectively, at the target allocation stage; the payoff values of fighters 1 and 2 of
N were 0.2145 and 0.1504, respectively; and the payoff values of fighters 1 and 2 of M were
−0.1392 and −0.2145 respectively. However, when t = 21, the total payoff values of N and
M were 0.6809 and 0.6829, respectively, at the target allocation stage; the payoff values of
fighters 1 and 2 of N were 0.3869 and 0.1179, respectively; and the payoff values of fighters
1 and 2 of M were 0.1272 and 0.3827, respectively. It can be concluded that M was at a
disadvantage in the initial situation, but by the end, both sides were basically balanced.
The strategy space for air combat games is very large, and it is impossible for the opponent
to adopt the optimal solution every time. Even if the opponent uses the MCTS method to
determine the optimal solution, if the best decision-making time is achieved and the right
decision-making solution is used, it is possible to turn defeat into victory.

In order to verify the performance of the algorithm, we performed four groups of
comparative experiments. In the four groups, N adopted the algorithm designed in this
paper, while M adopted four different algorithms, namely, the algorithm described in this
paper, the traditional MCTS algorithm, the angle and distance optimal algorithm, and the
distance optimal algorithm. All four algorithms need to meet the maneuver constraints in
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Table 5 when making decisions. According to the design idea of the algorithm proposed
in this paper, the traditional MCTS algorithm will select and decide the optimal combat
strategy for M from the first layer decision-making schemes at time t (e.g., Equation (12))
and combine the second layer decision-making schemes at time t + 1 (e.g., Equation (14)).
However, in the decision-making process, the traditional MCTS algorithm does not make
two-layer decisions, but rather, makes several decisions simultaneously. The third group
attempts to optimize the angle and distance to make decisions. That is, according to
Equations (3) and (4), the maneuvering strategy with the maximum benefit is selected as
the combat strategy for M based on the optimization of angle and distance at time t and
angle and distance at time t + 1. The fourth group applies the optimal distance to make
decisions. That is, the maneuvering strategy with the maximum benefit is selected as the
combat strategy of M based on the comprehensive optimization of distance at time t and
time t + 1.

In the algorithm proposed in this paper, the difference in the first layer decision payoff
between the two sides is noted as Un−m = Un −Um, while the difference in the second

layer decision payoff is noted as UN−M = UN −UM =
n
∑

i=1
Ui −

m
∑

j=1
Uj. The four groups of

experiments were carried out 20 times each, and the Un−m and UN−M values of the four
groups of experiments were compared. The results are shown in Tables 7 and 8. As can
be seen from the experimental results, when Un−m > 0 and UN−M > 0, the N side has a
better payoff. Conversely, when Un−m < 0 and UN−M < 0, N has a poor payoff and is at a
disadvantage. When Un−m = 0 and UN−M = 0, both sides have the same payoff and the air
combat situation is balanced. In the experiments, M used four different algorithms for air
combat, while the N algorithm remained unchanged. When the probability of Un−m > 0 and
the probability of UN−M > 0 are greater, it was difficult for M to gain an advantage, and the
benefits that M side were smaller. Otherwise, the air combat countermeasure performance
of the algorithm was better. Similarly, when the probability of Un−m < 0 and the probability
of UN−M < 0 were greater, it was likely that M would gain an advantage. The experimental
statistical results showed that among the four algorithms, the distance optimal algorithm
model was the simplest but the air combat performance was the worst. Compared with
the other three algorithms, the algorithm proposed in this paper had the best air combat
performance and air combat effect; the performance of the angle and distance optimal
algorithm was close to that of the traditional MCTS algorithm, but the performance of the
latter was slightly better than that of the angle and distance optimal algorithm.

Table 7. Probability of Un−m compared to 0.

Un−m
The Proposed

Algorithm
Traditional MCTS

Algorithm
Angle and Distance
Optimal Algorithm

Distance Optimal
Algorithm

>0 50% 68% 75% 84%
=0 2% 7% 3% 3%
<0 48% 25% 22% 13%

Table 8. Probability of UN−M compared to 0.

UN−M
The Proposed

Algorithm
Traditional MCTS

Algorithm
Angle and Distance
Optimal Algorithm

Distance Optimal
Algorithm

>0 49% 63% 68% 89%
=0 3% 5% 3% 1%
<0 48% 32% 29% 10%

6. Conclusions

Addressing the maneuver decision-making problem of a multi-fighter air combat situ-
ation under an uncertain information condition, this paper established a two-layer game
decision-making algorithm using distributed MCTS with double game trees, and adapted
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the operational rules of interval numbers and the solving game method based on the degree
of probability of determining the optimal game strategy scheme. The experiment results
showed that the model and algorithm were effective and the fighters in the air combat could
accurately predict their opponent’s combat intentions and trajectories and the battlefield
situation. Based on repeated experiments, the following conclusions may be drawn. (1) The
situation changes frequently in close range air combat, and the strategy space for air combat
games is very large. Even if the opponent used the MCTS method to find the optimal
solution, as long as the best decision-making time was achieved and the right solution was
used, it was possible to turn defeat into victory. (2) By comparing the experiments, it was
found that the proposed algorithm could improve the air combat performance. A great
deal of research has been undertaken on air combat maneuver decision-making, and many
achievements have been made. However, most of them focus on the problem of one-to-one
air combat decision-making. Starting from the multi-aircraft air combat maneuvering
decision-making problem, this paper simulated the human decision-making process, de-
composed maneuvering decision-making into two-layer game problems comprising target
allocation and maneuvering decisions, and considered a situation of uncertain information
in the decision-making process. Moreover, the air combat maneuver decision-making
problem was regarded as a simultaneous decision-making problem for both sides, which
improved the traditional maneuver decision-making method for both sides and more closer
resembled an actual combat situation. The research in this paper provides the theoretical
basis of the algorithm for follow-up research on simulations of air combat confrontations in
real scenarios.
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